
ENTERPRISE

@enterprise 10.0

System Administration

February 2025

FREQUENTIS AG

FREQUENTIS AG

Innovationsstraße 1
1100 Wien
Austria

Tel: +43 463 504694 - 0
Fax: +43 463 504594 - 10
Email: support@groiss.com

Document Version 10.0.39257

Copyright © FREQUENTIS AG.
All rights reserved.

The information in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. FREQUENTIS AG does not warrant that
this document is error-free.

No part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of FREQUENTIS AG.

@enterprise is a trademark of FREQUENTIS AG, other names may be trademarks of their respective
companies.

Introduction

This manual describes the administration of the Workflow-Management-System @enter-
prise. It is written for readers, who administrate the system, define users or the organization
structure, or define workflows.
The manual is structured as follows:

• System architecture: The architecture of @enterpriseis described.

• The HTML interface: The structure and usage of the HTML interface for adminis-
tration is described.

• Ids, names and internationalization: Here you can find information about which
attributes of an object class are used as ids and how the conventions for ids look like
in @enterprise. Furthermore you can find information about the internationalization
of master data and object classes.

• Definition of the Organizational Structure:

Modeling the objects and the structure of the organization is necessary for modeling
workflows. The following object classes are maintained in @enterprise:

– Server: An @enterpriseinstallation can consist of several servers, which co-
operate for workflow execution.

– Roles: Roles define groups of participants exhibiting a specific set of attributes,
qualifications and/or skills.

– Rights: Rights are used to restrict some operations to selected users.

– Permission lists: It is possible to combine several rights to permission lists.
This permission lists can be assigned to users or roles.

– Users: All persons, which work with @enterprise, must be registered as "users".

– Organizational units: The structure of the organization is modeled with or-
ganizational units and the hierarchy between them. Organizational units are
abbreviated by OU.

– Organization classes: Organization classes are used to classify the organiza-
tions.

– Organization hierarchies: OUs can form hierarchies, i.e. one OU can be sub-
ordinate to another one and vice versa. The hierarchy of OUs is defined by

0.

restoring the corresponding OUs into the organization hierarchy. In doing so
one superordinate OU can own several subordinate OUs, but a subordinate OU
(in one organization hierarchy) can only belong to one superordinate OU. A OU
can be arranged in several organization hierarchies (in this way it is possible to
map OUs belonging to several divisions).

• The @enterprise permission system: This chapter describes the permission system
of @enterprise, which enables you to assign the required rights to users.

• Workflow modeling: Using the organizational structure we can define processes
(workflows). The following object classes are described in the respective chapters:

– Applications: Applications group processes.

– Tasks are the elementary activities of processes.

– Functions are representations of interactive Java-methods used for execution of
activities.

– Forms are the data containers for local data of processes.

– Processes describe the structure of a business process.

• Process definition: In this chapter, the definition of processes is described. It con-
tains two sections, the definition with the script language WDL and the definition us-
ing the graphical process designer. It is also possible to define processes with XWDL
– an extension of WDL – which is described in the Application Development Guide
in section XWDL.

• Searching in @enterprise: Here you can find cross references to those documents
which are describing the possibilities to find certain information within @enterprise.

• Administration Tasks: The search facility and a set of common administration func-
tions is described.

• Configuration: This chapter describes the configuration of @enterprise–server.

• Dashboard: This chapter describes how you can use the dashboard of @enterprise.

4

Contents

1 System architecture 11
1.1 The World Wide Web . 11
1.2 The system components . 11

2 The HTML interface 14
2.1 Tables . 15

2.1.1 Column picker, sorting and filter 16
2.1.2 Standard functions . 17

2.2 Object details . 18
2.2.1 Tab: General . 18
2.2.2 Tab: History . 20
2.2.3 Tab: Access . 20
2.2.4 Tab: Referenced by . 21
2.2.5 Further functions . 22

3 Ids, names and internationalization 24
3.1 Ids and names . 24
3.2 Internationalization of meta data objects and object classes 26

4 Definition of the organizational structure 27
4.1 Roles . 27

4.1.1 Tab: General . 27
4.1.2 Tab: Permissions . 29
4.1.3 Tab: User . 29
4.1.4 System-defined roles . 29

4.2 Rights . 29
4.2.1 Tab: General . 30
4.2.2 Tab: Permissions . 30
4.2.3 System-defined rights . 31

4.3 Users . 32
4.3.1 Tab: General . 33
4.3.2 Tab: Roles . 34
4.3.3 Tab: Substitutions . 35
4.3.4 Tab: Role substitutions . 35
4.3.5 Tab: Permissions . 36

5

CONTENTS

4.3.6 Tab: All permission . 36
4.3.7 Tab: Settings . 36
4.3.8 Tab: All Settings . 37
4.3.9 Toolbar function GUI configurations 37
4.3.10 Permission test . 37
4.3.11 Expired passwords . 37
4.3.12 Data protection functions . 37

4.4 Organizational units . 38
4.4.1 Tab: General . 39
4.4.2 Tab: Superordinate Org.-Units . 40
4.4.3 Tab: Roles . 40

4.5 Organization hierarchy . 41
4.5.1 Tab: General . 41
4.5.2 Tab: Organizational hierarchies 41
4.5.3 Function Merge organizational hierarchies 43

4.6 Organization classes . 44
4.6.1 Tab: General . 44

5 The @enterprise permission system 46
5.1 Introduction . 46

5.1.1 Rights . 46
5.1.2 Object classes . 46
5.1.3 Permissions . 47
5.1.4 Permission list . 48

5.2 Definition of permissions . 48
5.2.1 Permissions of users . 48
5.2.2 Permissions of roles . 48
5.2.3 Administration of permission lists 49
5.2.4 Permissions for an object . 49
5.2.5 Permissions for permissions . 49
5.2.6 Permissions for role assignments 49
5.2.7 Administration of object classes 49

5.3 Standard settings . 50
5.4 For what you need which rights? . 51
5.5 Example . 51
5.6 Permissions and substitutions . 51

6 Workflow modeling 55
6.1 Applications . 56

6.1.1 Tab: General . 56
6.1.2 Tab: Properties . 57
6.1.3 Tab: Properties XML . 58
6.1.4 Report . 58

6.2 Tasks . 59
6.2.1 Tab: General . 60
6.2.2 Tab: Functions . 62
6.2.3 Supplement of forms . 63

6

CONTENTS

6.3 Functions . 63
6.3.1 Tab: General . 63
6.3.2 Standard functions . 66

6.4 Forms . 68
6.4.1 Form-Editor . 69
6.4.2 View . 78
6.4.3 Create view . 78
6.4.4 Edit . 78
6.4.5 Report . 88

6.5 Processes . 88
6.5.1 Create new process with the process editor 89
6.5.2 Edit a process with the process editor 89
6.5.3 Load WDL / XWDL . 89
6.5.4 Tab: General . 89
6.5.5 Tab: Source . 92
6.5.6 Tab: Graph . 93
6.5.7 Tab: Components . 93
6.5.8 Tab: Visibility of forms . 93
6.5.9 Tab: Escalation . 95
6.5.10 Tab: Functions . 97
6.5.11 Tab: Folder settings . 98
6.5.12 Tab: Document permissions . 98
6.5.13 Tab: Decision Support . 100
6.5.14 Report . 105
6.5.15 Milestones . 106
6.5.16 Plan types . 106

6.6 Function groups . 107
6.7 GUI configurations . 108

6.7.1 Tab: GUI configuration . 108
6.7.2 Tab: GUI configuration XML . 124
6.7.3 Tab: Assignments . 124
6.7.4 Customizable actions . 124

6.8 Resource Editor . 126
6.8.1 Toolbar functions . 127
6.8.2 Converting csv-files . 128

6.9 Value lists . 129
6.10 Web Services . 129

6.10.1 Webservice clients . 130
6.10.2 Webservice server . 132

6.11 Message templates . 132
6.11.1 Tab: General . 133
6.11.2 Overview about events and modes of sending 136

6.12 Test cases . 137
6.12.1 Toolbar . 138
6.12.2 Test steps . 138
6.12.3 Process history and Process details 141

7

CONTENTS

7 Process Definition 142
7.1 WDL . 142

7.1.1 Lexical Conventions . 143
7.1.2 Process header . 143
7.1.3 Declaration part . 144
7.1.4 Basic Statements . 146
7.1.5 Control Structures . 150
7.1.6 Event Mechanism . 157
7.1.7 Web services . 158

7.2 The process editor . 161
7.2.1 The process editor window . 161
7.2.2 Using the process editor . 161
7.2.3 The Functions of the menu bar . 167
7.2.4 Process properties . 171
7.2.5 Tasks . 172
7.2.6 Escalations . 174
7.2.7 Process plans . 176
7.2.8 The function list . 179
7.2.9 The common attributes of a node 182
7.2.10 Properties of an activity . 182
7.2.11 Conditions for Ifs, Choice, Loops 184
7.2.12 Properties for system steps . 184
7.2.13 Properties for Batch steps . 185
7.2.14 Properties of a subprocess . 185
7.2.15 Properties of a parallel for . 186
7.2.16 Properties of AND-/OR-parallelism and end node of Parallel for . . 186
7.2.17 Properties of an event . 187
7.2.18 Properties of a GOTO . 188
7.2.19 Properties of Web service nodes 189
7.2.20 Condition editor . 190

8 The Search of @enterprise 193
8.1 Process search . 193
8.2 Document search . 193
8.3 Report designer . 193
8.4 Reports . 193

9 Administration tasks 194
9.1 Server . 194

9.1.1 Server Monitor . 194
9.1.2 Server Control . 196
9.1.3 Log files . 200
9.1.4 Database connections . 201
9.1.5 Object history . 201
9.1.6 User sessions . 202
9.1.7 Events . 203
9.1.8 Timers . 203

8

CONTENTS

9.1.9 Pending changes . 212
9.1.10 Event registrations . 212
9.1.11 Batch jobs . 213
9.1.12 Wait steps . 213
9.1.13 Class path . 213
9.1.14 Manage certificates . 214
9.1.15 Query tool . 217

9.2 Import/Export . 218
9.2.1 Import/Export in XML Format . 219
9.2.2 Archive processes . 222
9.2.3 Export application . 223
9.2.4 Install/Update application . 225
9.2.5 File import . 226

9.3 Cluster . 228
9.3.1 Cluster Monitor . 228
9.3.2 Servers . 229

9.4 DMS . 229
9.4.1 Full-text search . 229
9.4.2 Keywords . 229
9.4.3 Search in Recycle Bins . 229

9.5 Reorganize . 230
9.5.1 Change role assignments . 230
9.5.2 Analyze process instances . 231
9.5.3 OU history . 231

9.6 Communication . 231
9.6.1 Mailboxes . 231
9.6.2 Mail-Queue . 234
9.6.3 Mail journal . 235
9.6.4 Authorizers . 236
9.6.5 LDAP . 236
9.6.6 External Stores . 240
9.6.7 WfXML . 241
9.6.8 Local services . 241

9.7 Decision support . 241
9.7.1 Cache Information . 241
9.7.2 Evaluation information . 242
9.7.3 PMML administration . 242

10 Configuration 244

11 Dashboard 245
11.1 New . 245
11.2 Open . 245
11.3 Save . 246

11.3.1 Delete . 246

9

CONTENTS

12 Administration Shell 247
12.1 Architecture and invocation . 247
12.2 Commands . 248

12.2.1 Client commands . 248
12.2.2 Server commands . 248

12.3 Examples . 249
12.3.1 Setting a configuration parameter 249
12.3.2 Restart the server . 249
12.3.3 Add a role to or remove one from a user 250
12.3.4 Set the interval of a timer . 250
12.3.5 Worklist handling . 250
12.3.6 Session handling . 251

13 Restricted administration 252
13.1 User . 252
13.2 Organizational units . 253

10

1 System architecture

The workflow system @enterprise is build for using in the intranet and internet and based
on the technologies of the World Wide Web. We briefly describe these concepts before
explaining the architecture of the system.

1.1 The World Wide Web

Three concepts make up the World-Wide Web (WWW): uniform addressing of information
in the Internet via the Uniform Resource Locator (URL), presentation of information in
the Hypertext Markup Language (HTML), and transmission of data using the Hypertext
Transfer Protocol HTTP.
The HTML format allows the integration of different media type into a document. So-
called hyper-links enable the integration and connection to other documents or media types.
Important for using the WWW for workflow systems is the feature of fill-in forms in HTML,
which allows a form based interaction between the user and a program.
HTTP is a simple protocol for transmitting information over the net. The client (browser)
requests a document from a server, by opening a socket connection and sending the URL of
the document to the server. The server sends back the content of this document together with
some status information. If the URL points to an executable program the server executes
this program and sends the output back to the client. Moreover, the HTTP protocol provides
a mechanism for user authorization allowing to restrict access to a group of users or hosts.

1.2 The system components

Fig. 1.1 shows the components of the system. The components in detail:

• Database: The database contains all data relevant for process execution, process def-
inition, organizational hierarchy, roles, as well as the dynamic data of the process
instances.

• Workflow engine: This component contains the interpreter for the defined processes,
it is called whenever a process is started or an activity is finished through the user in-
terface. Additionally, the engine comprises services like timers, import-export mech-
anisms, the monitoring component, etc.

11

1.2. THE SYSTEM COMPONENTS

Data-
Repository

Organisational
data

Process
definitions

Process
instances

Process data

Process relevant
Data

- Workflow-Engine
- Document management
- Timer

- Administration functions
- Server Control
- Search and Reporting

H
T

T
P

-S
er

ve
r/

S
er

vl
et

 C
on

ta
in

er

Run-Time component

Administration component

Client
(Browser)

HTTP

HTTPS

JDBCServlet

- Processes
- Data
- Organization
- Applications

Modeling component

Figure 1.1: @enterprise system architecture

• HTML interface: The HTML interface creates the HTML pages of the user interface.
It is triggered from the HTTP server whenever a user clicks on a link or a button. On
the back end it communicates with the @enterprise engine via the API. The HTML
interface consists of the following parts:

– Workflow client: It generates the HTML pages and forms used for interaction
with the user (not administrator) of @enterprise. The main page is the user
worklist, which contains links to the other relevant information, i.e. the forms,
process descriptions, history, etc.
See the User Manual for a description of this interface.

– Administration and monitoring tool: It contains functions for creating, mod-
ifying and deleting users, roles, and organizational units. It also allows the
inspection and modification of running processes, like terminating instances, re-
assigning steps, etc. Like the other components communicating with the HTTP
Server, the interactions with the user are done by creating and receiving HTML
pages and forms.
Two interfaces are available for process definition: Workflows defined as WDL
scripts can be compiled and loaded into the system. Additionally, the process
editor allows graphical definition of processes. Both components are accessible
using a Web browser.
Forms are created using a standard HTML editor. A parser extracts all input
fields from the form and presents the user with a suggestion for the definition of
the corresponding database table. The user can alter the data-types and creates
the form table. The HTML form is stored in the database.

• HTTP server: The HTTP server is the interface between the Web and the workflow
system. It translates the requests from the users to calls of the corresponding proce-
dures of the workflow system.

12

1.2. THE SYSTEM COMPONENTS

• Browser: Every interaction with the system is done by a Web browser. This allows
wide availability and platform independence and made system implementation easier.

13

2 The HTML interface

For using the @enterprise administration component a web browser is necessary on your
machine (Internet Explorer, Mozilla Firefox, Google Chrome, etc.).

Login to the system either as sysadm or as another user. In the latter case you will be
redirected to the worklist component. Click the @enterprise menu and "Administration"
to enter the system administration (you will see this link only if you have the right "admin").
Depending on the server settings, a casual user (with admin rights) has to log-in again to
get an admin session (if admin host and port are the same). The necessary information
about admin host/port can be found in Installation- and Configuration Guide section HTTP
server. Fig. 2.1 shows the structure of the main window.

Figure 2.1: System administration

The interface is split up in the following parts:

14

2.1. TABLES

• Information: The top frame contains information about the logged in user and actual
running server. Four functions are always visible on the right end of the information
bar:

– Help: Opens a help page in a new window depending on the selected context
(area). By selecting the same area and hitting the key F1 the same help page is
opened.

– Dashboard: Shows your dashboard in the working area.

– Worklist: Switch to the worklist component of @enterprise.

– Logout: Logout from @enterprise.

– Note: If this symbol appears, a modification at the @enterprise-system was
made. By clicking the symbol you will get nearer information, if you have to
restart the server or have to refresh the cache-structures.

– Toolbar: Directly positioned under the information frame is the toolbar which
contains different functions for manipulating the informations displayed in the
working-area.

• Navigation: The navigation frame on the left contains the following elements:

– Organization: Contains links for administration of the application-independent
information: Users, Organizational units, Organizational classes, Organization
hierarchies and Permission lists.

– Applications: This area contains subtrees for every application. For each ap-
plication a link to its Processes, Forms, Tasks, Functions, Roles, Rights, Object
classes, Function groups, GUI configurations, Resources, Value lists, Timers,
Mailboxes, Reports, Web service clients, Web service servers, Message tem-
plates and Test cases is shown. This area also contains a link to the overview of
all applications, called Application list.

– Search: This folder contains links to the various search functions (Process
search, Document search, Report designer and Reports).

– Admin tasks: Shows a list of administration tasks, for example for restarting
the server, exporting data, etc.

– Configuration: All functions for configuring your installation are placed here.

• Working area: The working area is the main part of the interface. It contains dif-
ferent masks and tables for manipulating the master data, configuration etc. After
opening the administration your dashboard is displayed here. You can change the
content of the working area by activating a link of the navigation area.

2.1 Tables

Master data are displayed in tables initially. The table contains the different objects in its
rows and the columns show different information of the respective object.
Detailed information and additional functions for the object are displayed in an own win-
dow (see chapter 2.2). You can open this window by double-clicking a row in the table or

15

2.1. TABLES

Figure 2.2: Example for table display (Roles)

selecting the row first and activating the toolbar-function edit secondly.

Before the table is shown, the system checks the length of the table. If it exceeds the de-
fined limit, the system asks the user whether he will view the full table. The limit can be
configured in the system configuration (parameter group Localization).

Following formats are used to display the table rows:

• Last changed: The row which is changed at last is colored.

• Inactive entries: Inactive objects are displayed with grey and italic letters. Addi-
tionally forms, where the form class can not be loaded are marked as inactive entries,
too.

• Selected entries: Actually selected entries are colored.

2.1.1 Column picker, sorting and filter

You can change the number of displayed columns by using the column picker. The column
picker is placed rightmost of the table header. Activate the functions and a popup-window
containing the names of all actually visible and possible columns opens.

Already visible columns are displayed with a small checkmark. To add a new column to the
table, activate a column name (without the checkmark). The table refreshes and the selected
column is displayed. To remove a column from the table, activate a column name (with the
checkmark). The table refreshes without the removed column.

You can change the sorting column and sorting direction by activating a column header.
Which column and direction is actually used for sorting is marked by a small arrow left of
the column name.

16

2.1. TABLES

The link Filter helps you to keep an overview if your table contains a lot of entries. The
filter can be seen as selection criteria to mask certain entries in your table.

By clicking on the corresponding column header of your table a context sensitive filter menu
with the following entries is shown:

• Order ascending: The entries of the table are ordered in ascending order by the current
column.

• Order descending: The entries of the table are ordered in descending order by the
current column.

• All entries: The use of the column filter of the current column gets nullified.

• User defined: By selecting this menu item a HTML–page is shown where you can
enter a certain value. If you confirm your entries in this page by clicking the button
”Ok” the table is filtered by the corresponding value.

• All column entries are shown; if you select one or more of these entries the column
gets sorted by your selection.

If you want to save the current combination of filters you have to click the link ”Filter” in
the heading of the table. The filter menu is shown:

• Save filter: By selecting this menu item you save the current combination of column
filters under a name defined by you. You can also enter a description for the filter.

• Edit filter: By selecting this menu item you can edit or delete all filters. There is no
undo function for deleting a filter!

• A list of all saved filters. If you select one of these entries the table is filtered by this
filter. The list can also contain filter which have been defined by another users.

• All entries: The use of the saved filter is nullified.

When a filter is selected only those entries of the table are displayed which match all the
criteria specified by the filter.

2.1.2 Standard functions

Following functions are displayed for manipulating most of the tables in the administration:

• New: opens object-details for creating a new object.

• Edit: opens object-details for updating, deleting, viewing the history etc. the infor-
mation. Depending on the class of the object further functions may be available on
this page.

• Delete: deletes selected objects.

• View: opens object-details in read-only-mode, excepting forms and processes

17

2.2. OBJECT DETAILS

• Search: If you insert a search string and click to "Search" button the result list will
contain all objects matching the search string. Normally, the string is matched against
the id and name of the objects, the text left of the input field names the search at-
tributes.

• Extended search: With the button "Extended search" you can search in all attributes
of the object.

• All entries: views the complete list of objects of the class.

• Select all entries: mark all entries as selected by activation this function.

• Refresh: Refresh the content of the working area.

• Copy: This function allows to copy the selected object incl. its settings (made in the
tabs), e.g. the selected ACL with its entered rights is copied.

2.2 Object details

The detail view of an object can be opened by double-clicking the entry in the table, or
selecting the table row and activating the edit-function in the toolbar. The object-details are
buildup as tabbed pane. Each tab has its information and function to the actual object (see
Fig. 2.3).
The main functions of the object details are:

• Save and close: Activating this button saves the changes in the database and closes
the window. The table refreshes. In most cases this button is colored green after
changing anything on mask; the color indicates that this is the default action.

• Save: Activating this button saves the changes in the database and refreshes the table.
You can activate this button only if the actual tab contains a mask where you can edit
the information directly.

• Cancel or Close: Close the window and in case of Cancel discard the changes. The
button Close is available only, if there is no actual save action in the current tab in
tabbed window.

• Delete: Delete this object from the database.

2.2.1 Tab: General

In general the tab General is the first tab of the object-details. Here you can view or edit
the general settings of the actual object. After changing the attributes save them through
activating the button Save and close, Save or changing the tab. In this tab the button Delete
is active, too. This function is the same as the function Delete in the toolbar outside.

18

2.2. OBJECT DETAILS

Figure 2.3: Object details: Example

Apply changes later

Some objects can be changed so that the changes become effective at a future date. The
field "Apply changes at" on the detail mask provides this functionality.

Insert in the field Apply changes at the date (and time) the changes should get effective.
After activating the button Save and close, Save or changing the tab the deferred changes
are saved.

If you view the detail mask of an object with such pending changes, you will see the date
when the changes get effective in the field Object changes at. Activating the icon beside this
field opens the detail-view of the changes. Here you can discard the changes by activating
the button Discard changes.

Activating / Deactivating objects

Some objects have the attribute "active" indicating whether the object is currently usable or
not. In the detail mask of these objects you can manipulate this attribute with a checkbox.
If the checkbox is not checked, the object is inactive. This means for:

19

2.2. OBJECT DETAILS

• Users: the user cannot log in and cannot receive a worklist entry.

• Processes: the process cannot be started (except via the API).

• Roles, role assignments: the role cannot receive a worklist entry.

In the table of objects, the inactive items have a grey background and italic letters.

Internationalization

The name of application-dependent objects can be translated into the available languages.

The name translated into the actually used language is displayed beside the field Name as
link. After activating this link the internationalization for all available languages is dis-
played. Clicking the button Close closes the window. How you can change the internation-
alization is described in chapter 3.

2.2.2 Tab: History

This tab shows the history of changes on this object (see Fig. 2.4). You can even view the
older versions of the object by activating the function view in the toolbar. The detail view
allows a comparison with previous made changes. This functionality is the same as e.g. at
the process history tab (see User manual, section Functions of the process history).

Figure 2.4: Tab: History

2.2.3 Tab: Access

This tab shows you who has which access to the object directly or indirectly via permission
lists (see Fig. 2.5). You can edit the access rights to this object here, see chapter 5.

20

2.2. OBJECT DETAILS

Figure 2.5: Tab: Access

2.2.4 Tab: Referenced by

If you select the tab Referenced by, an overview about all objects will be shown, which
reference on the current object (see Fig. 2.6). The objects are displayed in a hierarchical
structure. The symbols will be described as follows:

• Plus sign: this object has one or more sub-objects, which are not shown yet. If you
click on the plus-sign, the sub-objects will be shown. Furthermore the plus will be
converted into a minus.

• Minus sign: this sign shows, that a hierarchy is already expanded. If you click on the
minus-sign, all objects of this hierarchy will be hidden. Furthermore the minus will
be converted into a plus.

• Expand all: by this sign the whole objects can be expanded or the sub-objects can be
collapsed.

• Arrow: shows, that a detail view of the object exists.

21

2.2. OBJECT DETAILS

Figure 2.6: Tab: Referenced by (Roles)

2.2.5 Further functions

Some functions are used in the masks again and again. The following chapters describes
this functions.

• Select: Activating this function opens a new window where you can select a object.
The selected value is inserted in the field beside this function. For example: selecting
a user, an organizational unit.

• Remove: Activating this function removes the value of the field beside. This function
is always combined with the Select-function.

Since @enterprise version 8.0 DOJO drop-down lists are integrated. By activating
this symbol, the content of the list is displayed, where you can select the needed
object or search for it. In case of a multiplicity of entries, the parameter Items per
page under Configuration/Localization is used to display entries in a paged way.

• Calendar: After activating this function a calendar is displayed. The calendar helps
you selecting a date. Detailed information can be found in the user manual in section
Calendar and time selection.

22

2.2. OBJECT DETAILS

• Time selection: In time fields this function is provided which supports you by se-
lecting an appropriate time (optionally time must be entered manually). Detailed
information can be found in the user manual in section Calendar and time selection.

• Class path checker: With the Classpath-Checker you can check URLs. The existing
class and also the existing method and the correct method-signature will be checked.
In special cases will be checked, if the class implements the required interface (e.g.
Logger Class must implement the interface com.groiss.log.ILogger). If the URL can
be found in the classpath, the symbol of the Classpath-Checker changes its color to
green. In any other case the color of the Classpath-Checker is red.

23

3 Ids, names and internationalization

3.1 Ids and names

In @enterprise all master data objects are identified internally with an unique identifier
(id). The name is normally used in the user interface. According to the object class the
following attributes are used as identifiers:

• id

• name

• both the id and the name

• a combination of id and version

• a combination of name and version

The object classes and their corresponding identifiers are listed in table 3.1.

Within @enterprise the id of an object is unique and furthermore the id is also unique for
all applications of @enterprise. Therefore it is not possible to create an object of the same
class in different applications with the same ids (e.g. user A in application X and user A in
application Y).

Another peculiarity of @enterprise is, that the user and roles are sharing their scope, i.e. it
is not possible that within one @enterprise–server there are a user and a role which ids are
identical or where the name of the user corresponds to the id of the role or vice versa.

For a syntactically correct id the following rules apply:

• Ids start with a letter or $. Then, characters, numerics and signs _ / \ $ are allowed.

• The complete length of an id must not exceed 80 characters.

• User-Ids can also contain special characters (e.g. email-addresses), but whitespaces,
exclamation marks and commas are not allowed.

• In a WDL definition the agent-id must start with an exclamation mark, if the id is no
"simple" id.
Example:

24

3.1. IDS AND NAMES

Object class Identifier
User Id
Organizational unit Id
Function Id
Access list Name
Object class Name
Function group Id
Role Id, Name
Right Id, Name
Organizational class Id, Name
Organizational hierar-
chy

Id, Name

Application Id, Name
Server Id, Name
Task Id+Version
Process Id+Version AND Name+Version
Form Id+Version AND Name+Version

Table 3.1: Object classes and their identifiers

!right.user@xy.com do_something(f);

25

3.2. INTERNATIONALIZATION OF META DATA OBJECTS AND OBJECT
CLASSES

3.2 Internationalization of meta data objects and object classes

In @enterprise it is possible to internationalize object classes and all meta data where it
makes sense. Meta data which can be internationalized are:

• Applications

• Tasks

• Functions

• Roles

• Rights

In implementing a corresponding java.lang.ResourceBundle and putting it into the corre-
sponding application directory, it is possible to internationalize your own applications. For
further details on this topic read the programming handbook of @enterprise. There you
find also informations on how to internationalize the meta data of the default application.

26

4 Definition of the organizational
structure

4.1 Roles

Roles define groups of participants exhibiting a specific set of attributes, qualifications
and/or skills. Examples are Supervisor or Insurance Underwriter. To assign a role to a
user you must first define the role, then assign it to one or more users (see the next section).

The object-details of roles contain the following tabs:

• General

• Permissions

• User

• History

• Access

• Referenced by

4.1.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the role.

• Name: Name of the role. By activating the I18n-link beside this field, the translations
(if defined in application mask - tab Properties) of this key are displayed and can be
edited directly by changing the values and activating the button Save. The changes
are stored in the resource file of this application (see section 6.8).

• Application: Application, the role belongs to.

• Type: @enterprisedistinguishes three role types:

– Local: A local role is assigned to a user in one organizational unit.

– Global: A global role is independent of organizational units.

27

4.1. ROLES

Figure 4.1: Object details: Roles

– Hierarchic: A hierarchic role is assigned to a user in an organizational unit, but
it is valid also for all sub-OUs, (the organizational units which are below in the
organizational hierarchy).

• Description: Free text.

• Reference role: Reference roles are used for defining different roles with different
rights but one "reference" role used in process definitions.

1. Example: Assume we have defined the role assi for assistant and use this role
in process definitions. the roles asi_no_rights oder assi_many_rights are assigned to
persons with no or with many extra rights, respectively. Both roles have assi as refer-
ence roles, so that an activity assigned to the role assi is also assigned to the persons
with the other to assi* rights.

2. Example: Our company has assistants and a department manger. The first agent
of process definition P is the role dm_assi. This role is a reference role of roles dm
and assi. The users have the roles dm or assi, but assistants and department managers
are able to start process P and have the same rights in first process step.

28

4.2. RIGHTS

Note, that it is not possible to define reference roles for reference roles.

• Active: see chapter 2.2.1.

4.1.2 Tab: Permissions

In this tab you can add and edit the permissions assigned to the role. Users who are as-
signed to the role have the permissions assigned to the role. Use the toolbar functions for
manipulating the permissions.

4.1.3 Tab: User

This tab shows you which users are already assigned to the role. You can open the details
of this relationship, edit it or create a new one.

4.1.4 System-defined roles

In @enterprisefollowing system-defined roles exist:

• all: A useful role you can assign to all users. If you define then rights for this role,
everybody has this right. Processes with all as agent of the first task, can be started
by all workflow participants (or more exactly: by everybody, who has the role all
assigned).

• sys: This role is used for system administration, it allows you to perform all system
administration activities.

• home: The home-role connects a user to a "home" organizational unit. A user can
have at most one home OU.

• dept: The role dept is used as "Inbox" of an organizational unit. If you want to send
a process instance to a OU without knowing the specific user, you can send it to the
role dept. Note, that you must assign this role to a user, before you can use it as agent
of a task.

• useradmin: The local role "useradmin" can be used for the restricted administration
of @enterprise. More information can be found in section 13.

4.2 Rights

Rights are used to restrict some operations to selected users. The assignment of rights to
users is directly or using roles. See chapter 5 for a detailed descriptions of the @enterprise
permission system.

The object-details of rights contain the following tabs:

• General

• Permissions

29

4.2. RIGHTS

• History

• Access

• Referenced by

4.2.1 Tab: General

Figure 4.2: Object details: Rights

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the right.

• Name: Name of the right. By activating the I18n-link beside this field, the transla-
tions (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Application: Application, the right belongs to.

• Description: Free text.

4.2.2 Tab: Permissions

In this tab you can see a list of users and roles which have the current right. If the right is
limited to a certain object, this object is displayed in the column Target Object.

30

4.2. RIGHTS

4.2.3 System-defined rights

In @enterprisethe following system-defined rights exist:

• Abort step (abort_step): Abort a step in a process-instance.

• Administer OU reference folders (admin_dept_reffolder): A user with this per-
mission can:

– create the root reference folder for that OU

– create other reference folders for that OU

– edit folders of that OU

– delete folders of that OU

– add/remove content to/from folders of that OU

– add/remove subfolders to/from folders of that OU

– edit the permissions of folders that OU

• Administration (admin): Right to access the system administration.

• Create objects (create): Create an object.

• Delete objects (delete): Delete an object.

• Edit calendar appointments (editCal): Used to edit calendar entries.

• Edit configuration (conf): Right to configure the system.

• Edit objects (edit): Edit an object.

• Edit permissions (edit-acl): Edit the rights somebody has for an object.

• Edit plan (edit_plan): Edit a process plan.

• Edit process instances (proc_inst): Necessary to cancel process instances or to edit
the agent of process instances. Additionally, it grants all the permissions defined by
the right View process instances. The right is resolved in the context of the organiza-
tional unit of the process instance. If someone has this right for an OU, he may cancel
all process instances that have been started in this OU.

• Enter substitute (grant_subst): Allows the definition of personal and role substitu-
tions.

• Execute objects (execute): Execute the object (for example a function object).

• Grant folder share for OU (grant_share_dept): Grant permissions to a reference
folder if the agent is a local or hierarchical role.

• Grant folder share for user (grant_share_user): Grant permissions to a reference
folder if the agent is a user.

• Grant folder share system (grant_share_system): Grant permissions to a reference
folder if the agent is a global role.

31

4.3. USERS

• Insert calendar appointments (insertCal): Used to create calendar entries.

• Named user (named_user): To qualify a user as Named User in order to allow log
in regardless of the number of currently logged-in users.

• Reassign (set_agent): Necessary to edit the agent of process instances. Additionally
it grants all the permissions defined by right View process instances.

• Search (find): The right to find a reference folder.

• Searchable (searchable): Search in forms and list stored reports.

• Share (share): Right to allow other users to use its objects (e.g. worklist filter).

• Share filter (share_filter): Right to share filters with other users

• Statistics (stat): Create reports with report designer.

• View calendar appointments (viewCal): Right to see calendar entries of other users.

• View configuration (view_conf): View configuration.

• View objects (view): View an object.

• View process history (view_history): View process history only.

• View process instances (view_procinst): View process history, list of documents
and notes and all process forms and versions.

4.3 Users

All persons, which work with @enterprise, must be registered as "users". At the extended
search the number of shown users in the user list can be influenced by different search-
attributes. For example a search-attribute is the Organizational Unit, only these users will
be listed, who have a role in this OU.

The object-details of roles contain the following tabs:

• General

• Roles

• Substitutions

• Role substitutions

• History

• Access

• Permissions

• All permissions

• Settings

32

4.3. USERS

4.3.1 Tab: General

Figure 4.3: Object details: Users

You can edit the following attributes (required fields are bold):

• Id: unique identifier of the user. More information about IDs and names can be found
in chapter 3.1.

• Surname: Surname of the user.

• First name: First name of the user.

• Title: Some (academic) title

• Salutation: Some salutation, e.g. principal.

• Name suffix: Free text which is set after the name, e.g. Sen

• Gender: Selection between male, female and other.

• Description: Free text.

• Email: Email address of the user.

33

4.3. USERS

• Phone number: Phone number of the user (or some other text, we don’t use this field).

• Server: The @enterpriseserver, where the worklist is accessible.

• Language: Select the language for the user interface.

• Active: see chapter 2.2.1.

• Order attribute: free text, can be used for sorting.

• Profile picture: Upload a profile picture for this user which is displayed in user profile
(smartclient). By default, a placeholder for the profile picture with the user’s initials
is displayed here.

• Password: Password for login.

• Date of the last password change: Date, when the password was changed.

• Password-Policy:

1. Password never expires: The password of this user never expires.

2. Has to change password at next login: The user has to change his password at
the next login.

3. Cannot change password: The user should not able to change his password.

4. Expiration warning email sent: Indicates, if an expiration warning email has
been sent by timer PasswordExpiration to the users email address. The check-
box is reset automatically, if password has been changed.

• Apply changes at: see section 2.2.1.

4.3.2 Tab: Roles

In the role assignment mask you can specify the following attributes:

• User: The user you want to give a role.

• Role: The role you want to give to the user.

• Organizational unit: the organizational unit where the role should be assigned. Note,
that this should be left blank for global roles but is mandatory for local and hierarchic
roles.

• Active: see chapter 2.2.1.

Define a substitute of a role of a user

To make substitutions more fine-grained, it is possible to define one or more substitutes for
each role-assignment. Use the following steps to define such a substitution:
Activate the tab Substitutions of the role-assignment to add role substitutes.

Hint: The timer CurrentSubstitutes activates/deactivates the substitution, if a from- and/or
to-date has been entered (see section 9.1.8).

34

4.3. USERS

4.3.3 Tab: Substitutions

For each user you can define several substitutes, each of them with an optional substitution
interval.
In this tab you can define the personal substitutes. A popup window for the administration
of the substitutes will be opened.

Hint: The timer CurrentSubstitutes activates/deactivates the substitution, if a from- and/or
to-date has been entered (see section 9.1.8).

4.3.4 Tab: Role substitutions

The tab Role substitutions provides information about role substitutions which concern you.

This HTML–page is divided into two sections:

1. The first section, called Users who substitute my roles, lists all users, who substitute
you in a certain role. If you are substituted in a certain role and a task is forwarded to
this role, then this task also appears in the role–worklist of your substitute.

2. The second section, called Users whose roles I’m substituting, lists all roles you got
due to a substitution. Tasks that are assigned to these roles will appear in your role–
worklist.

The table Users who substitute my roles contains the following information:

• Active: Indicates, if a role is active (= green point) or inactive (= red point).

• Role: Name of the role your substitute have got due to his substitution.

• Organizational unit: Name of the organizational unit in which your substitute have
got the corresponding role.

• User: Here you find the name of the user who substitutes you in a certain role.

• From: This column shows the point in time when your substitute start having the
role substitution for you.

• Until: This column shows the point in time until when your substitute stops having
the role substitution for you.

The table Users whose roles I’m substituting contains the following information:

• Active: Indicates, if a role is active (= green point) or inactive (= red point).

• Role: Name of the role you have got due to a substitution.

• Organizational unit: Name of the organizational unit in which you have got the
corresponding role.

• User: Here you find the user whose role substitution you have got.

35

4.3. USERS

• From: This column shows the point in time when you start having the role substitu-
tion for this user.

• Until: This column shows the point in time until when you have the role substitution
for this user.

4.3.5 Tab: Permissions

You can assign rights to users either directly or via roles. See chapter 5 for an introduction
to the @enterprisepermission system.
Edit the personal rights of a user in this tab. A HTML–page is shown which enables you to
update the actual right.

4.3.6 Tab: All permission

The overview shows all rights, either assigned directly to the user or via a role assignment.
Furthermore this tab contains a view of rights (of the user) at a specified time stamp.

4.3.7 Tab: Settings

With the help of this function the system administrator is able to update the settings of
the current user. The mentioned settings are described in the user manual of @enterprise.
Some settings are only available in the administration:

• Items per page: This parameter is used in old GUI only! If there are a lot of items
in your worklist it may be hard to keep track of. Therefore it is possible to reduce
the number of currently displayed items. If you enter a number into the field Items
per page only as many items as you specified are displayed at the same time. If your
worklist contains more than those items you can browse through the list by activating
the buttons |< < 1 2 3 > >|. In this example there are three pages containing your
worklist items. By clicking the link 1 you can see the first page of your worklist,
by clicking the link 2 you can see the second page, etc. So it is possible to navigate
through the pages of your worklist in the following way:

– <: Go to the previous page.

– >: Go to the next page.

– |<: Go to the first page.

– >|: Go to the last page.

– 1: Go to page number one.

– 2: Go to page number two.

– ...

• Home page: The content of the URL entered into this field will be displayed on
startup of the @enterprise–server.

Hint: The timezone setting is used for your date inputs and outputs. If no time zone is
selected, the time zone of the client is taken (= time zone of operating system).

36

4.3. USERS

4.3.8 Tab: All Settings

With the help of this function the system administrator is able to see and delete all settings
of current user.

4.3.9 Toolbar function GUI configurations

This function allows to display all assigned GUI configurations to this user. The assign-
ments are done in same named tab at a gui configuration object (see section 6.7.3). These
assigned GUI configurations are offered for selection in user interface (but not in admin
interface!) between help and logout function.

4.3.10 Permission test

With the help of this function you are able to detect if a certain permission has been assigned
to a certain user. The informations of the corresponding HTML–page are described in
detail in chapter 5. By clicking the button "Test" the system checks wheter the user has the
permission or not and the result is displayed.

Figure 4.4: Permission test

4.3.11 Expired passwords

If the password policy defines, when passwords are expired, the administrator can check,
which users have expired passwords.

4.3.12 Data protection functions

This mask allows to perform following actions for the selected user:

• Display all occurrences where user is referenced by activating the button References.
The result can be printed with toolbar function Print view and the print functionality
of the Browser.

37

4.4. ORGANIZATIONAL UNITS

Figure 4.5: Users with expired passwords

• Make the selected user anonymous by activating the button Anonymize user, i.e.

– its ID will be set to string "nn"+OID,

– all its fields will be reset (surname, first name, telephone number, etc.),

– the user will be set inactive,

– its personally DMS folder will be set to the anonymized user-id and

– all its history entries (log entries) will be deleted.

Hint: In case of using user information in project specific way (e.g. user data are stored in
an own form field of a process form), the application developers are responsible to make the
user information anonymous! For this purpose the interface com.groiss.wf.ApplicationAdapter
provides the method public void onAnonymize(User u, String newId).

4.4 Organizational units

The structure of an organization can be modeled under the links Organizational units and
Organizational hierarchy. The first allows the creation and administration of the units of
your organization, the second is used to define the hierarchy between them.

Note, that it is possible to define more than one organizational hierarchy. Each application
uses exactly one of these hierarchies, but one hierarchy can be used in several applications.

The object-details of organizational units contain the following tabs:

• General

• Superordinate Org.-Units

• Roles

• History

• Access

• Referenced by

38

4.4. ORGANIZATIONAL UNITS

4.4.1 Tab: General

Figure 4.6: Objectdetails: Organizational Units

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the OU.

• Name: Name of the OU.

• Description: Free text.

• Email: Email address of the OU.

• Phone number: Phone number of the OU (or some other text, we don’t use this field).

• Address: Address of the OU.

39

4.4. ORGANIZATIONAL UNITS

• External Org.-Unit: When checked, the OU is external which means that during pro-
cessing a process no task can be assigned to this organizational unit or a role (user)
of this OU.

• Dependent: This attribute is used in the permission system (see chapter 5) to restrict
the OU scope of permissions and is used for marking organizational units which are
part of an other organizational unit, but not subdivided (e.g. administrative depart-
ment of an organization, etc.).

• @enterprise installed: Specifies whether the OU has @enterprise installed. Exter-
nal OUs and OUs where @enterprise is not installed can not be used in process
instances.

• Organization Class: The organization class the OU belongs to.

• Active: see chapter 2.2.1.

• Follow Org.-Unit: It is possible that some organizational units are replaced by other
organizational units due to some reorganization of your company. Through this field
it is possible to adhere by which OU the current OU has been replaced during the
reorganization.

• Order attribute: Here a free text can be entered. At the implementation of own ap-
plication this text can be used for sorting organizational units independent of the
available attributes.

Here you can also use the functions Apply changes later and Activate.

4.4.2 Tab: Superordinate Org.-Units

It is possible to add an organizational unit to several organizational hierarchies. Therefore
a organizational unit can have more than one super (parent) OU, namely one per organiza-
tional hierarchic.

4.4.3 Tab: Roles

Here you can view the role assignments in the Organizational units. The table Role assign-
ments shows which role is assigned to which user in the current OU.

The table Roles inherited from superordinate organizational units shows which hierarchical
role was inherited by which user over which higher-level OU in the current OU. More
detailed information on hierarchical roles and their scope can be found in chapter 4.1.

Note: If either the role assignment or one of the referenced objects (user, role, organiza-
tional unit) is inactive, the line is displayed in italics and gray.

40

4.5. ORGANIZATION HIERARCHY

4.5 Organization hierarchy

After installation the system contains one hierarchy with name default. The default appli-
cation uses this hierarchy.

The object-details of organization hierarchies contain the following tabs:

• General

• Organization hierarchy

• History

• Access

• Referenced by

4.5.1 Tab: General

Figure 4.7: Object details: Organizational Hierarchies

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the OU.

• Name: Name of the OU.

4.5.2 Tab: Organizational hierarchies

In this tab you can see the buildup of the hierarchy. Every organizational unit attached to
the tree is displayed with its name.

41

4.5. ORGANIZATION HIERARCHY

Figure 4.8: Tab: Organizational hierarchies

Functions

All functions are located in a toolbar. Some functions are active by default, because no
previous selection (action) is needed and some functions are inactive which need a previous
selection (action).

• Add existing org.-unit: Select an OU and put it in the hierarchy. If another OU has
been selected before in hierarchy, the new OU is added as child of this OU, otherwise
the new OU is added on top level.

• Add new org.-unit: Create a new OU and put it in the hierarchy. If another OU has
been selected before in hierarchy, the new OU is added as child of this OU, otherwise
the new OU is added on top level.

• Remove from hierarchy: Remove the selected OU from the hierarchy.

• Cut and Insert: This functions allow to move an OU from one position to an other
one. For this purpose

– select a OU first in hierarchy,

– activate toolbar function Cut,

– select another OU in hierarchy where cutted OU should be inserted and

– activate toolbar function Paste.

Alternatively it is possible to use the drag & drop feature by selecting an OU and
moving it to the desired position in hierarchy.

• Details: Edit the attributes of the selected OU.

• Expand hierarchy: Opens the whole hierarchy under this node.

42

4.5. ORGANIZATION HIERARCHY

If you have been searching for a certain OU with the help of the function Search in the
toolbar, the first OU found in the hierarchy is selected. In addition there are the buttons
Previous and Next which make it possible to navigate through the found OUs.

Hint: If an organizational hierarchy has been changed in the meantime (e.g. by moving
an OU in hierarchy), the buttons Previous and Next become inactive and a new search must
be performed.

The buildup of the hierarchy uses following symbols:

• plus-sign: If a plus is displayed in front of a organizational unit in the current hierar-
chy this means that it has at least one subordinate organizational unit. If you click
onto the plus the organization hierarchy becomes expanded at this position and all
subordinate OUs of the next level are displayed. Furthermore the plus is converted
into a minus.

• minus-sign: If a hierarchy is already expanded you can collapse it by clicking on
the minus in front of the corresponding hierarchy. By doing so the minus becomes
converted into a plus.

4.5.3 Function Merge organizational hierarchies

With the toolbar function Merge organizational hierarchies it is possible to add an organi-
zational hierarchy to an second one. This could be possible, if there are two @enterprise
installations where the organizational hierarchies should be merged. In the first installation
(A) the tree is managed and should be submitted to second installation (B) via XML export.
Installation B contains also additional OUs with hierarchies which should be kept.
In installation B an own organizational hierarchy is created for the available OUs and re-
lations. After synchronizing the organizational hierarchy with installation A (via XML
import) the relations of installation B will be merged into the organizational hierarchy with
this merge function..

Example:

Organizational hierarchy default (on A):
Dept. A

Dept. A1
Dept. A2

A1 and A2 are Sub-OUs of A.

In installation B the tree should look like this:
Dept. A

Dept. A1
Dept. A2

Dept. X
Dept. Y

Dept. Z

43

4.6. ORGANIZATION CLASSES

That means that X is under A2 and Z is under Y in an own tree.

For the usage of function "Merge organizational hierarchies" the private
structure of B must be defined in an own organizational hierarchy:

Dept. A2
Dept. X

Dept. Y
Dept. Z

A merge of this structure in the default organizational hierarchy results
in the desired structure.

4.6 Organization classes

Organization classes are used to classify the organizational units. This information is not
used from @enterprise, but can be useful when modeling the structure of big organizations.

The object-details of organization classes contain the following tabs:

• General

• History

• Access

• Referenced by

4.6.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the organization class.

• Name: Name of organization class.

• Description: Free text.

44

4.6. ORGANIZATION CLASSES

Figure 4.9: Object details: Organizational Classes

45

5 The @enterprise permission system

5.1 Introduction

The permission system of @enterpriseallows a very flexible assignment of rights to users.
The central data structure of the permission system is the permission. A permission de-
scribes who has which right on which object.
Permissions can be grouped to so-called permission-lists. They can be used to group per-
missions together and use them for several objects.
Standard-permissions are used to assign permissions to new objects. You define standard-
permissions for an object class. If a new instance of the class is created (an object) the
defined standard-permission is assigned to this object.
In the following section we describe these concepts in detail.

5.1.1 Rights

For the administration of rights see section 4.2.

5.1.2 Object classes

Object classes define the classes which can be used in the permission system. The mask
details of a object class are described in section 5.2.7.

For each object class you can define following things:

• The rights applicable for the object class. For example the right ’execute’ is useful
for functions but not for persons. The rights specified here can then be selected when
defining permissions.

• The standard-permissions: You can select a permission-list as standard permission
for the object class. Moreover, if you select an organizational unit you can define a
standard permission specific to an organizational unit. This would then be used, when
a new object is created in the context of an OU, for example a document belonging to
an OU.

46

5.1. INTRODUCTION

5.1.3 Permissions

A permission describes WHO has which RIGHT on which TARGET. Therefore, it contains
the following information:

• Who: a user, a role or a role together with an organizational unit. If this right should
not be passed on, the checkbox No substitution should be activated.

• Right: a right

• Target: the object, on which the right will be applied or the object class, when the
permission is for all objects of this class.

• The scope of the permission:

1. The permission is for all objects, no target is specified.

2. The permission is for all objects of a class, the target class is specified.

3. The permission is for one object, which is specified as target.

4. The permission is for all objects belonging to an organizational unit. As target
the OU is specified.

5. The permission is for all objects belonging to the organizational unit, where the
agent has the role specified under "Who".

• The scopes 4 and 5 of the previous list can be refined with an OU-Scope. The set
of OUs where the permission is valid can be modified or extended in the following
ways:

1. Local: The permission is given for the specified organizational unit.

2. Hierarchic: The permission is given for the specified OU and all sub-OUs.

3. Dependent hierarchic: The permission is given for the specified OU and all
dependent sub-OUs.

4. Independent: The permission is given for the next upper independent OU.

5. Independent and dependent hierarchic: The permission is given for the next
upper independent OU and all dependent sub-OUs.

6. Superordinate OU: The permission is given for the next upper OU.

• Yes/No: The permission is given or not given.

To understand the different OU-scopes see the following example. Fig. 5.1 shows an orga-
nizational hierarchy with independent and dependent OUs. The grey circles represent the
dependent OUs.
A permission for the organizational unit OE2 comprises the following units in the different
scopes:

• Local: OE2

• Hierarchic: OE2, OE3, OE4, OE5, OE6, OE7, OE8, OE9

47

5.2. DEFINITION OF PERMISSIONS

Figure 5.1: Organizational hierarchy with independent and dependent OUs

• Dependent hierarchic: OE2, OE4, OE6, OE7

• Independent: OE2

• Independent and dependent hierarchic: OE2, OE4, OE6, OE7

• Superordinate OU: OE1

5.1.4 Permission list

Permission-lists are aggregations of permissions. They can be attached to several objects
to define identical access rights to this objects. For each object one permission list can be
defined.
The permissions relevant to an object are therefore the permissions where the target is the
object plus the permission where the target is a permission list and this permission list is
used for this object.

5.2 Definition of permissions

In the @enterprisesystem administration permissions can be defined from two sides: The
permissions of an agent (user or role) can be defined in the respective detail masks. The
permissions applied to an object can be edited from the detail mask of the object ("Access"
button). The permission-lists can be administrated from the link in the navigation frame of
the administration main window. The standard-permissions can be edited via links in the
tables of the object classes.

5.2.1 Permissions of users

In the table of users there is a link to the permissions of the selected user. If you click on
the link a window opens with a list of the permissions of the user. Note that you only see
the permissions directly assigned to a user, the permissions assigned to the user via the role
assignments can be edited in the role administration.
You can insert, edit and delete table entries in the usual manner.

5.2.2 Permissions of roles

The permissions of roles are edited in the same way as the permissions of users.

48

5.2. DEFINITION OF PERMISSIONS

5.2.3 Administration of permission lists

Click on the link "Permission list" in the navigation frame. You can create permission-lists
when clicking at the add button, insert the name in the "General" tab and administrate the
permissions in the second tab.
The permissions for the list can be created by clicking the link in the table line of a permission-
list. But to assign a permission to a permission-list you must have right edit-acl for that list.
See the next section for the usage of permission-lists.

5.2.4 Permissions for an object

Objects underlying the permission system have the tab "Access" in the detail mask. If you
click the button, a window opens where you can see two frames:

• In the first frame you can edit the permissions for the object.

• In the second frame the permission-list of the object can be viewed and changed.

In the mask for the permission you can select the agent (user, role, organization) who has
the permission, the right and the organization scope.

5.2.5 Permissions for permissions

To edit permissions which refer not to a specific object a agent must have the right edit-acl
for all objects.
If a permission refers to an object, the agent must have the right edit-acl for the object or
the object class.
Additionally, the agent needs the right execute for the right which is used in the permission.
This allows to restrict the permission of assigning rights to specific rights.

5.2.6 Permissions for role assignments

The manipulation of role-assignments is also a special case, because a user can change his
permissions by adding roles. Therefore, for changing role assignments following rights are
necessary:

• the right to edit the user

• the execute right for the role

• the execute right for the org-unit

5.2.7 Administration of object classes

Object classes are used to define the usability of rights to object classes. Only when a right
is assigned to an object class, the right is usable for objects of this class.
Furthermore, the standard-permissions (see above) of object classes are defined here.
Informations of the Object Class detail window (required fields are bold):

• Name: The name of the object class. Detailed information to ids and names can be
found under 3.

49

5.3. STANDARD SETTINGS

Figure 5.2: Update object class

• Class name: The Java–class implementing the object class.

• Application: Application, the object class belongs to.

• Show permissions at agent: For object classes you can specify, if permissions for
objects of such a class should or should not be shown by default at the permission
list of a user or role. If there exists at least one object class for which hiding such
permissions is specified the table for listing the permissions behaves as follows:

1. The filter menu is provided for that list (tab Permissions)

2. A default filter is automatically applied which filters out all permission records
referencing an object of such an object class

By default the field Show permissions at agent of all @enterprise object classes is
active and no filter menu is displayed in permission tab of a user/role. Disable this
field only, if performance problems occur at showing the permission table.

For object class objects the functions available under 2.2 are available. Furthermore it is
possible to define rights and standard permissions respectively for object classes.

Tab: Foreign keys

In this tab you can see, if references to another table are available. If e.g. columns of
the user table are referenced in another table, these columns will be listed in this tab. If a
reference exists, the user object cannot be deleted via @enterprise administration.

5.3 Standard settings

The @enterprisestandard rights are listed in section 4.2.

50

5.4. FOR WHAT YOU NEED WHICH RIGHTS?

The role sys has the rights edit, execute, edit-acl, create, and admin for all objects. The user
sysadm has the role sys. Additionally, sysadm has the right conf.

All changes of master data can be performed from users with the sys role.
For changing the configuration, viewing the logfile, shut down the server, and some similar
tasks the conf right is necessary.

5.4 For what you need which rights?

The tables 5.1 and 5.2 will give you an overview for what you need which rights.

5.5 Example

This section contains an example for using the right-system.
Problem: The user John Smith should get the permission to administrate users of the or-
ganizational unit "Service". He should be allowed to edit the user attributes and the role-
assignments.
For editing users he receives the right edit for objects of the organizational unit "Service".
The admin right is needed to go to the administration.
For editing the role-assignments, we define the role edit-roles: With this role every role-
assignment except for the role sys can be edited.

Figure 5.3: Example: Permissions

5.6 Permissions and substitutions

The behavior of the rights system in context for substitutions is worth considering. The
implementation follows the following two basic rules:

1. If a user takes a substitution he should not loose rights.

2. After taking a substitution the user should not have more permissions than both users
together.

51

5.6. PERMISSIONS AND SUBSTITUTIONS

The evaluation algorithm for permissions works as follows:

• Step 1: Evaluate the set of permissions without consideration of substitutions.

• Step 2: For all substituted users: Compute the set of all positive permissions (not
"denies") for the substituted user in the substituted roles.

Subtract all negative permissions of this user, regardless whether the right belongs to
a substituted role or not. Add the resulting set to the result.

52

5.6. PERMISSIONS AND SUBSTITUTIONS

User A wants ... Necessary Right (Id) Apply ...
to create a new object Create objects (create) on all objects or the object class

to edit an object Edit Objects (edit) on the object, the object class, all objects or
the OU (if the object is assigned to an OE).
True for all objects apart from OUs.

to delete an object Delete objects (delete) on the object, the object class, all objects or
the OU (if the object is assigned to an OE).
True for all objects apart from OUs.

to edit an OU edit on all objects, the object class Organiza-
tional Units or a defined OU

to change into administra-
tion

Administration (admin) on all objects

to view configuration, see
server details under Admin
tasks

Administration (admin) AND
View configuration (view_conf)

on all objects

to edit configuration, do
server control, perform im-
port/export

Administration (admin) AND
Edit configuration (conf)

on all objects

to view the log-file Administration (admin) AND
View configuration (view_conf)

on all objects

to enter, edit or delete a per-
mission

Edit permissions (edit_acl) AND
Execute objects (execute)

on the object, the object class or all objects
(edit_acl); on the right (execute)

to enter, edit or delete a role
assignment

Edit objects (edit) AND Execute
objects (execute)

on user (edit); on the role and org-unit (exe-
cute)

to execute a function Execute objects (execute) on all objects, the objectclass Application or
a defined application

to abort a process Edit process instances (proc_inst) on all objects or all OUs or the OU, the pro-
cess is started in

to change the agent in the
history

Edit process instances (proc_inst)
OR Reassign (set_agent)

on all objects or all OUs or the OU, the pro-
cess is started in

to view process history, list
of documents and notes and
all process forms and ver-
sions

View process instances
(view_procinst)

on one process or all

to create process documents Create objects (create) AND A
is current agent of step OR
if A is not step agent, A
has right View process instances
(view_procinst) + right edit on
process instance

on the object

to edit process documents Edit objects (edit) OR A is cur-
rent agent of step

on the object

to archive processes Administration (admin) AND
Edit configuration (conf)

on all objects

to search for process in-
stances

View objects (view) AND View
process instances (proc_inst)

on all objects or all OUs or the OU, the pro-
cess is started in

to create reports with report
designer

Statistics (stat) on all objects

to execute stored reports Execute objects (execute) or
Statistics (stat)

on all objects, the object class Reports or a
defined report

to delete master data Delete objects (delete) on all objects, the object class

delete a standalone form Delete objects (delete) on the form class

see changes of forms in pro-
cess instance

View process instances
(proc_inst) OR Reassign
(set_agent)

on the OU/process definition, where process
instance is running

see changes of forms in pro-
cess instance

View objects (view) OR user A is
current agent of step

on the OU only, where process instance is
running

define any substitute Enter substitute (grant_subst) on all objects, the object class OU

define substitute of a par-
ticular OU where substitute
has role home

Enter substitute (grant_subst) on object class OU and as object a particular
OU

create calendar event with
participants

Insert calendar appointments (in-
sertCal)

on all objects OR restricted on user/org-
units/resources

edit/delete calendar event
with participants

Edit calendar appointments (edit-
Cal)

on all objects OR restricted on user/org-
units/resources

Table 5.1: For what you need which right?
53

5.6. PERMISSIONS AND SUBSTITUTIONS

User A wants ... Necessary right (Id) Apply ...
to create an object create AND edit on the object class and edit on the folder

to edit an object, edit
the metadata or replace a
document

edit on the object

to delete an object, delete
a folder with content

delete on the object, the folder and if the object is
a folder on the whole content

to view an object view on the object

to move an object edit on the source-folder and the destination-
folder

to copy an object edit AND view on the destination-folder (edit); on the ob-
ject or the if the object is a folder on the
whole content (view)

to rename an object edit on the object

to change the permis-
sions on the object (ac-
cess)

edit_acl on the object

to create a version edit on the object

to view a version view on the object

to delete a version edit on the object

to view the properties no right necessary

to delete a form delete AND edit on form class (delete), on the folder which
contains the form (edit)

to delete a subform delete AND edit on form class (delete), on the parent/main
form (edit)

Table 5.2: For what you need which right in the DMS?

54

6 Workflow modeling

In the following chapter we describe the object classes necessary to define processes. In
principle, the definition of a process is the answer to the following question:
WHO does WHAT WHEN with WHAT?

• WHO: Who is responsible for the processing of a workflow? The agents must be
defined for every single activity in a workflow. It is usually defined using roles.

• WHAT: What is done in the workflow? The work is decomposed in activities, which
are done by one agent. The description of the tasks answer the WHAT question.

• WHEN: If you know which activities have to be done and who performs these activ-
ities, the order of execution must be defined. Often it is a simple sequence but can
have a complex structure containing loops, branches, and parallelism.

• WITH WHAT: For performing the activities some informations are necessary. It
must be defined, which activity needs which information and what new information
is produced in an activity.

We use forms to structure the information and describe the information exchange
between the activities.

The definition of workflows contains the following objects:

• Applications: Applications group processes belonging together.

• Tasks elementary activities in processes.

• Functions are representations of interactive Java-methods used for execution of ac-
tivities.

• Forms contain the local data of a process.

• Processes describe the structure of a business process.

55

6.1. APPLICATIONS

6.1 Applications

Applications group processes belonging together. All workflow elements belong to an ap-
plication. An overview about all elements of an application can be displayed by clicking
the application link in navigation tree.

The object-details of application contain the following tabs:

• General

• History

• Access

• Properties

• Properties XML

6.1.1 Tab: General

Figure 6.1: Object-Details: Applications

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the application.

56

6.1. APPLICATIONS

• Name: Name of the application. By activating the I18n-link beside this field, the
translations (if defined in tab Properties) of this key are displayed and can be edited
directly by changing the values and activating the button Save. The changes are stored
in the resource file of this application (see section 6.8).

• Organization hierarchy: The hierarchy used for resolving hierarchic roles and rights.

• Description: Free text.

• Application class: A class, which implements the interface
com.groiss.wf.ApplicationAdapter can be specified. See the API documentation
and the Programming Guide for details.

• Application directory: where the application is installed. Activate the icon View Con-
figuration to display the content of the appropriate configuration file.

• Version: Version of the application. It could be helpful in case of an upgrade to differ
applications of an older version of @enterprise.

• Startup position: Applications are loaded due to this position in ascending order. It
could be necessary, if application A2 has references in application A1 and application
A1 has to be loaded before A2.

• Button Upgrade: This button is visible only, if a newer version of the application
has been found on the file system. By activating this button all defined upgrade-
actions will be performed. For further information about upgrading applications,
please take a look in the API of @enterprise (ApplicationAdapter.getVersion() and
ApplicationAdapter.upgrade()).

6.1.2 Tab: Properties

In this tab it is possible to define properties for this application. You can edit following
attributes:

• Resource Strings: Enter a path to a resource-bundle (*.xls- and/or *.properties-files)
which is used by this application, e.g. com.groiss.itsm.resource.Strings. If no resource-
bundle exists on file-system, the resource editor is able to create a new one (see chap-
ter 6.8). Further information about resource-bundles are available in Application De-
velopment Guide - chapter Internationalization of Applications.

• Application parameter: Here you can define parameters (in grouped way), which are
used by this application. These parameters are stored in a XML-file (properties.xml)
within application classpath and are accessible by the Configuration of @enterprise
(see section 10). If more groups are defined, these groups are displayed as tree in
navigation of Configuration section. The checkbox Visible is activated by default. If
this checkobox is deactivated, the application parameter group is not visible in the
@enterprise configuration.

• User parameter: In this area you can define parameters for users, who use this ap-
plication. These parameters are also stored in a XML-file (properties.xml) and are
accessible by the Settings of each user (see User Manual).

57

6.1. APPLICATIONS

• Upgrade path: This part allows to define the upgrade path for an application. The
necessary steps to configure a path are:

– On tab General set the version to a new value (e.g. from 1 to 1.1).

– On tab Properties create a new upgrade step and enter the same version number
in the Target version field as entered in field version of tab General.

– If the checkbox Groovy is activated, a Groovy script must be entered in the
Method/Script field, e.g.:

admin.importXML("<appl-id>/exports/<appl-id>.xml")

If the checkbox is not activate, a JAVA method, which defines exactly one pa-
rameter of the com.groiss.org.Application type, must be entered, e.g.:

com.acme.myappl.Upgrades.upgradeToVersion1Dot1(Application appl)

This method returns a String value. In this String you can then describe what
the upgrade did. This is then logged and displayed in the GUI (if the upgrade
is performed via GUI). The class checker beside the field allows to check, if
the entered method/script is correct. Please note that the upgrade path follows
the order as defined in the properties file, from top to bottom, with the lowest
version listed first and the latest version listed last.

The defined path is stored in properties.xml of that application and is stored in the
ZIP archive initiated by an application export (see section 9.2.3). This approach al-
lows to upgrade the application on target system in an easy way (see Installation and
Configuration manual, section Upgrading/Patching an @enterprise Application).

Hint: The functions of this tab are available only, if an Application Directory has been
specified. This tab does not allow the creation of all possible HTML elements(e.g. text
fields, radio-buttons, multiline default values etc.). Details for such elements of the prop-
erties.xml file can be found?in chapter Structure of Applications in @enterprise of the
Application Development Guide. We provide an editor for the file in the Properties XML
tab (see below).

6.1.3 Tab: Properties XML

After activating this tab, the Editor for direct editing of the XML file will be opened. The
XML schema can be opened using the keyboard key F6.

6.1.4 Report

This function shows an overview of all used components of the selected applications (see
Fig. 6.2). Each component is divided in blocks which can be hidden or displayed. Further-
more it is possible to generate a PDF of the report.
A report can be created for processes (see section 6.5.14) or forms (see section 6.4.5) only.

58

6.2. TASKS

Figure 6.2: Report detail

6.2 Tasks

Tasks are the elementary activities in processes. The can appear in different processes of
the same application and on different positions in one process.

The object-details of tasks contain the following tabs:

• General

59

6.2. TASKS

• Functions

• History

• Access

• Referenced by

6.2.1 Tab: General

Figure 6.3: Object-Details: Tasks

You can edit the following attributes (required fields are bold):

60

6.2. TASKS

• Id: Unique identifier of the task.

• Name: The name of the task. This name is shown in the task column in the worklist.
By activating the I18n-link beside this field, the translations (if defined in application
mask - tab Properties) of this key are displayed and can be edited directly by changing
the values and activating the button Save. The changes are stored in the resource file
of this application (see section 6.8).

• Version: Version number of the task, a positive integer.

• Application: Application, the task belongs to.

• Description: Free text, visible in the worklist via the link to the task details. It
can contain a short help text or instructions to the task. The tab HTML contains
a WYSIWYG-Editor to format HTML. The tab Text shows the generated HTML
source.

• Active: Indicates, whether the task is active. Further information about (de)activation
of objects can be found under 2.2.1.

• Preprocessing: Enter the call of a Java-method (or a sequence of Java-methods sepa-
rated by ";"). The code is executed, before the task is put into the worklist of a user.
It is also possible to use a GROOVY script - enter groovy: <groovy-script> in this
field. See the Programming Guide for details of such methods.

• Postcondition: The condition which is entered here is checked at run-time when a
user finishes the task (sends it to the next agent). If the condition is not true, finishing
the task is not possible.

The syntax of such WDL conditions is described in section 7.1.5.

It is also possible to enter a sequence of calls of Java-methods (separated by ";"). The
methods are executed from left to right. They do not need to return a boolean value.
The result of the condition is the last boolean value that has been returned from any
method. If none of the methods returned a boolean value, the condition evaluates to
false.

• Postcondition message: In this field you can insert the text of an error message, which
will be shown when the postcondition evaluates to false.

• Compensation: A sequence of Java-methods or a GROOVY script. It is executed
when the activity is passed when going back to an earlier step in the process. It can
be used to reestablish a consistent state.

• Take: A sequence of Java-methods or a GROOVY script. It is called when the task is
taken (from the role-worklist to the personal worklist).

• Untake: A sequence of Java-methods or a GROOVY script. It is called when the task
is given back to the role worklist.

• Max. duration: The maximum duration of the task (in days, hours, or minutes).

61

6.2. TASKS

• Cost: The costs of the task. This field is not used from @enterprise, but can be used
in some statistics.

• Effort: The effort of the task in minutes. This field is not used from @enterprise, but
can be used in some statistics.

• Set first agent at runtime: specifies, whether the agent can be set at run-time.

• Set further agents at runtime: specifies, whether further agents can be specified at
run-time.

Hint: The last two attributes have the value ranges "none" "within Dept.", "all
Depts.". That means, no agents can be set at run-time, only agents belonging to
the same organizational unit can be set, or no restrictions apply.

Hint: If you delete one task the assigned functions are deleted also.

6.2.2 Tab: Functions

In this tab you can define relations of the task to functions (see Fig. 6.4). General informa-
tions about functions can be found in section 6.3.

You can add all functions of the list Available functions to the task. The functions of the
list Selected functions are already assigned to the task. To add a function select a function
of the list Available Functions and activate the button >. To remove a function select a
function of the list Selected Functions and click the button <.

Your changes are saved after activating the button Save and close, Save or when changing
the tab.

Figure 6.4: Object details: Functions

62

6.3. FUNCTIONS

6.2.3 Supplement of forms

Forms are typically editable by the current users of a process step corresponding to the form
visibilities. The most simplest corrections (e.g. setting another value in a read-only field)
needs to go-back to the appropriate agent/step.
With the aid of the predefined Supplement-Task the handling can be simplified. This task
will be assigned to the process definition Process editor: Process→ Tasks . Now forms can
be assigned to this task and also form-field visibilities can be defined.
Users with right proc_inst or set_agent are able to edit forms via the process history.
The process history contains a toolbar function Supplement which allows to start a sup-
plement task for the current process instance. This task is displayed in the worklist of the
current user who is able to change the form and finish the task. The changes are displayed
in the process history.
If the user is not the current agent of the process instance (but contains one of the rights
above), then the creation of supplement task (and also finishing) can be triggered by chang-
ing and saving the form directly via the process history.

6.3 Functions

Task–Functions (or Functions) are representations of interactive Java-methods used for ex-
ecution of activities. Links to the functions appear in the worklist when working on a task.
The object-details of task-functions contain the following tabs:

• General

• History

• Access

• Referenced by

6.3.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the function.

• Name: Name of the function. By activating the I18n-link beside this field, the trans-
lations (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Application: Application, the function belongs to.

• Apply to: Here you can select the type, if the function is a global or local function.

– No entry: The function is a global one, i.e. no entry must be selected (e.g.
worklist entry)

– One entry: The function is a local one, i.e. only one entry must be selected

63

6.3. FUNCTIONS

Figure 6.5: Object-Details: Task-Functions

– Multiple entries: Analog to One entry, but more than one entry can be selected

• Show:

– To all tasks: The function is automatically assigned to all tasks of the applica-
tion. If this function is stored in application default, it is assigned to tasks of
every application (incl. default application).

– Worklist: The function appears in the function menu of (role-)worklist.

– Role-Worklist: The function is applicable also in the process form of role-
worklist.

– History: The function appears (corresponding to its type) in the process history.

64

6.3. FUNCTIONS

– In function list: The function can not be assigned to a task, for example an
administration or search function. This task function appears in the main frame,
when the link Functions will be activated in the navigation tree.

– In details: If checked, the function is displayed in toolbar of detail view of a
worklist entry. Additionally the checkbox Worklist must be activated to use this
option in worklist. This option is applicable in smartclient only!

– At item: If this checkbox is activated, the function is displayed inline of a work-
list entry. This is possible only, if attribute showInlineDetailsAt is set in xml
file. Detailed information can be found in Application Development Guide. Ad-
ditionally the checkbox Worklist must be activated to use this option in worklist.
This option is applicable in smartclient only!

– Check for unsaved changes: If checked, a warning message is displayed if
changes are not saved before the function is executed.

• Description: Free text. The tab HTML contains a WYSIWYG-Editor to format
HTML. The tab Text shows the generated HTML source.

• Method: The signature of the Java–method implementing the function. Parameters
can be added by adding a ? and the parameterlist.
Example: com.groiss.DemoClass.demoMethod?param1=val1¶m2=val2

Furthermore it is possible to enter a GROOVY script in this field - enter groovy:
<groovy-script> in this field.

• Target window: The content of this field contains the name of the window or the
frame where the output of the function will be placed. If the field is empty, the output
is sent to the frame where the worklist resides. If you enter another name, the output
is sent into a separate window with this name. In addition to this name you can
add several parameters like width, height etc. by adding a semicolon and write the
parameters like the Javascript method window.open syntax. If you specify the target
"_top" the output will be shown in the current browser window.

• Order attribute: Enter an attribute as order attribute.

• Client action: If this function should work with new GUI, a DOJO widget must be
defined here which implements ep/widget/smartclient/_Action. Detailed information
can be found in Application Development Guide.

• Mobile client action: If this function should work with mobile GUI, a DOJO widget
especially for mobile GUI must be defined here analog to Client action.

• Function group: Select a self defined function group here.

• Icon name: Define a icon for the function. Enter a absolute path name or a relative
path name in the classpath.

• Shortcut: An arbitrary shortcut can be defined here by entering the appropriate keys.
A list of keys is listed on http://dojotoolkit.org/reference-guide/1.10/dojo/keys.html.

65

6.3. FUNCTIONS

Example: CTRL+SHIFT+D
If these keys are pressed at once in appropriate context, the action will be performed.
The appropriate context depends on the availability/visibility of the function, e.g. if
function is a toolbar function of the worklist, the worklist must be displayed first (and
maybe a worklist entry must be selected) before the shortcut can be used.

Hint: Note, that a user must have the right "execute", to execute a function.

6.3.2 Standard functions

@enterprise contains the following predefined functions:

• toggle_seen – Set read/unread: Mark an worklist item as read/unread.

Apply to: One entry, Show: assign to all Tasks, Worklist, to Role Tasks

• clipboard – Clipboard: Add the content of the clipboard to the process documents.

Apply to: One entry, Show: assign to all Tasks, Worklist

• into_clipboard – Into clipboard: Copy the process instance into the clipboard.

Apply to: One entry, Show: assign to all Tasks, Worklist

• make_copy – Copy to ...: Send a copy of the worklist entry to another user in read-
only mode.

Apply to: One entry, Show: assign to all Tasks, Worklist

• attach_note – Process note: Add a private or public note to the process instance.

Apply to: One entry, Show: assign to all Tasks, Worklist

• note_global – Process note: Same as note_all, but applicable when the task is not in
the worklist

Apply to: No entry, Show: Worklist, in Function List

• set_duedate – Set due date: Set the due-date of the process or the current activity.

Apply to: One entry, Show: Worklist

• addRelation – Add relation: Add a relation between two processes.

Apply to: One entry, Show: Worklist. More information about how to configure
the relations between processes, can be found in the Installation and Configuration
Guide, Section Search, parameter Process relations.

• setPriority – Set priority: Set the priority of a process instance.

Apply to: One entry, Show: assign to all Tasks, Worklist Further informations be-
longing to this function can be found in the programming guide of @enterprise.

• copy_process – Create process copy: This function can be used to create a copy
of the current process instance. By default all form data and all DMS objects of tab
Documents of the origin process instance are copied and the process instance copy

66

6.3. FUNCTIONS

will always start from the first process step. Furthermore a system note is created
and attached to the begin step of a process which contains the information about the
origin process. This standard behavior can be changed with following parameter at
the end of the Client action:

– Form data: Either a defined set of form data from origin process should be
copied (allow list [include]) or not (disallow list [exclude]). For this purpose ei-
ther include=<params> or exclude=<params> must be added. The parameter
(<params>) are defined as a comma-separated list in following format:

* <form_id>.<formfield_name>: The value of the form field of (main-)
form. The form id is defined in the process definition tab Forms (see section
7.2.4).

* <form_id>.subform_<subformid>: All subform entries (incl. form field)
of the (main-) form.

– DMS object: With parameter documents=true|false you are able to define, if
DMS objects should be copier or ignored.

– System note: Parameter duplicationNote=true|false indicates, if a system note
should be attached to the begin step of the copied process.

For example, you can enter the following in the Client action field:

ep/widget/smartclient/wl/actions/CopyProcess?include=form0.field1,
form0.field3,form0.subform_1,form1.field1
&documents=false&duplicationNote=false

Apply to: One or more entries, Show: Everything is possible.

• process_templates – Process templates: This function can be added as form toolbar
function and takes the form data of selected process to current displayed one with
some restrictions:

– Works with XForms only

– Works in context of a process form toolbar only - add it with appropriate <script
id="toolbarfunctions"> block in the form

– Supports only inline subforms

– No support for sub-subforms

By default all form data are taken from selected origin process to the process form of
current process. This standard behavior can be changed by adding following param-
eter at the end of the defined Client action:

– <form_id>.<formfield_name>: The value of the form field of (main-) form.
The form id is defined in the process definition tab Forms (see section 7.2.4).

– <form_id>.subform_<subformid>: All subform entries (incl. form field) of
the (main-) form.

67

6.4. FORMS

For example, you can enter the following in the Client action field:

ep/widget/smartclient/wl/actions/SelectProcessTemplate?include=form0.field1,
form0.field3,form0.subform_1

Apply to: No entry, if the process start node FORM is used(see Application Devel-
opment Guide, section Start process (<processStart>))! Otherwise any value.

• follow_process – Follow the process: This function allows to activate a notification
(email) for the process or the selected tasks when they are finished. The appropriate
message template with id processTracker is stored in application default. This mes-
sage is sent only, if the process or tasks are finished by another user than the current
one.

Apply to: One entry, Show: Assign to all tasks, Worklist, Role worklist, History

• Subscrube report: This function can only be used in reporting. In order to see
this function in the reporting results it is necessary to have the execute right on the
function. With this function it’s possible to create the subscriptions to reports. You
can find more information about report subscriptions in the reporting manual.

• Add to favorites: This function can only be used in reporting. In order to see this
function in the list of executeable reports it is necessary to have the execute right
on the function. With this function it’s possible to favorite a report. You can find
more information about report favorites in the reporting manual in the section Report
Favorites.

Apply to: One entry

Further information to this functions can be found in the @enterprise Users Guide, section
Task Functions in @enterprise.

6.4 Forms

Forms contain the local data of a process. In the user interface they are represented as
HTML forms. Besides the functions described in chapter 2.1.2 the following functions can
be found in the toolbar:

• Create new form type

• Edit form type

• View

• Create view

• Report

If the form classes of a form cannot be loaded, it will be shown as inactive table entry.
Creating and editing a form is done using the form-editor described in the following section.

68

6.4. FORMS

6.4.1 Form-Editor

The form editor is used for creating and editing forms, see Fig. 6.6.

Figure 6.6: Form-Editor

The main area contains four tabs:

• Layout: create and edit the form layout here

• Schema: contains the information about the database schema of the form

• Bindings: XForms Bindings (visibilities, mandatory fields, etc.)

• Source: view and edit the HTML-source

Hinweis: Editing a form in the layout tab is not supported in Internet Explorer 11.

Create a new form

There are two possibilities for creating a new form:

• Open the tab Schema and create the form-fields you need, fill in Id, Label and Type.
With the menu-function Create new layout you can create a standard layout for the
form. Open the Layout tab to view it and change if necessary.

• Alternatively, you can add the necessary form elements in the Layout tab by drag-
and-drop. When dropping, the field properties mask is opened, where you can select
or create a database field for the form element.

69

6.4. FORMS

Finally, you define id and name of the form in the Properties dialog or when saving the
form.
In the following we describe the different functions of the form editor:

Tab: Layout

The form elements can be added by drag-and-drop from the left pane. For elements, that
refer to a database field, the field properties dialog is opened, where the database field must
be selected or defined.

Figure 6.7: Form structure

The general structure of a form created by the editor is as follows (see Fig. 6.7): A form
contains one or more sections, each of them containing one or more tables. The tables
contain the form elements. Sections and tables have a title and a border and can be styled
with CSS classes.
The other form elements are:

• Line: a horizontal line

• Text: a static text

• Output: an output field for showing the value of a form field

• Input field: field for text input

• Password field: field for entering a password (value is not shown)

• Text area: multi-line text field

• Select list: a value can be selected from a list

70

6.4. FORMS

• Multiple selection: several values can be selected from a list

• Subform: an embedded table (1:n relation to the current form)

• Button: a button with an action

For each element a detail mask is defined (double-click on the element or function “Field
properties”), where the label, the label position, the database field, and other HTML at-
tributes can be defined (see Fig. 6.8).

Field properties mask

The following can be defined:

• Section, Table:

– Title: Here you can define a heading for the section or table.

– Collapsible: With this checkbox you can define whether the section or the table
would be collapsible or not.

– Border: If the checkbox is activated, the element is displayed with a border.

– CSS-Classes: Here you can specify the CSS classes for the element.

– Columns (only available for Table): Defines grid-template-columns CSS style
property. More information under the following link:
https:://www.w3schools.com/cssref/pr_grid-template-columns.asp

– Group: A block can be selected. More about block can be found in the section
6.4.1.

• Text:

– Colspan: This attribute specifies the number of columns a cell should span to
the right.

– Label: Defines a text label for the given Element or in this case just an ordinary
text.

– CSS-Class: Here you can specify the CSS classes for the element.

– HTML Attribute: This table allows an HTML element to be defined via the
HTML attributes. Attributes are usually defined as name/value pairs like: name="value".

• Output, Input field, Password field, Text area:

– Type: Defining of the element type.

– Colspan: Analog to Text.

– Database field: Here you can select or add a database field.

– Label: Analog to Text.

– Label CSS-Classes: Here you can set the CSS classes for the label element. In
addition, you can easily define the position of the caption by selecting a different
radio buttons (Left aligned, Right aligned, Left, Top.

71

6.4. FORMS

Figure 6.8: Field properties

– CSS-Class: Analog to Text.

– HTML Attribute: Analog to Text.

• Select list, Multiple selection: The additional fields for these elements are:

– Appearance: Defines how the selection lists will be displayed.

– Rows: Is offered only if radio button Select list is activated and defines the size
of the select list (the number of displayed elements).

72

6.4. FORMS

• Subform: The additional fields for this element are:

– Subform: Here you can select or add a subform.

– Editable: If the checkbox is activated, the subform is defined as editable. In this
case you can also specify the visible columns. If the checkbox is not activated,
the subform is defined as not editable. For non-editable subforms it is possible
to define a Node Id. This is a configid element that is the reference to a table
defined in GUI configuration XML.

• Button: The additional field for this element is:

– Action: In this table the actions for the button can be specified(send, setvalue,
reset).

Tab: Schema

The fields of the form (upper table) and the subforms (lower table) are shown in tabular
form. Editing is done directly in the table, adding and deleting with the toolbar, moving
entries in the upper table by using the functions in the main toolbar.
Columns of the form field table:

• Id: The name of the field in the database table and the Java class.

• Label: The name in the UI, is used as default when creating the layout, as header in
form tables, and for column selection in reporting.

• Description: Free text which describes the current field.

• Type: The type for the field. Note that the type information is used for creating a Java
class and a database table. Table 6.1 shows to which Java type the entered type will
be converted at the creation time of the Java class for the form. The restrictions of the
database, for example length of varchar fields, have to be considered. A special value
is “block”: fields with this type are not added to the Java class or database table, they
are used for structuring the form (for example to set parts of the form invisible).

• Values: Define the values for select lists. You can edit the list by clicking on the
values (initially “-”, means no values defined).

• Length: The length of the field in the database.

• Foreign key: This checkbox can be activated to create a foreign key on field OID of
another form or persistent of package com.groiss.org. The checkbox is active only, if
a form class (e.g. com.groiss.forms.myform_1) or a persistent (e.g. com.groiss.org.User)
is entered as type.

• Index: Activate this checkbox to create an index on the selected field.

73

6.4. FORMS

Hints: A special case are the java.lang types explained at example int and java.lang.Integer:
Both types are created as decimal(10) in database, but int has the default value 0 and
java.lang.Integer the value null. The advantage of java.lang.Integer is that e.g. form fields
of this type are not pre-filled and a must-field check can be performed (but 0 is a valid value
and in this case must-field check ignores this field).
Ordinary date fields (date and dateTime) do not save the timezone information which could
lead to different values in different timezones. If this behavior is not desired, the special
types UTCdate and UTCdateTime can be used which allow to store and retrieve a calendar
date independent of server or client time zone. This kind of date is saved with timezone
UTC.
In the subform table the Type is a form type, the Id an integer, label and description as
above.

74

6.4. FORMS

Type (xmltype) DB–Type Java–Type Short description
string VARCHAR java.lang.String Text up to 4000 characters
date DATE (Oracle) java.util.Date Only date is displayed incl. datepicker

DATETIME (SQL–Server)
UTCdate DATE (Oracle) java.util.Date Only date is displayed incl. datepicker,

but independent of time-zone (see
Hints for more details)

DATETIME (SQL–Server)
dateTime DATETIME java.util.Date Date with time is displayed incl.

datepicker
UTCdateTime DATE (Oracle) java.util.Date Date with time is displayed incl.

datepicker, but independent of time-
zone (see Hints for more details)

DATETIME (SQL–Server)
time VARCHAR(8) java.lang.String Time as text (e.g. 15:00:00)
int DECIMAL(10) int Whole number (32 bit), default value is

0
long DECIMAL(20) long Whole number (64 bit), default value is

0
BIGINT (SQL–Server)

double DOUBLE PRECISION double Real number (64 bit), default value is 0
decimal DECIMAL longa Fixed point real number, default value

is 0
doubleb

boolean DECIMAL(1) boolean 0 or 1, default value is 0
longString CLOB (Oracle) java.lang.String Text with more than 4000 characters

VARCHAR(MAX) (SQL–
Server)

binary BLOB (Oracle) byte[] XForms allow to define fields of type
binary; should be filled via API only

VARBINARY(MAX)
(SQL–Server)

java.lang.Integer DECIMAL(10) java.lang.Integer Whole number (32 bit), default value is
NULL (see Hints for more details)

java.lang.Long DECIMAL(20) java.lang.Long Whole number (64 bit), default value is
NULL

BIGINT (SQL–Server)
java.lang.Double DOUBLE PRECISION java.lang.Double Real number (64 bit), default value is

NULL
java.lang.Boolean DECIMAL(1) java.lang.Boolean 0 or 1, default value is NULL
Class name DECIMAL(20) – oidc Class This class has to implement the in-

terface com.groiss.store.Persistent or it
has to be a subclass of a class which
implements this interface

VARCHAR(200) – Class
named

aIf just a precision and no scale was specified in attribute Length (e.g. 3).
bIf precision as well as scale were specified in attribute Length (e.g. 3,4).
cThe oid is kept in the form. The result of the method "toString()" of the corresponding object is shown.
doptional, an additional database column (named column_class) with this type is generated if

a java-class has been specified, which implements an interface, an abstract class or the interface
com.groiss.store.HasSubclasses.

Table 6.1: Type of a form-field and its representation in the database and in the
corresponding Java class respectively

75

6.4. FORMS

Tab: Bindings

In this area you can define XForms bindings, see the XForms documentation for details.
Each binding entry has the following attributes:

• Sub-binding of: used for nested bindings. In the main binding the nodeset expression
selects some part of the model, the nodeset of the sub-bindings restrict the selection
further.

Example:

<xf:bind nodeset="/data/form/subform[@id=1]/form[position() != last()]">
<xf:bind nodeset="timehours" ...

The first binding selects the first subform of the form, the sub-binding selects a field
in this form.

• Nodeset: the form fields, that are affected by the binding

• Id: optional id of a binding

• Required: an XPath Expression, that defines when the field is mandatory

• Readonly: an XPath Expression, that defines when the field is readonly

• Relevant: an XPath Expression, that defines when the field is visible

• Constraint: an XPath Expression that defines which values are valid

• Calculate: an XPath Expression that computes the field value

Tab: Source

Here you can directly edit the HTML source of the form. Note, that changes can cause that
the form can no longer be edited in the layout tab. Form editor checks syntax of forms, if
the layout has been changed manually to a structure not supported by the editor, the layout
functions are disabled.

The Menu

The first menu, “Form” mainly contains the standard functions for opening, saving and
closing.

• New: A new empty form is created.

• Open: An existing form can be selected for editing.

• Parse HTML: The HTML source is parsed and the schema is modified accordingly:
If an existing field is no longer in the form, it is removed from the schema; if a new
field has been found, it is added to the schema. The field type and other schema
attributes must be edtied manually.

Executing this function is necessary, it the form is not edited using the layout tab and
fields should be added or removed.

76

6.4. FORMS

• Save: When saving a form the following actions are performed: If no form name
or id has been defined, a dialog is opened for entering the name, id, version and type
(process form, document form, or folder form). Afterwards the following actions are
performed on the server:

– a Java class is created and put into the forms directory of @enterprise ,

– the HTML source is saved in the application directory under
classes/appl-id/forms/formid_formversion.xhtml (if no other path has been de-
fined),

– the database table is created or modified.

• Save As..: as above, but a copy with a new id and name is created

• Preview: a preview of the form is shown in a popup window

• Properties: The properties window is opened - the same that is opened when invok-
ing the toolbar function “Edit” in the list of form-types (see section 6.4.4).

• Table columns: Here you can define the columns for the table view (subform or
form table).

• Download HTML: download the HTML source

• Exit: Closes the form editor

The “Edit” menu contains the standard actions Undo, Redo, Cut, Copy, Paste, and Delete.
Moreover you can find:

• Field properties: Opens the properties window for the selected element.

• Up, Down: Moves the selected element up or down (in Layout or in the form field
table).

• Layout: A form title can be defined, in a Scripts area you can write Javascript code
and in a Style area you can write CSS statements.

• Create new layout: A standard layout with the defined form fields is generated.

• Properties: Two form editor settings can be set: Avoid SQL: if set, the database
operations are omitted (when saving the form). Execute form handler: The form
handler methods beforeShow and onShow are executed.

The help menu opens the help page for the form editor.

Create a view form with form editor

To create a new view form (= a form that derive from a base form) with the form editor, you
have to follow the steps:

• Create a new form with the form editor

• Open the properties via menu item Form

77

6.4. FORMS

• Define the ID and name and enter the ID and version number of the base form in the
Base form field:

<formId>_<version number>

• Save the form and open the Schema tab in form editor

• Add new form fields whereby the fields must have the same IDs as the fields in the
base form.

• Finally create a new layout via the menu item Edit and then save the form.

6.4.2 View

After activating this function the object-details of the selected form opens and the tab Pre-
view is active.

6.4.3 Create view

In @enterpriseit is possible (via the extended search) to search for form field contents in-
dependent of the form versions. Therefore it is necessary to create a database view over
all version of the form. This database view contains all form field which exist in all form
versions.

By clicking this function a HTML–page is shown which contains the following informations
(required fields are bold):

1. Create view: formid: The SQL–statement which will be used to create the database
view. By clicking the button "Create View" the view is created.

2. Replace existing view: formid: The SQL–statement which will be used to replace
the current database view by a new one. By clicking the button "Replace existing
view" the old view is replaced by the new one.

Hint: Depending upon whether there exists already a database view or not, you can either
use the function Create View or the function Replace existing View.

6.4.4 Edit

The object-details of forms contain the following tabs:

• General

• Java class

• Database table

• Rights

• Standard permissions

78

6.4. FORMS

Figure 6.9: Function: Create view

• History

• Access

• Preview

• Folder settings

79

6.4. FORMS

• Referenced by

Tab: General

Figure 6.10: Object details: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the form (cannot be changed in GUI).

Hint: If the Id should be changed, use the servlet method
com.groiss.upgrade.FormIdChange.showMask. If the checkbox keep old class is ac-
tivated, the version entries of the form will be preserved.

• Name: Name of the form. By activating the I18n-link beside this field, the transla-
tions (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Version: Version number of the form, a positive integer.

• Application: The form belongs to this application.

• Type: With the help of this attribute you can define in which context the form should
be used. There are three different possible usages:

80

6.4. FORMS

– Process form: The form is attached to a process and can be used at correspond-
ing tasks.

– Document form: This form is used to describe the meta data of documents
within the DMS.

– Folder form: This form is used to describe the meta data of folders within the
DMS.

• Template type: Here you can define one of the following formats:

– XHTML

– XFORMS

Hint: If HTML forms should be used, enter ep.use.htmlforms=true in the configu-
ration file avw.conf.

• Description: Free Text which is displayed as tooltip at formtype selection of DMS
function New and Drag & Drop dialog. The tab HTML contains a WYSIWYG-Editor
to format HTML. The tab Text shows the generated HTML source.

• Active: see chapter 2.2.1

• Usable in DMS: If this checkbox is checked the form can be used within the DMS.
Please note that only base forms (not view forms) can be used in DMS!

• Versioning: Here it is possible to define when a version of the form should be created.
This setting is only relevant for forms which can be used within the DMS. Further-
more this setting takes effect only if the form is not used as a process form, because in
this case a new version is created automatically every time when the function "finish"
is carried out. There are four possibilities to configure the versioning:

– according to configuration: the versioning happens as defined in the system
configuration under section "DMS" (see the installation guide of @enterprise).

– Not automatically: in this case the user has to create a version manually with
the function "Make Version".

– On agent change: the versioning happens every time when the agent of the form
has changed.

– On every change: the versioning happens every time when the form has been
changed.

• Order attributes: This attribute is used to define the order of the entries in the table
which represents a subform of a form. A list of column ids separated by comma can
be entered, each column id may have the prefix + (for ascending search, the default)
or "-" for descending search. Syntax:

["+" | "-"] colid { "," ["+" | "-"] colid }*

Sorting the tables by clicking on the table header is still restricted to one column.

81

6.4. FORMS

• Name attributes: The content of this field is shown as form name, for example in
selection windows or in a DMS folder. Furthermore a regular expression can be en-
tered, e.g. {formfield} (display_text), {formfield2}. The curly brackets are necessary
to show values of formfields, i.e. the previous example could generate following out-
put: Joe (firstname), Russel. Jose and Russel are values of the entered formfields,
firstname is a free defined text (= display_text). Further possibility is the definition of
a formatter, e.g. {datefield, date} or {datefield, datetime}. This definition allows
to display the date field as date with/without time. More information can be found in
@enterprise APIDoc under com.groiss.ds.StringExpression.

• Search attributes: Here you can define the attributes which are used for quick search.
It is possible to define the quick search function for each DMS folder (see section
6.4.4). If no search attributes are entered, the name of the DMS object is used by
default.

• Key attributes: Here you can define the form fields as keys which are used for dupli-
cate checks (e.g. at XML export/import).

• EventHandler: A Java–class or a comma-separated list of Java–classes implementing
the interface

– com.groiss.dms.FormEventHandler,

– com.groiss.dms.XHTMLFormEventHandler or

– com.groiss.dms.DocumentEventHandler.

So the application programmer has the possibility to react on several events which
are triggered during the manipulation of the form. If available, it is recommended
to extend one of the appropriate adapter classes located in com.groiss.dms package
(e.g. com.groiss.dms.XHTMLFormEventAdapter)!

• Base form: The current form can be derived from a base form, whereas this field
contains the name of the base form.

• XHTML file: A reference to the XHTML-Page in the Classpath.

• Width and Height: Specifies the size of the page.

• File filter: This field is available for form type Document form only and allows the
definition of a comma-separated list of extensions and/or mimetypes which are used
as filter for file selection (in DMS functions New and Replace via button Browse).
Extensions must begin with a dot! The advantage of mimetypes is the definition of
wildcards (*) as shown in the examples beneath. It is also possible to mix extensions
and mimetypes. Examples:

– .doc,.docx => shows MS Word documents

– image/png => shows PNG files

– image/* => shows all images files

– application/msword,.docx => shows all Word documents

82

6.4. FORMS

By clicking the button Download HTML you can store the HTML–form of the current
form to your local file system. There you can edit it and afterwards you can upload it to the
system via the function Parse HTML (see form editor).

Tab: Form fields

This tab shows the fields, types, length, foreign key and Index of the Form fields which
represents the new form in @enterprise.
The icons for Foreign key and Index are defined in following way:

• Red Icon: No Index/foreign key has been created for this field

• Green Icon: Index/foreign key has been created for this field

• Grey Icon: No foreign key can be created for this field

The button Re-generate Java classes creates/regenerates a new Java class of this form (re-
generating is also possible without existing java class) and stores it in the forms directory of
your @enterpriseinstallation.

Figure 6.11: Object details: Form fields

83

6.4. FORMS

Tab: Database table

This tab shows the database statement which has been used to create the table of the form.
Furthermore information about created foreign keys and "Create Index" statements are dis-
played (see step 3 of form-wizard). The are Referenced by contains information about
foreign keys (defined in other forms) which references on current form. In area Foreign
keys the foreign keys (on other forms or persistents of package com.groiss.org) of current
form are displayed.

Figure 6.12: Object details: Database table

Tab: Rights

see chapter 5

Tab: Standard permissions

see chapter 5

Tab: Preview

This tab displays the HTML-view of the form.

84

6.4. FORMS

Tab: Folder settings

If the form is a folder, you can modify the design, how the folder content is displayed, in
this tab (see figure 6.13). It is possible to

• Add columns, edit and delete them and change the order

• Add functions, delete them and change the order

• Add forms, delete them and set their allowance (allowed or denied)

The changes of this page are used for all folder instances of this formtype.

Figure 6.13: Form details: Folder settings

Content of the HTML–page Folder Settings:

• Columns: Columns, which should appear in your folder

• Functions: Toolbar functions, which should appear in your folder

• Forms: Forms, which are allowed or not allowed in your folder

• Add: Activating this button displays a HTML–page, where you can add new columns
to the DMS–Object–Table of the current folder. How you can do this and other oper-
ations is explained beneath.

85

6.4. FORMS

• Edit: This function is available at Columns only and allows to edit entries of this list
(analog to function Add).

• Remove: Activating this button deletes all entries which have been selected before.

• Up: Activating this function moves up the selected column for one position. Because
of that the column or function is moved one position to the left of the current folder.

• Down: Analogous to Up, but one position to the right.

Add column This function can be activated by clicking the button Add beside the Column
list in the HTML–page Folder Settings (see figure 6.13).

The function Add column can be used to add new columns to the table design for the DMS–
Object– Table of the current folder.

Figure 6.14: Column

Content of the HTML–page Column:

• Id: Here you can enter columns which are predetermined by the system, and corre-
spond to properties of DMS–Objects.

• Name: The caption for the column. By activating the I18n-link beside this field, the
translations (if defined in application mask - tab Properties) of this key are displayed
and can be edited directly by changing the values and activating the button Save.
The changes are stored in the resource file of the appropriate application (for more
information see section 6.8). This link appears only, if the current user has the right
admin and the checkbox Localize is activated!

• Localize: If this checkbox is activated, the Name will be localized (if available in
resource-bundle).

86

6.4. FORMS

• Icon: Here you can enter a path for displaying an icon instead of the name.

• Colspan, Rowspan and Row: These attributes allow to define the style of the column
in table, e.g. column should be displayed in second row over two columns of first row.

• Visible: If this checkbox is activated, the column is displayed at the first call, other-
wise you can add it by using the column picker.

• Filterable: If activated, the filter mechanism can be used for this column.

• May not hide: This checkbox indicates, if the column can be faded out via column-
picker (only in smartclient).

• Sortable: If activated, the column can be sorted.

• Type: Definition of following column types is possible: string, date, dateTime, num-
ber (for numbers without comma) or decimal (for numbers with comma + appropriate
representation according to decimal formatter configuration).

• Javascript Class: It is possible to enter a path to a js class (widget) which is responsi-
ble for the representation of a column. An example widget is ep/widget/smartclient/dms/columns/Name.

Add function This function can be activated by clicking the button Add beside the Func-
tion list in the HTML–page Folder Settings (see figure 6.13).

The function Add function can be used to add new toolbar functions to current folder.

Figure 6.15: Functions

Content of the HTML–page Functions:

• Action Id: Enter an action key, which is defined in @enterprise (e.g. cut, insert,
copy, link, paste, startProcess, etc.). It is also possible to add a quick search function
by adding the id search which generates the input field, the functions Search and All
entries.

• Function: A task–function can be selected here.

• In dropdown: If this checkbox is activated, the function is displayed within a drop-
down menu (only in smartclient).

87

6.5. PROCESSES

Add form This function can be activated by clicking the button Add beside the Forms list
in the HTML–page Folder Settings (see figure 6.13).

The function Add form can be used to add forms which are allowed or not for this folder.
If the radio–button Allowed is activated, only these forms are selectable in dropdown-list
for creating a DMS form. If the radio–button Denied is activated, all forms which are not
added to this list are selectable in dropdown-list.

6.4.5 Report

For one or more forms a report can be created analog to an application report (see section
6.1.4).

6.5 Processes

Processes describe the structure of business processes. Besides the functions described in
chapter 2.1.2 the following functions can be found in the toolbar:

• Create new process with the process editor

• Edit a process with the process editor

• Load WDL / XWDL

• Report

The object-details of application contain the following tabs:

• General

• Source

• Graph

• Components

• Visibility of forms

• Escalation

• Functions

• History

• Access

• Folder settings

• Referenced by

• Document permissions

88

6.5. PROCESSES

6.5.1 Create new process with the process editor

After activating this function, the process-editor starts. You can create a new process. De-
tailed information about the process-editor can be found in chapter 7.2.

6.5.2 Edit a process with the process editor

By clicking this function the process editor is started with the selected process as argument.
With the help of the process editor you can edit the process graphically.

6.5.3 Load WDL / XWDL

With this function you can load a process from a WDL or XWDL script file. A window is
shown where you may enter the following information (see Fig. 6.16):

Figure 6.16: Load WDL / XWDL

• Select the file containing the process specification.

• The checkboxes Generate tasks and Generate roles allow you to specify whether
tasks and/or roles unknown to the system should be generated automatically.

• Click "Compile" to load the script file and save the process in the database.

After the compilation the system informs you whether the operation has been successfully
or whether errors have occurred.

6.5.4 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the process.

• Name: Name of the process. By activating the I18n-link beside this field, the trans-
lations (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

89

6.5. PROCESSES

Figure 6.17: Object details: General

• Version: Version number of the process, a positive integer.

• Application: The application, where the process is running.

• Subject: A form field, which content is used as subject of the process instance at
runtime. @enterprise offers the possibility to enter a pattern (regular expression).

• Instance Id: Here you can define an Instance Id which identifies the started process in-
stance uniquely. It is also possible to enter a pattern (regular expression) in following
format:

{ letter* "{" ("n" | "nn" | "ny" | "nny" | "y" | "yy" | "ou") ["," formatter] "}" letter* }*

Explanation:

– letter: arbitrary character

– n: next number

– nn: next number for this process

– ny: next number per year

– nny: next number for this process for this year

– y: year with last 2 digits only

– yy: year

– ou: organizational unit

– formatter: "date", "datetime" or a Java decimal-format-pattern (optionally)

90

6.5. PROCESSES

Hint: If the Instance Id contains spaces and the parameter webdav.show.subject is
set to 1 in configuration file avw.conf, attached dms-documents of the process instance
cannot be opened and following error occurs: Error 1002: The document could not
be found!

• Detail tabs: A comma-separated list of tab id’s can be defined here which tabs should
be displayed in process instance view. If nothing is entered, the standard tabs Form,
Documents, Notes, History and Process are displayed. Default ID’s are (see also class
ApplicationAdapter in APIDoc):

– forms: Process form(s)

– documents: Documents

– notes: Notes

– history: Process history

– process: Process picture

– mails: Mail tab for reading/writing emails

– plantab: Process plan view

– info: Info area which contains information about current task and process; is
displayed in every tab

• Detail tabs (mobile GUI): A comma-separated list of tab id’s can be defined here
which tabs should be displayed in mobile version of process instance view. If noth-
ing is entered, the standard tabs Form, Documents, Notes, History and Process are
displayed. Default ID’s are (see also class ApplicationAdapter in APIDoc):

– forms: Process form(s)

– mblDocuments: Documents

– mblNotes: Notes

– mblHistory: Process history

– mblProcess: Process picture

– mblMails: Mail view for reading emails

• DMS TableHandler: The representation for DMS table of the process can be definied
here (tab Documents of the process instance). Further details can be found in section
Using the DMS API of Application Development Guide.

• Process-details-handler (JS): Enter an own DOJO widget for loading process detail
tabs. This widget must implement ep/widget/smartclient/wl/ProcessDetailsHandler.
More details can be found in Application Development Guide.

• Message template: This field allows to select a message template which is used for
sending notification emails. More information can be found in user manual under
keyword Email notification. If no message template is selected, the template with
id notification is used by default (located in application default). Alternatively own
message templates can be defined which can be used by this process (see section 6.11
for template definition).

91

6.5. PROCESSES

• Priority: The priority of the process.

• Description: Free text. The tab HTML contains a WYSIWYG-Editor to format
HTML. The tab Text shows the generated HTML source.

• Max. duration: Maximum running time of the process, specified in days, hours or
minutes.

• Active: see chapter 2.2.1

• Apply changes at: see section 2.2.1

6.5.5 Tab: Source

In this tab the WDL-Script of the selected process is shown (see Fig. 6.18).

The button View BPMN opens a new window with the BPMN definition of the process. By
activating the button Download BPMN the BPMN defintion of the process can be down-
loaded to your local file system. More information concerning this topic can be found in
Application Development Guide in chapter BPMN.

By clicking the button View XWDL the XWDL definition of the process is shown in a new
window. Activating the button Download XWDL you can download the XWDL definition
of the process to your local file system.

Figure 6.18: Object details: WDL view

92

6.5. PROCESSES

6.5.6 Tab: Graph

This tab shows the graphical representation of the process like in the process editor. By
activating the right mouse key a context menu is displayed with function Download graphic
which allows to download a picture of the process.

6.5.7 Tab: Components

This tab lists the version of the tasks and forms used in the process (see Fig. 6.19). Further-
more roles, subprocesses, webservice operations and imported files by the web service are
shown. By activating a link (e.g. task) within the tab a new detail-window of the object is
opened.

Figure 6.19: Object details: Components

6.5.8 Tab: Visibility of forms

The tab Forms gives you an overview about all forms, which are assigned to the process.
For each form a further tab is displayed, where the visibilities are listed of the individual
tasks. In this overview a task appears only, if a form was assigned at the process definition.

If you want to change the visibility of a form field in a task, activate the link of the appro-
priate task. The HTML–page Form field modes will be shown.

Information of the HTML–page Form field modes:

• Form Type: The listed form fields under Form field refer to this form.

93

6.5. PROCESSES

Figure 6.20: Object details: Process forms

• Task: The form is assigned to this task.

• Process: The previous mentioned tasks is assigned to this process.

• Take visibilities from..: The visibility of an other task in this process can be taken, if
there are differences between the tasks with reference to the visibility of forms.

• Form field: Name of the form field, whose visibility should be specified.

• Invisible: If this radio–button is activated, the form field will not be shown.

• Read only:

1. Disabled: If this radio–button is activated, the form field can not be changed
and it will dye grey.

2. Text: If this radio-button is activated, the form field can not be changed, but it
will not dye grey. This option does not work with XForms, because it is not
supported!

• Writeable:

1. Optional: If this radio-button is activated, the form field can be changed.

2. Mandatory: If this radio-button is activated, the form field is changeable and
must be filled.

If a subform is existing, whose visibility should be set, the information on the HTML–page
Formfield Modes looks as follows:

• Form type, Task, Process and Take visibilities from are the same.

• Table: Name of the subform, whose visibility should be set.

• Invisible: If this radio-button is activated, the table of the subform will not be shown.

94

6.5. PROCESSES

• Read only: If this radio–button is activated, the table of the subform will be shown,
but cannot be changed.

• Optional: If this radio–button is activated, the table of the subform will be shown and
can be changed by the button New Table Entry.

• No Insert/Delete: If this radio–button is activated, no further entries can be added or
deleted.

Additional you have the possibility to set the visibility of a form field for all tasks. You have
to click on the link of the adequate form field and the HTML-page Form field modes will be
shown. This site is analogue to the HTML–page for form fields, but the visibilities will be
set for tasks and not for form fields.
By clicking the button Preview a new window will be opened, where the form with the
made settings will be shown.
By clicking the button Ok your changes, which belong to the visibilities of the form fields,
are saved.
By clicking the button Close your changes are not saved and the current HTML–page will
be closed.

6.5.9 Tab: Escalation

With the help of escalations it is possible to react on timeouts during the execution of pro-
cesses. It is possible to define four different types of actions which determine what should
happen in the case of a timeout. The system timer "Escalations" of @enterprise is respon-
sible for checking the timeouts. If this timer is not running the system does not check if
timeouts occur or not!

This tab shows all already defined escalation-objects. You can edit them or add new one by
activating the functions in the toolbar.

You can edit the following attributes (required fields are bold):

• Escalation type: Here you can select between following escalation types:

1. Process due date: This escalation relates to the due date of a process, which
was entered at the process-start.

2. Activity due dates: If this type is selected, the escalation will be fired for any
task of the process when the due date (of the active task) will be transcended.
For each task the Maximum Duration in the tab Common can be set.

3. Activity due date: In comparison to escalation type Activity due dates this one
will be triggered for the selected step (task) only defined in the same named
field on this mask.

4. Activity idle time: This kind of escalation will be triggered, when the task
remains for a while (Delay) in the Role–Worklist. This type works in the Role–
Worklist only.

5. Activity unseen: This escalation type will be triggered, when the current task
is unseen in worklist or role-worklist.

95

6.5. PROCESSES

Figure 6.21: Object-Details: Escalations

6. Activity unfinished: If a task has been started and it is not finished in given
time (= delay), this escalation type can be used to handle this case. This esca-
lation type will be triggered for the selected step in the Worklist, Role-Worklist,
Suspension List or Role Suspension List.

7. Batch unfinished: This escalation relates to unfinished batch-steps within this
process. The step is specified via the steplabel.

8. Sync unfinished: Analog to Batch unfinished, but for Sync-step.

9. Receive unfinished: This escalation type relates to unfinished Receive-steps
within this process. The step is specified via the steplabel.

• Step: If more steps are using the same task in process definition, you can define one
step which will be triggered. Steps are not selectable for escalation types Process due
date and Activity due dates.

• Delay: The period of time going by after the timer "Escalations" has noticed a time-
out (in hours or days). This value can be negative to react early enough on a deadline,
but makes only sense for Process due time, Activity due dates and Activity due time!

96

6.5. PROCESSES

You can select between hours, days and Working days. Non-working days are Sat-
urday and Sunday. It is also possible to specify additional non-working days under
Configuration→ Calendar (see chapter 10).
Example:
If 2 working days (48h) are entered, today is Thursday at 4pm and the process has the
due date at the following Monday at 4pm, the escalation must be triggered (Assump-
tion: Only Saturday and Sunday are non-working days).

• Action: In @enterprise three kinds of actions are distinguished:

– Send an Email: An email is send to the recipient entered in the field "Recipient".
If the option Current Agents is selected, an e–mail to the agents of the current
task will be sent (if a valid e–mail address is entered on user detail-mask). If the
current agent of the task is a role, all users which have the role (in this organi-
zational unit) will be informed per e–mail. If no Message template is selected,
the template with id escalation is used by default. Alternatively you can define
own message templates which can be used by this escalation (see section 6.11
for template definition).

In order to function properly a valid mail server has to be entered into the field
"SMTP Host" in the section "Communication" of the server configuration (see
Installation Guide of @enterprise). As sender of the mail appears either the
default value "enterprise@hostname" whereas the host name is the host name
of the @enterprise–server. If you don’t want to use the default sender enter the
desired sender into the field "Mail sender" which can be found beneath the field
"SMTP Host".
Example: enterprise@lima.groiss.com

– Call method: A Java–method which will be started at timeout. The package
name has to be specified too. See the example in the Application Development
Guide. There are two standard functions which are mentionable: SystemAc-
tion.increasePriority(String offset) which allows to increase the process priority
by using an offset and SystemAction.untake() which allows to move a task from
worklist to role-worklist.
Example: com.groiss.wf.SystemAction.increasePriority("2")

– Start a step: Starts the selected step. Escalation steps can be defined in process
editor under Process/Escalations (see section 7.2.6).

• Description: Free text.

6.5.10 Tab: Functions

This mask is quiet similar to 6.2.2. But functions which are assigned on this mask are visible
in History of a process only, i.e. the function is not assigned to all tasks of this process, even
not if checkbox To all tasks of the function is activated!

97

6.5. PROCESSES

6.5.11 Tab: Folder settings

This tab offers the possibility to adapt the DMS folder settings for this process. This func-
tion is equal to the folder-form settings in section 6.4.4. It is possible to

• Add columns, edit and delete them and change the order

• Add functions, delete them and change the order

• Add forms, delete them and set their allowance (allowed or denied)

6.5.12 Tab: Document permissions

In this tab permissions for documents per process step can be defined which changes the
standard permission behavior of @enterprise for this process. Beside the standard func-
tions for creating, editing and deleting permission entries a copy function is available to
duplicate entries.

Subsequent the semantics of document permissions is described:
An entry in this table is equal to a permission entry with the notional role Process-agent-
of-step-x-in-process-y. If the user is agent of step x, then the defined document permissions
come into effect. During evaluation of permissions negative ones overrule the positive ones.
Furthermore there are 2 distinctive features:

1. If no document permissions are defined, the standard permission behavior of @en-
terprise is used.

2. Step and right can be empty with the meaning that the permission is used for all steps
respectively rights.

Following attributes can be defined for a document permission entry:

• Step: Optional selection of interactive process steps only, i.e. no selection of system
steps which are executed automatically by the workflow engine (system, batch, etc.).
The subsequent defined right is used for this process step only. If no step is selected,
the subsequent defined right is used for all steps of this process.

• Right: The right which is used for the document (= form type) in the optional selected
process step. If no right is selected, all selectable rights are used for the selected step.

• Form type: The permission entry is used for the form type which is chosen here.

• Access: Either Allowed for the definition as positive permission or Not allowed for
negative permission.

Examples:

Definition of permission entry: docperm(step, right, formtype, access)

1. In step inform all documents can be looked, but not modified:

• docperm(*, *, *, allowed)

98

6.5. PROCESSES

Figure 6.22: Object-Details: Document permissions

• docperm(inform, edit, *, not allowed)

• docperm(inform, delete, *, not allowed)

2. All documents are always read-only, excepting documents of type x:

• docperm(*, view, *, allowed)

• docperm(*, edit, x, allowed)

• docperm(*, delete, x, allowed)

3. In step2 all documents of type y can be added:

• docperm(*, edit, *, allowed)

• docperm(*, delete, *, allowed)

• docperm(step1, create, *, allowed)

• docperm(step2, create, y, allowed)

• docperm(step3, create, *, allowed)

99

6.5. PROCESSES

6.5.13 Tab: Decision Support

Classifier asssignments describe how a particular form field should be classified. They
describe which fields should be considered for each output field, for which tasks this should
be the case and what classifier should be used.
Classifier assignments are persistent objects and therefore get stored in the database. After
a restart of the system they are still available.

Managing Classifier Assignments for a Process Definition

When editing a process instance in the administration interface it can be seen that the tab
at right-most position is responsible for managing the classifier assingments related to the
current process definition.

Figure 6.23: The Classifer Asssignments

It can be seen in figure 6.23 that classifier assignments can be added, edited and deleted. It
is also possible to build or rebuild classifiers related to the selected assignments. Exactly
one classifier belongs to each classifier assignment.

Adding new Classifier Assignments

There exist two different kinds of classifier assignments which can be added:

• The first one describes a classifier which has nothing to do with machine learning.
The knowledge is added by some expert. Represented in a tree structure, the rules are
quite similar to a decision tree.

• The second one is for adding a generic assignment based on the machine learning
approach. It is not possible to define exact rules, but to set the fields and classifier
related variables. More on this can be read in 6.5.13.

Editing Classifier Assignments

The editing process for classifier assignments which classifier is based on the machine learn-
ing approach is different than the editing of classifier assignment which classifier is based
on the manual rules approach.

100

6.5. PROCESSES

Figure 6.24: Classifier Assignment using Manual Rules Trees

Classifier based on manual Rules

Figure 6.24 shows the editing interface for manual rules tress. In the top section there can
be found input elements for the following parameters.

• Name: the name of the classifier assignment

• Active: an input stating if this classifier assignment should actually be used at the
moment.

• Output Field: the which is to classify.

• Tasks: Selection of the tasks for which this classifier assignment should be applied.
When pressing the corresponding button, a dialog (figure 6.25) appears showing an
input element for selecting the tasks.

Figure 6.25: Task Selection for the Manual Rules Tree

The semantics of the rows can be described as following:

101

6.5. PROCESSES

• Branch node: The selected node specifies a split attribute. When this is the case, the
node has to have at least on child node.

• Split attribute: Shows on which attribute the split should be performed.

• Leaf node: The node does not specify a split attribute and therefore does not allow
any child nodes.

• Branch selection: On the left side of the arrow, the selection on which the branch is
selected, is stated. The root node never has any selection.

Editing the Tree

An additional input element has been added for editing the rules of this classifier assign-
ment. The following actions can be used.

• Add Node: adds a child node to the selected tree node. This is only possible when
the selected node specifies a split attribute.

• Delete Node: Removes the currently selected node from the tree. This action is only
allowed when the node has at most on child. If the there is a child, this child is raised
to position where deleted node previously was. The values of the child node might be
adjusted after this step.

• Delete Node recursively: Removes the selected node and all of it’s descendants.

To edit the nodes themselves, a double click on the specific items should be performed. A
dialog window pops up when doing so.

Figure 6.26: Edit Leaf Node in Manual Rules Tree

Figure 6.26 shows the editing pane of a leaf node. In this case the split is performed on the
nominal fieldVacation.Employee. Figure 6.27 shows the editing pane of a split node which
uses a numeric attribute. A special case for a numeric split can be seen in figure 6.28 where
date and time values are used for splitting. In the case of numeric attributes the split gets
performed on the split value (≤, >).

• Selection: Describes how this branch gets selected. For nominal attributes the op-
erator is fixed and only the value can be changed. On the other hand, for numeric
attributes, only the operator can either be ≤ or >.

102

6.5. PROCESSES

Figure 6.27: Edit Split Node with numeric Attribute in Manual Rules Tree

Figure 6.28: Edit Split Node with Date Attribute in Manual Rules Tree

• Label: Selection on which label this should be assigned to the output field when this
node happens to be the last one in the path. When the checkbox is not ticked, the
value of the output field will not be affected.

• Split: Used for showing that node is branch node. When selecting a value for this
field, the node must have at least one child node.

• Split Value: Shown when split attribute is numeric attribute. For regular numeric
attributes a text box is shown. Date and time picker get shown when split attribute is
a date attribute.

Machine Learning Classifier

As the list of possible input fields changes when selecting the output field, it is not possible
to select a form field as both input and output field.
There is a similar situation for the tasks. It is not allowed to have multiple classifier as-
signments for an output field for a given task. When selecting the output field, the grids
responsible for the task selection get updated to only show the tasks for which there does
not exist a classifier assignment with the given output field. When an output field is used for
every task of the current process definition, then the field is not even offered as an output
field to the administrator. It also has to be mentioned that the output field does not have

103

6.5. PROCESSES

Figure 6.29: A Classifier Assignment

to be nominal. When it is not nominal it gets converted to a nominal field as classification
algorithms are not able to work with numeric output fields.
In figure 6.29 can be seen that the name of the current classifier assignment is appr and it
uses four form input fields to classify Vacation.Approved in the task Approve.
The classifier option is set as a String containing various names (which are prefixed by a
hyphen) and arguments. When using a decision tree classifier, the pruning algorithm to use
is set using the classifier options field.

Copying Classifier Assignments

The currently selected classifier assignments are exactly copied and stored in the database.
Stored PMMLs and PMML assignments are also copied and stored in the database. To
avoid invalid states, the new classifier assignment is set to be inactive.

Converting Classifier Assignments

It is possible to convert a classifier assignment based on the machine learning approach,
more specifically on decision trees, to one based on the manual rules approach and vice
versa. For example, this can be used to edit (or fine-tune) and freeze a tree built by a

104

6.5. PROCESSES

decision tree implementation.
The classifier class used when converting to the machine learning approach is ImportableP-
MMLTree, although this class does do machine learning by itself.

Options for Pruning

As described before, pruning is configured using an option in the Classifier options field.
The following describes how the different already implemented pruning methods are to be
configured.

• Pessimistic Post Pruning

For this kind of pruning the penalty multiplier can be provided as an argument in the
option. This has to be a positive double value. The default value is set in the decision
support configuration.

• Reduced Error Pruning

Here it is possible to pass the percentage of how much of the training set should
actually be used for training. This value has to be given as an positive integer which
is smaller or equal to 100. The other part is used for pruning the trained tree. The
default value for the percentage is set in the properties of this application.

• Minimal Error Pruning

For this type of pruning it is also possible to pass the type of estimate which should
be used as an argument. Each estimate requires a different amount of additional
arguments.

Using Classifier Assignments in process flow

Classifier Assignments may be integrated into the process flow fully automated, either
as system step or as pre-process-/postcondition method of a manual task. Therefore the
@enterprise-API provides class com.groiss.ml.classifier.ClassificationAction. A de-
tailed description of the methods of this class can be found in the API documentation as
well as in the method selection of the system step editor within the process editor.

6.5.14 Report

For one or more processes a report can be created analog to an application report (see section
6.1.4). For processes following starting possibilities are displayed:

• Manual: Process start is done as known via function Start process.

• Mailbox: The process will be started via a mailbox. Details for definition can be
found in section 9.6.1.

• Timers: The process will be started by timer ProcessStartTimer. Details for definition
can be found in section 9.1.8.

105

6.5. PROCESSES

6.5.15 Milestones

A milestone allows the definition of a pre-defined date (fix or relative to process start/calculated
process due date) which can be used for a process step in a process plan. A milestone con-
tains following attributes:

• Id: Unique identifier of the milestone.

• Name: Name of the milestone. By activating the I18n-link beside this field, the
translations (if defined in application mask - tab Properties) of this key are displayed
and can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Application: he application where the milestone belongs to.

• Interval: An interval which is calculated Form start or From due date of a process.
The calculation is done for process instances for those process steps where a mile-
stone has been assigned in process plan. The value Form start uses the process start
date, the value From due date uses the (calculated) process due date. Subprocesses
are a special case: the value Form start uses the calculated process start date of sub-
process according to the process plan, the value From due date uses the calculated
process due date of the subprocess. If the value is an integer, the unit s for seconds
will be added. It is also possible to define the unit(s) directly like in following exam-
ple: 3d 4h 30m (= 3 days, 4 hours and 30 minutes).

• Calculation model: The calculation model refers to the value of field Interval:

– Working time: The calculation of the working time is done by the settings Start
of worktime, End of worktime, Worktime per day and Non working day under
Configuration/Calendar.
Let us give an example: The working time is defined from 09:00 to 17:00 with
8 hours worktime per day. For the first process step in process plan a milestone
with interval 1 hour from start has been defined. The process has been started
at 5 pm - therefor the due date for this process step is 10 am at the next working
day.

– Calendar time: The whole day (24 hours) is used as calculation model.
Let us give an example: The working time is defined from 09:00 to 17:00 with
8 hours worktime per day. For the first process step in process plan a milestone
with interval 1 hour from start has been defined. The process has been started
at 5 pm - therefor the due date for this process step is 6 pm.

• Form field: Definition of a form field which must be a date or dateTime; this date ob-
ject is used as fix time stamp for the milestone. Definition: <procform_id>.<formfield>

Hint: The process editor allows the definition of process plans (see section 7.2.7)!

6.5.16 Plan types

Plan types are used to classify process plans. A plan type object contains following at-
tributes:

106

6.6. FUNCTION GROUPS

• Id: Unique identifier of the plan type.

• Name: Name of the plan type. By activating the I18n-link beside this field, the
translations (if defined in application mask - tab Properties) of this key are displayed
and can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Position: The position in the selection list of plan types of a process plan.

• Application: The application where plan type belongs to.

Hint: The process editor allows the definition of process plans (see section 7.2.7)!

6.6 Function groups

Function Groups allows the grouping of (task–)functions and reports. A function group can
be deleted only, when it is not assigned to a Function or a Report.

Figure 6.30: Function group

A function group object has following attributes (tab General):

• Id: Unique identifier of the function group.

• Name: Name of the function group. By activating the I18n-link beside this field, the
translations (if defined in application mask - tab Properties) of this key are displayed
and can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.8).

• Order attribute: Define an arbitrary order attribute here which is used for sorting
function groups. If function group F1 has order attribute B and function group F2 has
order attribute A, then function group F2 is displayed as first and F1 as second item
in list (e.g. in global function list of smartclient).

107

6.7. GUI CONFIGURATIONS

• Application: The application, where the process is running.

• Show as submenu: If this checkbox is activated, all assigned (task–)functions are
displayed in a submenu of function group. If not activated, only a separator is shown
between the group without displaying the function group name. The settings of this
checkbox are used by global function list and task functions in smartclient only!

6.7 GUI configurations

With GUI configuration it is possible to define masks for users (worklist, dms, etc.) and
the appropriate rights via the tab Assignments to users or rights. The elements of the mask
are stored as XML files in classes directory of the current @enterprise installation or in
classes directory of the application directory. With @enterprise it is possible to

• create new masks

• edit and delete available masks

• copy available masks

Hint: The description of the XML structure can be found in Application Development
Guide in section The Elements of the Configuration File.

6.7.1 Tab: GUI configuration

This tab allows to create and adapt masks for users. New masks need an Id and a Name.
Furthermore a Description can be entered. Selecting an Application is mandatory and also
setting an URL or selecting the radio-button Tree for creating a XML-tree (see fig. 6.31).
The Id is the filename of the XML, which is stored in classes directory.

The toolbar for creating a XML-tree offers following possibilities:

• New: Add a new node for example worklist, dms, functions, etc. (see section 6.7.1).

• Edit: Adapt an existing nodes; double-click on the element result in the same func-
tion.

• Delete: Remove existing nodes and their subnodes.

• Cut and Insert: These functions allow to take a selected tree node and insert it at an
arbitrary place in tree.

• Move up: Selected node is moved one position upwards on the same level.

• Move down: Selected node is moved one position downwards on the same level.

• Properties: In this window it is possible to set diverse properties for the current mask
(see section 6.7.1).

108

6.7. GUI CONFIGURATIONS

• Functions: This are allows to create functions which are not visible in navigation
tree. These can be actions, object selections, tables and additional data (see section
6.7.1).

• Preview: Displays the adapted mask like the users would it see.

Figure 6.31: Tab: GUI configuration

Node properties

By choosing the function New or Edit a new window is opened, where a new node can be
added or an existing node can be edited (see fig. 6.32). Nodes always contain an Id (see
below) and a Name.

There are fix elements for each node:

• Id: Unique identification of the node. If no Id is entered, @enterprise will assign an
Id automatically.

• Name: Name which is displayed (in most cases must field).

109

6.7. GUI CONFIGURATIONS

Figure 6.32: Node properties

• Localize: If this checkbox is activated and the entered string of the label is found in
the default- or a specified resource bundle, the name will be translated (name must
not contains @). By activating the I18n-link beside this field, the translations (if

110

6.7. GUI CONFIGURATIONS

defined in application mask - tab Properties) of this key are displayed and can be
edited directly by changing the values and activating the button Save. The changes
are stored in the resource file of this application (see section 6.8).

• Reference to: This attribute allows the definition of a reference to another node in cur-
rent or another gui configuration. For this purpose enter the ID of the gui configura-
tion and the node-id which should be referenced in following way: <xmlid>.<nodeid>
If a reference is entered, all settings of reference node will be loaded at runtime. These
referenced attributes can be overwritten with the attributes defined in the current node.
On the right side the view-icon is displayed which allows to open a dialog read-only
with the attributes of the referenced node.

• Include child nodes: This attribute is part of a defined node-reference (see attribute
above) and refers to whole subtrees and not only single (pruned) nodes.

• Collapsible: If this checkbox is activated, the node and its sub-nodes will be displayed
as tree.

• Default: If this option is activated, the page of this node is loaded in the right frame
when the frameset is initially loaded (after login). This option should be assigned to
one node in navigation tree. The Structured worklist node doesn’t support this option!

• Visible via roles: The select list Visible via roles allows to set roles. Users, who have
this roles, are permitted to access this node, i.e. the node is visible and/or selectable
on the mask. Additionally the visibility of the node can be limited to a role in a
particular OU.

• Visible via rights: The select list Visible via rights allows to set rights. Users, who
have this rights, are permitted to access this node, i.e. the node is visible and/or
selectable on the mask. It is possible to select several roles and rights at the same
time. Please note that for the node to be visible when both fields (Visible via roles
and Visible via rights) are specified, the current user must at least be granted one of
the rights and be assigned to one of the roles.

• Parameter: This attribute allows you to define your own parameters (<params>) that
are added to the URl.

• Help context: Add a context help to a node. The context consists of the application-id
and the anchor defined in help-page. For more informations please take a look Appli-
cation Development Guide, Section 5.4.1 Using context sensitive help in applications.

• Reload on show: This parameter should be used for nodes which are reloaded on each
click.

• onClick: An onClick action an be defined here which is executed in work area.

• Widget: A widget for navigation area can be defined here (only for smart client GUI).

You can select between following node types:

• Label: Free text, which is displayed in the navigation tree; could be used for making
groups.

111

6.7. GUI CONFIGURATIONS

• Node: Creates a link in the navigation tree. Following attributes can be set:

– Standard nodes: Activating this button opens a list of standard nodes. If a node
is selected, the settings will be taken.

– Target window: The content of this field contains the name of the window or
the frame where the output of the function will be placed. If the field is empty,
the output is sent to the frame where the worklist resides (work area). If you
enter another name, the output is sent into a separate window with this name.

– URl: This field offers the possibility to enter an URL. This URL is used, if no
onClick action (for new smart client GUI) has been entered.

– Refresh button: Activating this checkbox displays an refresh icon in the cus-
tom node.

• Worklist: Defines the worklist with following attributes:

– Shortcut: An arbitrary shortcut can be defined here by entering the appropriate
keys. A list of keys is listed on http://dojotoolkit.org/reference-guide/1.10/dojo/keys.html.

Example: CTRL+SHIFT+A
If these keys are pressed at once, this worklist-node will be displayed.

– Application: Depending on selected application these processes are displayed
in this worklist. If not set, all processes are shown.

– Type: Set the worklist-type (e.g. worklist, role-worklist, suspension, role-
suspension, etc.). It is possible to select more types simultaneously for a node.
More information about the different types can be found in Application Devel-
opment Guide (table Worklist types).

– Columns: The columns, which are displayed in the table. You can add, edit and
delete columns and change their order. Columns contains following attributes:

* Id: An own ID can be entered or a pre-defined ID selected. If a pre-defined
ID is selected, the fields Name and Localize will be filled. This field is
a must-field! The Id can contain the option, which tab should be opened
when activating the link in the worklist, e.g. process-form0 means, that the
column Process is displayed with a link to the first form in the tab view
(default is a link to process history).

* Name: Free text which is displayed in table header.

* Localize: If this checkbox is activated and the entered string of the label
is found in the default- or a specified resource bundle, the name will be
translated (name must not contains @). By activating the I18n-link beside
this field, the translations (if defined in application mask - tab Properties)
of this key are displayed and can be edited directly by changing the values
and activating the button Save. The changes are stored in the resource file
of this application (see section 6.8).

* Icon: Define a path to an icon which is displayed instead of the name.

* Colspan, Rowspan and Row: These attributes allow to define the style of
the column in table, e.g. column should be displayed in second row over
two columns of first row.

112

6.7. GUI CONFIGURATIONS

* Visible: If this checkbox is activated, the column is displayed at the first
call, otherwise you can add it by using the column picker.

* Filterable: If activated, the filter mechanism can be used for this column.

* May not hide: This checkbox indicates, if the column can be faded out via
column picker.

* Sortable: If activated, the column can be sorted.

* Type: Definition of following column types is possible: string, date, date-
Time, number (for numbers without comma) or decimal (for numbers with
comma + appropriate representation according to decimal formatter con-
figuration).

* Form fields: Here you can define form fields which are used as representa-
tion value. The syntax is described in the Application Development Guide,
chapter Configuring the Worklist Client. If the worklist contains an instance
of a process not listed in the field specification the column will remain
empty.
Hint: The definition of only one form-path per process definition/version
is allowed, i.e.:

· myproc:1:myf:field1;myproc:1:myf:field2 is not possible, because field1
and field2 are read from the same process definition/version.

· myproc:1:myf:field1;mypproc2:1:myf:field2 is possible, because field1
and field2 are read from different process definitions/versions.

* Javascript Class: It is possible to enter a path to a js class (widget) which is
responsible for the representation of a column.

– Column picker: This parameter allows the definition, if a column picker should
be provided in table. If no value is selected, the default settings will be used.

– User column filter: This parameter allows the definition, if the filter mecha-
nism of @enterprise for the current table should be provided. If no value is
selected, the default settings will be used.

– Paging: If this checkbox is activated, the paging mechanism of @enterprise
for the table is used (only for legacy GUI).

– Items per page: Individual paging size for this table (only for legacy GUI). If
not set, the user parameter is used and as default the configuration parameter.

– Selection: Definition of a selection type for worklist table. Following entries
are available:

* HIDDEN: no checkboxes will be displayed in the table

* ONE: radio-buttons will be displayed instead of checkboxes

* MULTI: checkboxes will be displayed (default, if the attribute selection is
not set)

* ROWONE: one row can selected only (no checkboxes or radio-buttons)

* ROWMULTI: multiple rows can be selected (no checkboxes or radio-buttons)

– Printable: If checked, a print function will appear above the table which allows
to print the current displayed table content. This checkbox is used by smartclient
only!

113

6.7. GUI CONFIGURATIONS

– Show inline details: Here you can define how the inline details will be shown.
Following entries are available:

* COLUMN:ID: The inline details can be reached by clicking on the arrow
next to the process ID

* ROW: The inline details can be reached by clicking on the row

* OFF: The inline details are not reachable

– DnD handle: Here you can define the drag and drop (DnD) behavior for the
worklist entries. Following entries are available:

* HANDLE: The entries are dragable only over the DnD icon. The icon is
located on the left to the process ID.

* ROW: DnD is activated for the whole row

* OFF: DnD is inactive

– Functions: Here you can add available Functions or set Action-Ids (e.g. new,
cut, copy, myconfig.myaction, etc.). The checkbox In dropdown indicates that
function is available in context-menu of worklist entries. Furthermore it is also
possible to change the order of the functions.

– Toolbar shape: Definition how functions in toolbar are displayed:

* TEXT: Only name of function is displayed

* ICON: Only icon of function is displayed

* BOTH: Icon and name of function are displayed (only in smartclient us-
able)

– Folder functions: Allows the definition of Action-Ids which are displayed in
a dropdown menu beside the worklist node. A well-known example is the cre-
ation/adaption of user folders of a worklist (action-id: newUserFolder, dele-
teUserFolder, editUserFolder, etc.) whereby the actions can be loaded with but-
ton Take defaults.

– Process detail functions: Analog to Functions, only here you define the func-
tions that are displayed in the process detail view.

– Default sort column: This parameter allows to define a column which is sorted
by default. If a user is changing the order in table, the new order is stored in
the user properties table (and read from there). The element defaultSortColumn
must contain the sort direction (+ or -) and the column-id as value (see example
below). The sort direction + defines ascending order, descending order is -. If
one attribute is missing, the first (or given) column will be sorted (by default in
ascending order).

– Default group column: This parameter allows to define a column which is
taken as default group-by-column. If a user is changing the group-by-column in
table, the new setting is stored in the user properties table (and read from there).
This element must contain the column-id as value and optional the descending
sort direction (see example below). The sort direction-defines descending order,
the column-id without sort-direction defines ascending order.

– Filter-Id: The id of another worklist can be entered here. All stored filers of
referenced worklist can be used in current worklist.

114

6.7. GUI CONFIGURATIONS

– Table-Handler: Enter your own worklist adapter here. For further informa-
tion about worklist adapter please take a look into the Application Development
Guide - chapter Customizing the Worklist.

– No documents/notes: Activating this checkbox avoids selection of documents
and notes of processes when worklist is displayed. Activate this checkbox only,
if no documents or notes are used in processes and the performance of the work-
list table should be optimized!

– No userfolder filter: Activating this checkbox avoids filtering by userfolder
contents when worklist is displayed. Activate this checkbox only, if no user-
folders are used and the performance of the worklist table should be optimized!

• Structured worklist: Definition of a worklist/user folder (type user) or a substitution
folder (type user substitutes) in the navigation tree, which is a placeholder. Attributes
are analog to node type Worklist, with the possibility to set an Application. The type
user substitutes offers a selection of Structure with following values:

– perFolder: Only the/all user folder trees of substituted persons are displayed
without top level folder (= worklist). For each person a user folder tree is dis-
played.

– perUserAndFolder: For each substituted user a tree with its worklist items
(worklist and user folder) is displayed.

– perUser: Only the worklists of substituted users are displayed without user
folder items (for each person a worklist node is displayed).

• DMS: This node allows to create and adapt a DMS-folder. You can set following
attributes:

– Columns: Analog to node type Worklist

– Column picker: Analog to node type Worklist

– User column filter: Analog to node type Worklist

– Selection: Analog to node type Worklist

– Default view: This parameter allows you to define the default view in DMS-
folders. Following entries are available:

* Table

* Table with small symbols

* Table with big symbols

* Tiles with small symbols

* Tiles with big symbols

More information can be found in User manual, section Components of the
Document Management.

– Printable: Analog to node type Worklist

– Functions: Analog to node type Worklist

– Toolbar shape: Analog to node type Worklist

115

6.7. GUI CONFIGURATIONS

– Forms: In this list you can define which form types are allowed or denied for
this DMS-folder. If the list is empty and the radio-button Denied is activated,
all available form types of @enterprise are available for the users. Selecting a
radio-button option is valid for the whole list only.

This node can be added to navigation tree once only like node User Folder!

• Table: With this node, a link to a table can be created. This table can be a form-class
(selectable via icon). Following attributes can be adapted:

– Version: Selection between version 1 and 2. Version 2 is the table which is
used in smartclient (e.g. worklist table) and offers following parameters:

* Class name: A form-class must be entered or selected here. Activating the
magnifier-icon opens a list of form-classes where an entry can be selected.

* Administration: If set to true, table is only used in @enterprise adminis-
tration.

* Columns: Analog to node type Worklist

* Column picker: Analog to node type Worklist

* Use column filter: Analog to node type Worklist

* Selection: Analog to node type Worklist

* Printable: Analog to node type Worklist

* Functions: Analog to node type Worklist

* Toolbar shape: Analog to node type Worklist

* Detail window properties: The window properties can be set here by
adding several parameters separated by semicolon. The syntax is the same
as using the java script method window.open.

* Sortable: If true, the table is sortable.

* Default sort column: Analog to node type Worklist

* Default group column: Analog to node type Worklist

* Tabs: Defines which tabs are going to be displayed in the detailed view of
the selected object. The tabs are defined as a comma separated list of nodes
(format: <gui_id>.<nodeid>).

* Table-Handler: Enter an own implemented table handler class which ex-
tends com.groiss.storegui.ObjectTableAdapter.

* Form-Handler: Enter an own implemented form handler which extends
com.groiss.storegui.ObjectFormAdapter. An example can be found in Ap-
plication Development Guide.

* Detail: Define here, if detail view should be displayed in tabbed-view. In
this case enter com.groiss.storegui.TabbedWindow.showDialog.

* Table model class: Enter an own implemented table model class. Standard
class is com.groiss.storegui.FormTable.

* Foreign keys: Name of an attribut which is used to narrow down the table
contents e.g. userid to show only objects which belong to a specific user.

* Parameter types: In field Condition it is also possible to define placehold-
ers (?) which are filled dynamically. Each question mark needs a (data)type

116

6.7. GUI CONFIGURATIONS

which can be entered as comma-separated list in this field. Following types
can be entered:

· Persistent
· Date
· Long
· Double
· Integer
· String
· OIDList

More information about the usage can be found in Application Develop-
ment Guide, section Object selection - ep/widget/ObjectSelect.

* Condition: Possibility to enter a SQL condition for restricting table result,
e.g. application = (select oid from avw_application where id = ’itsm’).

* Attributes: Allow to (pre-)fetch dependent objects from the database by
efficient operations. The content is a comma separated list of java fields of
the corresponding class. The field names must denote persistent objects!
Usually oneBulkQuery per field is executed instead of a (single record)
select-statement per record and field.

Version 1 is the table which was used in @enterprise 8.0 and previous versions
and offers following parameters:

* Class name: Analog to version 2.

* Columns: Analog to version 2.

* Column picker: Analog to version 2.

* Use column filter: Analog to version 2.

* Selection: Analog to version 2.

* HTML mask: Define an HTML mask which is used as detail view of the
table entry.

* Paging: If set to true, the paging mechanism of @enterprise for tables is
used.

* Items per page Individual paging size for this table. If not set, the user
parameter is used and as default the configuration parameter.

* Functions: Analog to version 2.

* Toolbar shape: Analog to version 2.

* Toolbar target: The toolbar ID (ID from the Frame in which toolbar is
placed).

* Toolbar alignment: Defines if toolbar is aligned vertically (v) or horizon-
tally (h).

* Table target: The table ID (ID from the Frame in which the tebale is
placed).

* Detail window properties: Analog to version 2.

* No search: If set to true, whole table is displayed (e.g. if more table entries
are available than allowed to display) by default and no search is possible.

117

6.7. GUI CONFIGURATIONS

* No warnings: If set to true, no warning is displayed, if more table entries
are available than allowed to display.

* Default sort column: Analog to version 2.

* Tabs: Analog to version 2.

* Table-Handler: Analog to version 2.

* Form-Handler: Analog to version 2.

* Detail: Analog to version 2.

* Table model class: Analog to version 2.

* Search attributes: A comma separated list of search attributes can be en-
tered.

• Start process: With this node you add a link to the list of all startable @enterprise-
processes or only to a defined one. Further properties like at node Node. Furthermore
a Worklist Id can be entered (e.g. standard.wl), which is the worklistId in XML. If
such an Id is set, the worklist with the corresponding Id is shown after process start.
The setting of Worklist Id is available for old GUI only! With attribute Mode the start
mode can be defined:

– ALL: A list of all startable processes are displayed (default). With attribute
Applications you can define which processes of which applications should be
offered. Please note that in smartclient the node Start process with this option
cannot be used on any level of GUI tree - the link will be displayed, but is not
executable!

– DUEDATE: A form is displayed where a due date and an organizational unit
must be defined before a process can be started. For this purpose the Id of the
process must be defined.

– DIRECT: Process is started immediately, whereby the Id of the process must
be defined. Optionally an Organizational unit can be defined for the startable
process.

– FORM: Process form of given process (= Id) is displayed without starting an
instance. It is possible to enter the data fist and starting the process with button
Start process. Optionally an Organizational unit can be defined for the startable
process, as well as the start step of the process (only steps with a defined step-id
can be selected). These options are usable in smartclient only!

• Function list: By adding this node global functions of one or more applications can
be displayed.

• Function: This node allows to add several functions (via Id) to the navigation tree.
The added function does not know the context of the right frame, so global functions
should be used (apply to no entry).

• Report: Here you can set a stored report (via Id), which will be executed by activating
this link in navigation tree (analog to 8.4)

• Custom:

118

6.7. GUI CONFIGURATIONS

– Class: Here you can enter a Java class, which implements the Java Interface
com.groiss.gui.NavigationTreeNode.

– Refresh button: Activating this checkbox results in displaying an icon at the
custom node to refresh the node data.

• XML fragment: This node allows to load gui-xml fragments into the tree. The
name of the XML file (without extension .xml) must be entered in the field Frag-
ment name. See the Application Development Guide, paragraph “XML fragment” in
section “Configuring the Worklist Client” for details.

Properties

With this function it is possible to define mask-specific properties. Following attributes are
available:

• Title: A pattern for the browser window title can be defined here. If there is no defined
pattern, @@@ep: productname@@- {user} is used. The following keywords are
available:

– config: Name of the GUI configuration

– server: Server name

– user: User name

– context: Name of the displayed content

– count: The number of unread entries in worklists is displayed

• Visible via roles: The select list Visible via roles allows to set roles. Users, who has
this roles, are permitted to access this user interface. Additionally the visibility of the
node can be limited to a role in a particular OU.

• Visible via rights: The select list Visible via rights allows to set rights. Users, who
has this rights, are permitted to access this user interface. It is possible to select
several roles and rights at the same time. Please note that for the user interface to
be visible when both fields (Visible via roles and Visible via rights) are specified, the
current user must at least be granted one of the rights and be assigned to one of the
roles.

• Navigation type: Different types of the main navigation in @enterprise are sup-
ported and can be defined here. The following keywords are available:

– COLLAPSIBLE: Navigation menu can be extended/collapsed by the user. When
collapsed, a limited set of navigation-items is displayed.

– COLLAPSED: Navigation menu is displayed as a limited set. It is not possible
to expand or collapse the navigation.

– HIDEABLE: Navigation menu can be extended/collapsed by the user. The menu
is completely hidden when collapsed.

– HIDDEN: Navigation menu is not displayed and cannot be shown.

119

6.7. GUI CONFIGURATIONS

Hint: The navigation menu can be extended/collapsed by double-clicking on the
splitter or by clicking on the arrow icon which is placed at the middle of the menu.
The splitter can also be dragged to resize the navigation accordingly.

• HTML-Mask: Equal to attribute framepage in XML-file standard.xml.

• HTML-Mask (right-to-left): Analog to HTML-Mask, but for attribute framepageRTL.

• Standard actions: Define standard actions which are displayed always. The button
Take defaults loads the standard actions.

• Actions in user profile: Here you can define functions for user profile. The button
Take defaults loads the standard functions.

• Layout widget: An own widget can be defined here which is used as main page
(ideally a dijit/layout/xx widget - e.g. BorderContainer).

• User profile widget: An own widget for user profile can be entered here which is
used instead of standard user profile.

Functions

This function allows the definition of elements which are not visible in tree, but can be also
used by tree functions. All defined functions are displayed in a table. Via toolbar functions
it is possible to add, edit and delete such functions. More informations can be found in
Application Development Guide in section Non tree nodes (<nodes>).
There are fix elements for each node:

• Id: Unique identification of the node. If no Id is entered, @enterprise will assign an
Id automatically.

• Name: Name which is displayed (in most cases must field).

• Localize: If this checkbox is activated and the entered string of the label is found in
the default- or a specified resource bundle, the name will be translated (name must
not contains @). By activating the I18n-link beside this field, the translations (if
defined in application mask - tab Properties) of this key are displayed and can be
edited directly by changing the values and activating the button Save. The changes
are stored in the resource file of this application (see section 6.8).

• Reference to: This attribute allows the definition of a reference to another node in cur-
rent or another gui configuration. For this purpose enter the ID of the gui configura-
tion and the node-id which should be referenced in following way: <xmlid>.<nodeid>
If a reference is entered, all settings of reference node will be loaded at runtime. These
referenced attributes can be overwritten with the attributes defined in the current node.
On the right side the view-icon is displayed which allows to open a dialog read-only
with the attributes of the referenced node.

• Include child nodes: This attribute is part of a defined node-reference (see attribute
above) and refers to whole subtrees and not only single (pruned) nodes.

120

6.7. GUI CONFIGURATIONS

Figure 6.33: Function node properties

• Parameter: Analogous to the description in chapter 6.7.1. Some @enterprise actions
can be adjusted with parameters. For more information please see chapter 6.7.4.

• Help context: Add a context help to a node. The context consists of the application-
id and the anchor defined in help-page. For more informations please take a look
Application Development Guide, Section Using context sensitive help in applications.

• Reload on show: This parameter should be used for nodes which are reloaded on each
click.

You can select between following function node types:

121

6.7. GUI CONFIGURATIONS

• Action: In some cases an own function is necessary which is included via an Action-
Id e.g. at a worklist node. The syntax for such an Action-Id is <xmlid>.<nodeid>.
An action has following attributes:

– Shortcut: An arbitrary shortcut can be defined here by entering the appropriate
keys. A list of keys is listed on http://dojotoolkit.org/reference-guide/1.10/dojo/keys.html.

Example: CTRL+SHIFT+A
If these keys are pressed at once in appropriate context, the action will be per-
formed. The appropriate context depends on the availability/visibility of the
function, e.g. if function is a toolbar function of the worklist, the worklist must
be displayed first (and maybe a worklist entry must be selected) before the short-
cut can be used.

– Standard nodes: Activating this button opens a list of standard nodes. If a node
is selected, the settings will be taken.

– Target window: The target of the link can be defined, right is the default. With
value ajax a AJAX servlet method can be called which could be necessary e.g.
for subform tables.

– URl: Defines the link to a function. This URL is used, if no onClick action (for
new smart client GUI) has been entered.

– Detail window properties: The window properties can set here by adding sev-
eral parameters separated by semicolon. The syntax is the same as using the
java script method window.open().

– Apply to: Defines, if function should be applied for a table entry or could be
executed without selection. Following modes are available:

* NONE: Function can be executed without selecting a table entry

* ONE: Function can be executed only, if one table entry is selected

* MULTI: Function can be executed, if one ore more table entries are selected

– Action ID: Here you can enter an own action ID. With this ID you can find
out which action is actually the original action in case of overridden actions for
“Drag and Drop”.

– Region: Defines where the Action should be placed. There are three possible
regions to set top, trailing and center. The header in the process detail view can
be edited with the top. With trailing and center can be defined, if the tabs are
placed on top or to the right of the process details view.

– Place at item: If this checkbox is selected, the action will be displayed directly
at the entry.

– Check for unsaved changes: If checked, a warning message is displayed if
changes are not saved before the function is executed.

• Object selection: In forms it could be helpful to store references of other @enter-
prise objects. For this purpose the object selection can be used which must be added
via searchid to a form element. More information is available in Application Devel-
opment Guide in section Usage of customized DOJO controls. Following attributes
are available:

122

6.7. GUI CONFIGURATIONS

– Class name: A class must be defined here which is used by object selection.
This class could be entered manually or it is possible to selection a form class
via search dialog.

– Default sort column: Analog to node type Worklist

– Table model class: Here you can define the table model
(default: com.groiss.storegui.FormTable).

– Search attributes: Define optionally search attributes which are used by the
object selection. The definition is analog to Attributes.

– Parameter types: In field Condition it is also possible to define placeholders
(?) which are filled dynamically. Each question mark needs a (data)type which
can be entered as comma-separated list in this field. Following types can be
entered:

* Persistent

* Date

* Long

* Double

* Integer

* String

* OIDList

More information about the usage can be found in Application Development
Guide - section Usage of customized DOJO controls.

– Condition: This attributes defines the SQL WHERE-clause for the object se-
lection. For this purpose enter the string without WHERE, e.g. formdept in
(select oid from avw_dept where id = ’myoe’).

– Attributes: The display attributes of the form class can be defined here. For
this purpose enter a comma-separated list of form field names of the appropriate
class name. If no attributes are entered, the name attributes of the formtype is
used.

– Attribute names: A comma-separated list of attribute names as they are then
transmitted by the system for each object. The names can be internationalized
(e.g. @@@ key @@).

– Sorter: Here you can specify a comparator <Persistent>, which will then be
used for sorting.

• Table: Tables which are not accessible via tree functions should be defined here, e.g.
subtables. The attributes are analog to table in section 6.7.1.

• Additional data: In @enterprise it is possible to attach forms to master data objects.
More information is available in Application Development Guide in section Adding
tab Additional Info.

– Class name: A class must be defined here which is used as additional data
object. This class could be entered manually or it is possible to selection a form
class via search dialog.

123

6.7. GUI CONFIGURATIONS

– Position: The attribute position can be used to define the position of the Addi-
tional info tab in the tab-list (must be a positive integer).

– Attach to: In this field you have to enter the master data class name where
additional data object should be attached to, e.g. com.groiss.org.User.

– Form: The form template of additional data form must be entered here. Please
ensure that the file is part of the classpath and form type is XForm!

– Editable: This checkbox allows to define, if the additional data form is editable
(save buttons are active) or just read-only.

6.7.2 Tab: GUI configuration XML

After activating this tab, the Editor for direct editing of the XML file will be opened. The
changes can be stored with the appropriate Save buttons. The XML schema can be opened
using the keyboard key F6.

6.7.3 Tab: Assignments

When using different client configurations you can now specify which user and/or role uses
this configuration. The scope is either a user or a role, if more than one record matches, the
one with the higher preference is chosen.

Following the description of the detail mask:

• Agent: The tree or URL is set for this agent. You can select between a User or a Role
(with Organizational Unit).

• Preference: It is possible to assign more than one tree or URL to an agent. For this
purpose you can set a preference whereas the settings with the highest preference is
used at the login.

6.7.4 Customizable actions

In @enterprise you can customize some default actions.

Download as ZIP (download)

You can define a custom DMS function which reference from @enterprise default down-
load action (Download as ZIP). Creating a name of the downloaded document in default
action is defined as:

• a single document download: <file-name>.zip

• a single folder download: <folder-name>.zip

• multiple documents/folders download: <parent-folder-name>.zip

However, you can specify your own name pattern for the resulting zip file there.
Example:

124

6.7. GUI CONFIGURATIONS

<action id="myDownloadZIPFunction" ref="admin.download">
<name>My download ZIP function</name>
<params>namePattern={process}-{ou}</params>
<apply>MULTI</apply>

</action>

Please note that the supported placeholders within the <params> tags are:

• name: the name of the selected object or the name of the parent folder if several
objects are selected

• ou: the organizational unit to which the object or its folder belongs

• id: the id of the process instance to which the object belongs

• process: the name of the process definition of the process instance to which the object
belongs

• subject: the subject of the process instance to which the object belongs

New DMS form (dmsnew)

Furthermore it is possible to add a button to the DMS toolbar, which only creates an instance
of the defined form type. For this purpose create a new action in the gui configuration which
references the "dmsnew" action. Then add the ID of the desired form type to the attribute
params. Finally add the action to a DMS folder (attribute actions).

Example definition of such an action:

<nodes>
...
<action id="myFormNew" ref="dmsnew">
<name>New DMS form</name>
<params>myformid</params>
</action>
...

</nodes>

It is also possible to define attributes as JSON objects and to involve more attributes. Ex-
ample:

<action id="myFormNew" ref="dmsnew">
<name>New DMS form</name>
<params>
{"formtype":
{"id":"Standarddokument","version":1,"objectId":"com.groiss.dms.FormType:250"},
"iconClass":"scIcon scDmsForm scDmsDocument Standarddokument"}
</params>

</action>

125

6.8. RESOURCE EDITOR

Reassign (setAgent)

If you want to customize the setAgent action to show only the roles:

<action id="setAgent_rolesOnly" ref="setAgent">
<name>Reassign</name>
<params>{"showUserSelect":false}</params>
<apply>NONE</apply>
<checkForChanges>true</checkForChanges>

</action>

Substitutions (substitutions)

You can define the substitutions in end-user client to include the the roles per default by
defining an action with the parameter includeRoles, for example:

<action id="substitutions" ref="admin.substitutions">
<params>{includeRoles: true}</params>

</action>

6.8 Resource Editor

This section describes the usage of the @enterprise Resource Editor. This tool allows to
view the Resource Bundles of @enterprise and adapt the resource files (Strings) of installed
applications. The resource editor is active only, if a resource has been entered in detail mask
of the application (see section 6.1 - Tab: Properties). The application Default does not
need these entries, because the standard @enterprise resources are always displayed (in
readonly-mode). The standard @enterprise resources can be enhanced by a new language
by activating the toolbar-function New language (see section 6.8.1)

Hint: The resource editor creates/adapts a csv-file (Strings.xls) and property-files when
storing the changes (depending on the entered path on detail mask of the application). Re-
sources can be adapted only, if a csv-file and/or property-files exist on the file-system. For
further information about resource files please refer to @enterprise Application Develop-
ment Guide.

Activate the link Resources to get a spread sheet of the application resource data (Strings).
If this link is activated in application Default, a new page will be displayed where you
can select between Strings and Errors which are the standard @enterprise resources. The
toolbar functions are explained in section 6.8.1. Following columns are available in the
spread sheet (see figure 6.34):

• LN: Symbolizes the row number.

• Key: This column contains all keys of the resource file which should be translated.
Existing keys cannot be changed in this view.

126

6.8. RESOURCE EDITOR

• Language columns: A set of columns is displayed whereas each column represents
a language. Select the appropriate cell to edit the value. The fist language column is
the default language (= Strings.properties).

The behaviour of the table (sorting, column picker, etc.) is equal to the standard @enter-
prise behaviour described in section 2.1.

Figure 6.34: Resource Editor spreadsheet

6.8.1 Toolbar functions

This section describes the several functions for adapting the resource file. If the resource
could not be adapted (e.g. if resource is within a jar-file), most of this functions are not
allowed to execute. The toolbar contains following functions:

• New line: This function adds a new row to the spread sheet. If no row is activated,
the first available empty row on last page will be activated or, if no empty row is
available, a new page with an empty row will be created. If a row is selected and
this function is activated, the new row will be inserted at a position depending on the
sorted column.

• Edit line: Select a row and activate this function to get an overview of the selected key
and its translations in a popup-window. This overview allows to adapt the translation
strings and to step to the next or previous row. Activating the button Apply leads in
refreshing the spread sheet (= changes are stored temporarily). The changes will be

127

6.8. RESOURCE EDITOR

persistent when the toolbar-function Save will be activated (= changes are stored in
resource files).

• Delete line: Activating this function leads in removing the selected row from table.

• Copy line: The selected row is copied when this function is activated. The copied
row is inserted at a position depending on the sorted column.

• Save: If this function is activated, all changes of the current spread sheet are saved to
the appropriate csv- and property-files. The csv- and property-files are stored in the
same directory which has been defined on application mask (see section 6.1). If the
files are read from a jar-file and this function is activated, only new columns (= new
languages) will be stored in the classes-directory of the appropriate application.

Hint: The created csv-file is encoded in UTF-16LE after activating this function.

• Discard changes: If this function is activated, all not saved changes are discarded
(removed from session).

• Shortsearch: Enter a string into the textfield and activate this function to get a re-
stricted result. This search works analog to the standard short search of @enterprise.

• All entries: Activate this function to display all entries of the table (spread sheet).

• Sort table for resource files: If the temporary sorting order of the spread sheet should
be used for the csv- and property-files, this function should be activated. The changes
are persistent only when activating the function Save in toolbar.

• New language: A popup-window will be opened where a new column can be added
by selecting a value of the dropdown-list and activate the button Create. The de-
fault languages are displayed, if no further languages has been configured in @enter-
priseConfiguration→ Localization→ List of Locales . This function can be executed
always even though existing resources are read from a JAR-file.

6.8.2 Converting csv-files

If csv-files are used, they must be encoded with character set UTF-16LE. Following function
is available to convert from Cp1252 to UTF-16LE:

http://’host’:’port’/’context-root’/servlet.method/
com.groiss.reseditor.HtmlMethods.convertXLS?resource=<reurl>

The parameter resource must be the URL to the appropriate csv-file, e.g. for application
myappl Strings:

http://’host’:’port’/’context-root’/servlet.method/
com.groiss.reseditor.HtmlMethods.convertXLS?
resource=com/dec/myappl/resource/Strings.xls

128

6.9. VALUE LISTS

6.9 Value lists

Value lists allows to combine diverse attributes with their values for a specific application.
Value lists are used for example in form select lists and can be defined with the form-editor
(value column in schema tab) by entering the Id. The value table of a value list object
consists of following elements:

• Label: An arbitrary text (which can start with @@@ signs for internationalization)
that should be displayed (e.g. in select list on form, display attribute in a report, etc.).

• Value: The value which should be stored in the database.

• Position: This column allows the definition of an order of the list entries. If no
position is defined (= position value 0), the values are listed in alphabetical order
according to the translated label text.

The button Upload File allows to import values from a CSV file. Existing value list entries
are either replaced (= option Replace) or the list is enriched by the entries of the CSV file
(= option Merge), whereby the content of value is taken for the check. The format of the
CSV file is following: The first row must contain the fix string value;label;position, with
the beginning of second row the value list data must be defined.

Example:

value;label;position
1;Option 1;1
2;Option 2;2
3;Option 3;3

The imported values are not stored immediately in the database, you have to activate any
save button first!

6.10 Web Services

This chapter describes the creation of web service server/client objects which can be used
for one of the web server nodes in process editor (see section 7.2.19. The requirement for
creating server/client objects are existing WSDL-files in the classpath of @enterprise.

Please notice that WSDL files must correspond to the WS-I Basci Profile 1.1 (http://www.ws-
i.org/profiles/basicprofile-1.1.html).

If you want to offer web service which are not corresponding to the WS-I Basic Profil (e.g.
RPC web services, ...), these services can be added/activated via the function Admin tasks
→ Communication→Web services→ Local services (see chapter 9.6.8). This kind of web
services cannot be used (automatically) in processes.

Webservice Server/Client objects can be defined in every application.

129

6.10. WEB SERVICES

6.10.1 Webservice clients

With client objects it is possible to define which web service with its parameters (IN-/OUT-
parameter) is called. OUT-parameter are submitted to web service and IN-parameter are
received from web service. Client objects are applicable for submitting data to an other
server for processing.

The object-details contain following tabs:

• General

• Callable operations

• History

Tab: General

Figure 6.35: Tab: General

You can edit the following attributes (required fields are bold):

• Id: A free assignable ID of the web service client object. The ID must be unique per
application.

• WSDL file: The path to a WSDL file in @enterprise classpath.

• Webservice: A selection of web services is offered depending on the definition in
WSDL-file. Selection is available only, if a correct path to a WSDL file has been
entered.

• Port: Depending on the select Webservice a appropriate port can be selected which
was defined in the WSDL file.

130

6.10. WEB SERVICES

• URL: The URL of the web service which should be called. If nothing is entered, the
URL defined in the WSDL file is used.

• Required modules: If needed, a comma separated list of AXIS2 modules can be
entered, e.g. rahas,rampart,scripting

• Application: The application where the client object should be stored.

After storing the information on tab General an Operations object should be created in tab
Callable Operations. This object allows to define IN-/OUT-parameter.

Tab: Callable operations

In this tab a table of all operations of the current client object is displayed. This table con-
tains the default toolbar functions and the function Execute webservice operation which
allows to test the selected operation object with its OUT-parameter.

Activate the toolbar function New to create a new operation object. A new dialog will be
opened where you can select an Operation which has been defined in WSDL file (see figure
6.36). Afterwards a XML should be created by using the function Generate XML which is
stored in field XML.

Figure 6.36: The Operation-Object

131

6.11. MESSAGE TEMPLATES

After successful creation of an Operation object, IN- and OUT-parameter can be defined.
For web service client objects OUT-parameter are parameter which should be submitted for
processing. IN-parameter are parameter which are received form web service (e.g. status
notification about processing). A parameter is defined by an Id, a Name and a Path (XPath)
which are required fields. Prefixes, which are defined in root-element of the WSDL file,
can used as namespace-prefix in XPath expression . Parameter can be created manually
by activating the toolbar function New or automatically by activating the toolbar function
Generate parameters. It is not possible to create duplicates (identified by ID)!

6.10.2 Webservice server

With server objects it is possible to provide web services at the server. Other systems are
able to call these services.

The Webservice server dialog is analog to object Webservice clients:

• General: Contains the same attributes as Webservice clients, but no URL can be
entered.

• Callable operations: Analog to Webservice clients, but the toolbar function Exe-
cute webservice operation is not available. IN-parameter are parameter which are
received for processing and OUT-parameter are parameter which should be submit-
ted (e.g. status notification about processing). Optionally a Message handler can be
entered which has to implement the interface com.groiss.ws.server.MessageHandler.
If a handler is entered, this operation cannot be used in a process definition.

• History: Analog to Webservice clients.

6.11 Message templates

This section describes the definition of message templates which are used in several places
in @enterprise. Following events use message templates:

• Process cycle (system step, pre-processing, postcondition, etc.)

• Escalation

• Notification about new processes in worklist(s)

• Notification of processes I follow (function Follow the process)

• Timer PasswordExpiration

• ReportTimer

• Changes of a DMS document (function Follow document changes)

• API program

132

6.11. MESSAGE TEMPLATES

@enterprise offers standard templates for most of these events which are stored in appli-
cation default. In addition to these templates own message templates per application can be
defined. Following standard templates are available:

• Default template (documentTracker): This template can be used in DMS function
Follow document changes. More information concerning this function is available in
@enterprise user manual.

• Escalation (escalation): Escalation emails use this template by default. More infor-
mation can be found in section 6.5.9.

• Notification (notification): By default the notification mechanism for new worklist
entries uses this template. For details please take a look into @enterprise user manual
(keyword Email notification).

• Process tracker template (processTracker): This template is used by worklist func-
tion Follow the process. More information concerning this function is available in
@enterprise user manual.

• Password expiration warning template (pwdExpiration): The timer PasswordEx-
piration uses this template to send a warning email to the users. More information
can be found in section 9.1.8.

• Report timer template (reportTimer): This template is used as default template by
ReportTimer for sending emails. More information can be found in section 9.1.8.

The API description is available in @enterprise application development guide - section
E-Mails.

Hint: An overview of templates and the modes of sending is illustrated in section 6.11.2!

6.11.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Each message template defined in @enterprise administration must contain an
id.

• Name: The name of the message template. By activating the I18n-link beside this
field, the translations (if defined in tab Properties) of this key are displayed and can
be edited directly by changing the values and activating the button Save. The changes
are stored in the resource file of this application (see section 6.8).

• Description: Free text which describes the template.

• Application: The application which this template belongs to.

• Active: This checkbox indicates, if template is active or inactive. Active templates
are selectable/usable for email notification. Inactive templates are not selectable in
selection list and are ignored by notification mechanism.

133

6.11. MESSAGE TEMPLATES

Figure 6.37: Message template

• Mime-type: This selection defines the format of the message. If the value HTML is
selected, the tab HTML is active and allows to enter a HTML-formatted text. If the
value Text is selected, tab Text/Source is active only where a plain text can be entered.
When email will be sent, in case of HTML a HTML bodypart (text/html) and in case
of Text a PLAIN bodypart (text/plain) will be created.

• Recipients: The recipient list can contain plenty of To-, CC- and BCC-recipients.
Following recipient types can be defined:

– User: @enterprise user can be selected here. If user has an email-address
entered, a message will be sent otherwise this recipient will be ignored.

– Role: @enterprise role and/or organizational unit can be selected here. All
users of this role (in this organizational unit) will receive an email (if email-
address has been entered for this user).

– Email: A valid email-address can be specified here.

134

6.11. MESSAGE TEMPLATES

– Agent of a process step: Enter a label of a process step which is the id of a step
within the process definition. Depending on the agent (user or role) an email
will be sent.

– Form field: Here a form field of a process form can be entered in WDL-syntax.
The syntax is <formid>.<fieldid> whereby <formid> is the id of the process
form in process definition. More information about WDL-syntax can be found
in section 7.

– Current process agents: All current agents and their substitutes (user or role) of
the active process will receive an email, if this recipient type has been added to
the template.

– Document owner: The owner (= creator) of the document will receive a mes-
sage. For example userA creates a document and userB changes the document,
then userA will receive an email that document has been changed.

• Sender: This field allows to specify an alternative sender. If field remains empty,
the default settings of the configuration will be taken (see @enterprise Configura-
tion/Communication/Mail sender).

• Reply-To: One or more by comma separated email-addresses could be entered here
as alternative reply address, if needed.

• Attach to process: If this checkbox is active and the template is used in context of a
process, an appropriate email object will be created in process-folder Emails. More
information can be found in @enterprise user manual - section Emails. If the tem-
plate is not used in context of a process, this checkbox will be ignored.

• Log message in journal: This checkbox indicates, if outgoing messages should be
stored in Mail journal. Such an entry will be created when message could be sent.
More information concerning the Mail journal is available in section 9.6.3.

• Subject: Here you can define a subject for the message. The subject can

– be a simple text,
– contain place holders (starts with @@@) which are replaced by entries of a

resource bundle (see section 6.8 for more details) or
– be a XPATH expression (e.g. to read values from form fields). More informa-

tion about XPATH expressions are available in application development guide,
e.g. in chapter Office templates. Alternatively take a look into our standard
templates.

• URL to message body: An alternative to a message text a path to a HTML mask can
be defined here. The URL must be relative to classes-directory (of @enterprise or
the application). This possibility allows you to define more complex masks which are
added as HTML bodypart (text/html). It is also possible to define place holders as
mentioned at subject field. If an URL has been entered, no message text in HTML or
Text/Source could be created and also the value of Mime-type will be ignored.

• Message text (HTML or Text/Source): Analog to Subject a message text can be de-
fined here (= bodypart). If the Mime-type value is set to Text, the tab HTML is not
active. If an URL to message body is entered, both message text tabs are inactive.

135

6.11. MESSAGE TEMPLATES

6.11.2 Overview about events and modes of sending

The following table shows an overview about the events and which templates are used:

Definition of template Default tem-
plate (Id)

Agents Sending mode Language

Notification about new process in worklist:

Select template per pro-
cess definition

notification Are set at run-time
in Java code

Depending on configu-
ration parameter Default
action for sending mails

Depending on
user locale

Escalation:

Select template per esca-
lation object

escalation Are set at run-time
in Java code

Depending on configu-
ration parameter Default
action for sending mails

Default locale
of @enterprise

Notification of processes which are followed:

fix processTracker User who created a
tracker object with
function Follow the
process

Depending on configu-
ration parameter Default
action for sending mails

Depending on
user locale

ReportTimer:

In timer field Parameter reportTimer According to def-
inition in template
or defined recipient
in timer field Pa-
rameter

Depending on configu-
ration parameter Default
action for sending mails

Default locale
of @enterprise

System step:

In method call none According to def-
inition in template
or defined in JAVA-
code

Mail queue entry is
created; handled by
MailQueueTimer

Default locale
of @enterprise

Changes of a DMS-document:

Selection of template or
ad-hoc template

documentTracker According to def-
inition in template
or recipient list
of DMS function
Follow document
changes

Mail queue entry is
created; handled by
MailQueueTimer

Default locale
of @enterprise

Table 6.2: Overview about events and modes of sending

136

6.12. TEST CASES

6.12 Test cases

This section describes the definition of test cases which allows to test the operational capa-
bility of a process definition. By activating the toolbar function New a new test case with
test steps can be created for a particular process definition. But before test steps can be
created the test case needs some information:

• Name: Free text.

• Process: Process definition which should be tested. The list is restricted to process
definitions of current application where test case object is created.

• Description: Free text (optionally) to describe the test case.

• Start agent: A user can be selected which is always the start agent of the process. If
no user is selected, the start agent is taken from the process definition.

By activating the Button Ok the main window (Process Debugger) will be displayed which
is divided into several areas (see figure 6.38) which are described in following sections. By
activating the button Close the main window will be closed.

Figure 6.38: Process Debugger (Test case)

Hint: Test cases use GROOVY scripts! For this purpose the execution of GROOVY
scripts must be activated in configuration file avw.conf by setting parameter ep.scripts.enable=true.

137

6.12. TEST CASES

6.12.1 Toolbar

The toolbar contains several functions for executing and adapting a test case:

• Open: By activating the function a new dialog will be opened where an existing
process instance can be loaded into process debugger for further treatment.

• Run: This function allows to start a new process instance (or continue one) and the
defined test steps are processed automatically. If a breakpoint has been defined for a
test step , the execution stops at this step. By hitting the toolbar function Run again
the subsequent steps are processed until the end/next breakpoint.

• Single step: Alternatively to function Run you can process each test step separately
from beginning or from a particular breakpoint.

• Open process graph: By activating this function a new window with the process
graph(s) is opened. Beside the main process also all subprocesses are displayed in
an own tab. If the function Single step is executed and the process graph window is
opened, the current processed step is highlighted.

• Skip breakpoints: If this function is activated, all defined breakpoints will be skipped
when toolbar function Run is executed.

• Archive: Because each test run creates a process instance in database this function
allows to delete it to avoid unnecessary garbage.

• New test run: This function allows to start a new test run independent of the test run
status (still running or finished). After activating this function a confirm dialog will
be displayed which offers the possibility to archive the process instance created by
this test run.

• Edit: This function opens the detail dialog of a test case where Name, Process, De-
scription and Start agent can be defined. The fields of this dialog are described in
section 6.12.

Beneath the toolbar an information area is displayed with following elements:

• Process instance: The id of the process instance used by this test run is displayed
here.

• Status: The state of the process instance.

• current step: The process step which is performed at the moment.

• next action: The next action which will be performed.

6.12.2 Test steps

Test steps can be created/adapted with the appropriate toolbar functions. The toolbar func-
tion Toggle breakpoint allow to define/remove breakpoints for/from the selected test step.
A breakpoint is displayed as ball. If a breakpoint is defined, the execution stops at this step

138

6.12. TEST CASES

Figure 6.39: Test step

(see also toolbar function Run).

A test step consists of following elements (see figure 6.39):

• Step: Select a process step which is processed by the test step. Only process steps of
the defined process definition and the appropriate steps of subprocesses are listed.

• Agent: A user can be selected here which is always the step agent. If no user is
selected, the step agent is taken from the process definition.

• Script: This field can contain a GROOVY script to set form field values. The values
are updated automatically during the test run, i.e. it is not necessary to take care of
the database handling! Form field values are set with following syntax:

form_<formid1_in_procdef>.<field1>=<value1>
form_<formid1_in_procdef>.<field2>=<value2>
form_<formid2_in_procdef>.<field3>=<value3>
...

The form-id is the id of the process form defined in process definition. The value is
either a string (must be quoted) or a number. If the value of date field should be set,
use the given date format of @enterprise configuration, e.g. form_f.datefield="2015-
05-05". For persistent fields (e.g. object select fields) the id of the persistent can be

139

6.12. TEST CASES

used (e.g. user id) or <classname>:<oid> (both values must be quoted). If the persis-
tent is a @enterprise form, either store.get() must be used to get the persistent (and
assigned as value) or <classname>:<oid> can be used.

For manipulating subforms following possibilities are available:

– Add subform: Use the method addSubform() for this purpose. The parameter
<subformid> is the numeric subform-id which has been defined in form tem-
plate (XTHML, XForm) of main form.
Syntax:

form_<formid_in_procdef>.addSubform(<subformid>)

– Set field values of subform: Use following syntax to set field values whereby
<subformid> is the numeric id of the subform defined in form template and
<subformpos> is the position of the subform entry in subform table, beginning
with 0.
Syntax:

form_<formid_in_procdef>.subforms[<subformid>][<subformpos>].<field>=<value>

– Remove subform: Use the method deleteSubform() for this purpose. The pa-
rameter <subformid> is the numeric subform-id which has been defined in form
template (XTHML, XForm) of main form. The parameter <subformpos> is the
position of the subform entry in subform table, beginning with 0.
Syntax:

form_<formid_in_procdef>.deleteSubform(<subformid>,<subformpos>)

• Choices: If choices are used in process definition, this field allows the definition of
the choice-path which should be processed. The choice-node (<choice_node_label>)
and each choice-path (<choice_branch_label>) must contain a label which can be
defined in process editor. The definition of the choice-path which should be processed
must be done in the previous test step with following syntax:

<choice_node_id>=<choice_branch_id>

• Breakpoint: If this checkobx is activated, a breakpoint will be defined for this test
step. If a breakpoint is defined, the execution stops at this step (see also toolbar
function Run).

• Iteration #: If a test case contains several test steps with the same process step, the
appropriate iteration number must be defined here, beginning with 1. This could
be possible, if a loop is used in process definition and the process step should be
processed several times or parfor steps are processed.

• Description: Free text to describe test step.

By activating the button Ok a test step will be added to table Test steps. The button Cancel
discards the changes and closes the dialog Test step.

140

6.12. TEST CASES

6.12.3 Process history and Process details

The process history provides the detail view of one process instance. It shows all process
steps a process has passed through. Process history entries are created by executing the
test steps (by toolbar functions Run or Single step). The areas Process history and Process
details correlate with each other, i.e. by selecting a process history entry the appropriate
process details are displayed. In addition there a some display options which can be acti-
vated in the appropriate toolbar:

• Show finished steps: By activating this function the finished steps are displayed. By
default the process history displays active steps only.

• Show system steps: By activating this function System steps (steps that were auto-
matically handled by the WFMS) are displayed as well.

• Refresh: This function allows to refresh the process history table manually.

141

7 Process Definition

In this chapter we describe the definition of processes. @enterprise provides two ways for
defining processes.

1. graphical definition using the process editor,

2. definition of the process as a script in the Workflow Definition Language (WDL).

Both options have the same expressiveness - you can define a process with the process
editor, save it as a WDL-script, edit the script, load it again, and make additional changes
in the process editor1.
In the next section we describe the script language WDL, afterwards the handling of the
process editor is shown.

7.1 WDL

In the following we describe the syntax and semantics of the language elements of WDL.
The language has resemblance to a structured programming language and allows the defi-
nition of workflow processes. Each WDL script consists of a process header, a declaration
section, and a statement section. Example:

process jobproc()
name "jobproc";
description "simple process";
version 1;
subject f.subj;
forms f Jobform;
begin

<label_order> all order(f);
loop

f.recipient a_task(f);
exit when xpath:"$form_f/finished = ’true’";

end;
label_order:user inform(f);

end;
1Graphical layout and annotations are not preserved across notations.

142

7.1. WDL

The process definition starts with the keyword process, followed by the process id and a list
of arguments. The declaration section contains a set of keyword-value pairs, for example
version 1;.
The statement section begins with the keyword begin and ends with end. In between the
structure of the workflow, containing task calls, subprocesses, system steps and control
structures is described.

Hint: Defined process escalations are not available in WDL!

7.1.1 Lexical Conventions

In WDL the following lexical rules apply:

• Ids

Ids are identifiers for tasks, roles, users, and similar entities. The following conven-
tions apply:

Ids start with a letter or $ or / or \. After the first character more of these characters
plus digits can follow. The length of an id must not exceed 80 characters.

• Strings

Strings are character sequences enclosed in double quotes. A double quote within a
string is denoted as two consecutive double quotes.

Example: "This is a string." "This is a string with two ""double quotes""."

• Comments

All characters between "/*" and "*/" are ignored. Comments can span lines. 2

• Case-Sensitivity

WDL is case-sensitive, this means "If" is not equal to "if". All keywords use lower
case characters.

• Keywords

The WDL keywords are listed in table 7.1. A keyword enclosed in single quotes is
no longer interpreted as a keyword, but as an id.

7.1.2 Process header

Syntax:

processdef =
"process" id "(" [formdecl{ "," formdecl}] ")"
{ pdeclaration ";" }
"begin" [nodename]

statseq
"end" [nodename] .
2Comments are ignored when loading the WDL script, therefore they are not visible in the system.

143

7.1. WDL

abort adhocTasks and andpar application
autofinish baseform batch begin branch
call choice corr correlation current_tx
days description do else elsif
end exception exit for forms
gobackonerror goto hours if in
instanceid invoke loop maxtime minutes
name new_tx newthread none not
null or orpar out owner
parallel priority process raiseEvent receive
registerForEvent repeat reply skipable start
startfunction startnow subject success sync
system then unregister until version
wait when while

Table 7.1: Keywords in WDL

Description:

• Id: id (internal name) of the process.

• Parameter list: Forms which are parameters of the process. These are used when the
described process is called as subprocess from another process. The forms are passed
by reference, this means the form data are not copied.

• pdeclaration: declarations, see below.

• statseq: sequence of statements.

7.1.3 Declaration part

In the declaration part some general information about the process is specified.
Syntax:

pdeclaration =
"name" string

| "description" string
| "version" number
| "subject" (formfield | expressionstring)
| "maxtime" number ("days" | "hours" | "minutes")
| "forms" formdecl { "," formdecl}
| "application" application
| "instanceid" string
| "priority" number
| "adhocTasks" adhoctask { "," adhoctask }

.

Description of the declarations:

144

7.1. WDL

• name: Name of the process, is displayed in the end user interface.

• description: free text

• version: Integer, declares the version of the process

• subject: specifies the content of the subject column in the worklist. Can be a sin-
gle formfield designation (formid.fieldid), or an expression referencing several form-
fields. More information can be found in section 6.5.

• maxtime: intended maximum running time of the process, specified in days, hours,
or minutes.

• forms: declaration of forms as process local data containers. The definition of a local
form is:

formid formtype ["baseform" baseformid] ["formname"]

– formid: is the id of the local form in this process

– formtype: is the id of a formtype defined in the system

– formname: is the local display name of a form in this process (optional)

– baseform: if the declared form is a view-form, the base form must be specified
here

Example: forms rg bill, ls item_list, rgsum shortbill baseform rg;

• application: id of the application the process belongs to.

• instanceid: Id which identifies the started process instance uniquely. It is also possi-
ble to enter a pattern which allows to specify a numbering scheme. More information
can be found in section 6.5.

• priority: The priority of the process.

• adhocTasks: Can be used to declare additional tasks which may be instantiated
programmatically during the execution of the process. They provide a means to define
form and field visibilities. Syntactically, they are task statements (see below) without
a declared agent list, since the agents will be specified at run time. Each adhoctask is
defined as:

["<" labelid ">"] taskid "(" [formlist] ")" [nodename]

All declarations, except the name, version and application are optional.

145

7.1. WDL

7.1.4 Basic Statements

The statement section is the central part of the process specification, it is enclosed between
the keywords begin and end. It contains at least one statement. Statements are terminated
with a semicolon.
Syntax:

statseq = { ["<" labelid ">"] statement [nodename] ";" }.

statement =
(

batchstmt
| branchstmt
| choice
| exitstmt
| gotostmt
| ifstmt
| invokestmt
| loopstmt
| par
| parforstmt
| raiseEvent
| receivestmt
| registerForEvent
| repeatstmt
| replystmt
| subproccall
| sync
| systemstmt
| taskstmt
| unregister
| whilestmt
| waitstmt)

.

labelid: An id of this step within the process definition. Must be unique and can be used as
exact reference to this step.
nodename: A string used as the display name for the statement (and the corresponding node
in the process editor). Does not need to be unique.
e.g. <ordertask> all order(form) "place the order";
In the following we describe the different statements:

Manual Tasks Specifications

Manual tasks are denoted as:
Syntax:

146

7.1. WDL

taskstmt =
("none" | agentlist) taskid "(" [formlist] ")" ["skipable"].

agentlist = agent { , agent }.

Description:
agentlist: There are several possibilities to define the agents of a task:

• The agent can be a user, specified as the id of an user. Should be used only in spe-
cial cases, because the process definition should usually stay independent of specific
users.

• The agent can be a role, the id of the role is specified. Each user who has the role is
a potential agent of the task. The task will appear in the role-worklist of these users.

• Additional to the role an organizational unit can be specified. The notation is:

org_unitid "!" roleid. Example: marketing!sek.

The organizational unit of the current task is changed to the given OU. The organiza-
tional unit of the overall process does not change.

• Agent of a previous step: The agent of this task is the last agent of another task. The
other task is referenced via its labelid according to the syntax labelid ":user". In this
case the organizational unit of the previous step is taken!

Example:

ordertask:user sek task1();

• Agent from a form field: The agent is taken at run-time from the content of a field
in a process form. The content is either a role id, a user id or a role id together with
an organizational unit id.

• Empty agent, Syntax: none.

At run-time the agent must be set either programmatically or manually by the agent
of the previous step.

• Java-Method: a Java Method (e.g. com.acme.Action.setAgent() which returns
either one of

– a role id

– a user id

– a combination of id of organizational unit and id of role in the form of
org_unitid "!" roleid

– a user object

– a role object

– an object of type com.groiss.ds.Pair, where Pair.first will be used to set the
agent of the stepinstance, and Pair.second will be used to set the "step agent"
of the stepinstance. When using this kind of agent specification,

147

7.1. WDL

* Pair.first should designate a user (com.groiss.org.User) and

* Pair.second should designate a role (com.groiss.org.Role) or a combina-
tion of orgunit (com.groiss.org.OrgUnit) and role.

When using this form the task will appear in the worklist of the designated user,
and if this user "gives back" the task, it will appear in the role worklist of the
designated role.

• Sequence of agents: Can be formed by a comma separated list of agent definitions
in the variants stated above. The task is routed to the agents of the list in a sequential
manner3.

Note that the agent of the process definition can also be overwritten at run-time by a pre-
processing method of the task.
taskid: The id of a task defined in the application. If you specify an id which is not the
id of an already defined task, you can use the option "Generate Tasks" when loading the
process. The task is then generated with the id from the process definition (and the same
name, all other fields empty).
formlist: Comma separated list of formids. Forms, which have been defined either in the
argument list of the process or were declared as local forms.4

skipable: If a taskstmt has the empty agent ("none") and is marked as skipable and no
agent is set at runtime, the corresponding task is simply omitted. The task would be instan-
tiated only if an agent has been set via a preprocesing method.

Subprocess Call:

A process can be called as part of the execution of another process. This allows to design
processes in a reusable and modular manner or to build layers of abstraction to provide a
proper level of detail.
Syntax:

subproccall =
"call" subprocid "(" [formlist] ")".

The call statement instantiates one process of the definition denoted by subprocid as part of
the current process execution. Execution is synchronous, the called process will get control
and when it ends, the control recommences in the calling process after the call statement.
Forms can be passed along the call. The formlist is a comma separated list of form ids.
The forms are passed by reference, no data is copied. The formids of the call refer to form
variables in the calling process (actual parameters) and must match the forms declared in
the parameter list of the called process.

3Preprocessing is executed once before the first agent, postconditions are executed once after the last agent
4At run-time, the icons for those forms will appear in the worklist for instances of this task. The form

content is visible and editable in this task. See section 6.2 for a description how to restrict the rights to view
and edit forms in a task.

148

7.1. WDL

System Step

A system step is used to execute a Java method without any manual intervention. The name
of the method is specified after the keyword system and followed by a comma separated
list of string literals which is enclosed in parentheses. Since such methods are executed
synchronous, they should be rather short in terms of execution time.
A system step can also accept a list of Java methods. Such methods are to be enclosed
between begin and end, ant to be separated with ; . The methods are executes sequentially.
Syntax:

systemstmt =
"system" methodname "(" [string { "," string }] ")"
|
"system" "begin"

methodname "(" [string { "," string }] ")"
{ ";" methodname "(" [string { "," string }] ")"}

"end"
.

Note, that you must specify the full-qualified method names including the package names.
Example: system com.groiss.demo.Step.exec("p1","p2");

Hint: Useful standard methods can be found in class com.groiss.wf.SystemAction!

Batch Steps

Like system steps, batch steps are also executed automatically by the engine. The main
difference is that batch steps are called asynchronously and can have an arbitrary long ex-
ecution time. A handler class must be specified to be able to react to events during this
asynchronous execution. Detailed information concerning batch jobs can be found in the
Application Programming Guide and in the API-documentation.
Syntax:

batchstmt =
"batch" batchAdapterClassName "(" [paramstring] ")

{ "startnow" | "newthread" | "retrystart" |
"autofinish" | "pollfinish" | "gobackonerror" }.

Note, that you must specify the full-qualified class name, including the package name.
Example: batch com.groiss.demo.DemoBatchAdapter("param").

Wait Step

A wait step can be used to halt the process execution for a time duration or until a certain
point in time. The wait step is finished automatically by timer Suspension, i.e. the wait step
is finished at the earliest when the time period is exceeded depending on the next execution
time of timer Suspension. Another possibility is to finish the step manually via process
history. The duration or point in time is specified after the keyword wait. It can be given in
the form of a method, as a form field or as a number combined with a time unit:

149

7.1. WDL

Syntax:

waitstmt =
"wait"
(methodname "(" [string { "," string }] ")"

| formfield
| number ("workdays" | "days" | "hours" | "minutes")

)

.

The methods and formfields can return either java.util.Date objects which are interpreted as
absolute point in time, or integers which are minutes to wait. No real waiting occurs, when
the specified dates are in the past or the specified integers are not positive.
Additionally, Groovy and XPath-expressions can be used to specify the waiting period or
time point. For more information about Groovy and XPath take a look into Application
Development Guide.
Note, that you must specify the full-qualified method name including the package name.
Example: wait com.groiss.demo.Step.calcDate("p1","p2");

7.1.5 Control Structures

The flow of control in a process is defined using the control structures of WDL. All the usual
control structures like sequence, alternative execution and repeated execution are provided
along with the crucial ability to specify parallel execution.

Sequence

Sequential execution of statements is specified by simply listing the statements one after
another.

Example:
Execute first the task insert_order() from role sec. After this activity is finished, the
activity survey should be performed by a member of the role clerk. After this, in the
organizational unit production the task manufacture should be performed by users in the
role worker.

...
sec insert_order(order);
clerk survey(order);
production!worker manufacture(order);
...

Conditions

Conditions are used in WDL in the following control structures:

• Alternatives: if, choice

150

7.1. WDL

• Loops: while, repeat, loops - exit when

• Postconditions in tasks

Comparisons of form values and literals and boolean Java methods can be combined in
the usual manner via logical operators to form complex conditions. Additionally, WDL-
conditions can be defined in Groovy and via XPath-Conditions. For more information about
Groovy and XPath-Conditions take a look into Application Development Guide.
Syntax:

cond = expr1 { "or" expr1 } .

expr1 = expr2 { "and" expr2 }.

expr2 = ["not"] expr3.

expr3 =
"(" cond ")"

| methodcall
| booleanformfield
| formfield relop (number | string | formfield | "null").

relop = ("=" | "<>" | "<=" | ">=" | "<" | ">").

formfield = formid "." fieldid.

Examples:

• f.recipient = null

• f.ordervalue > 100000

• com.groiss.Check.isAvailable("f.amount") and f.class > 3

• (f.recipient <> null or f.value > 10000) and f.class = 4

• groovy: form_f.subject == "Book"

• xpath:$form_f/subform[@id=’1’]/form/status = ’ok’

Java methods should have 0 to n literal string parameters and a return value of type boolean.
See the @enterprise Programming Guide for details on writing such Java methods.

If: system evaluated alternatives

if and elsif constructs allow the conditional execution of process parts. Syntax:

ifstmt =
"if" cond
"then" [nodename] statseq

151

7.1. WDL

{ "elsif" cond "then" [nodename] statseq }
["else" statseq]

"end".

Description:

• cond: A condition as defined above.

• statseq: a statement or a sequence of statements.

Example:

if order.amount <= 2000 then "small orders"
clerk write_confirmation()

elsif order.amount <= 5000 and order.class = 4 then "medium orders"
manager approve()

elsif ...
...

else
...

end

Choice: mixed automatic and manually evaluated alternatives

Choice statements allow the user to choose the process path from a predetermined but run
time dependent set of available paths.
Syntax:

choice =
"choice" [nodename]

{ branchname ["," cond] ":" statseq }
"end".

Description:
Each path has a name (denoted with branchname), where an arbitrary string can be given,
and an optional condition. The engine first checks the conditions of all potential branches,
only the branches where no condition is specified or the condition evaluates to true are
presented to the user for the final selection. When no conditions are given, the selection is
done purely manual.

Example:

choice "manual selection"
"order now", f.sum < 5000:

sec order(f);
"check again":

clerk check(f);
"archive":

system Archive.insert();
end;

152

7.1. WDL

While: repeated execution

Syntax:

whilestmt =
"while" cond "do" [nodename]

statseq
"end"

.

Description:
The statements in the loop body (between "do" and "end") are executed over and over again,
as long as the condition evaluates to true. Since the condition is evaluated before the body
of the loop, the body may never be executed zero or more times.
Example:

while f.proved = 0 do
sec correct(f);

end;

Repeat: accepting repeated execution

Syntax:

repeatstmt =
"repeat" [nodename]

statseq
"until" cond.

Description:
The statement sequence in the body is executed repeatedly until the condition evaluates to
true. Since the condition is at the end of the statement block the statements are executed at
least once.
Example:

repeat
clerk insert_data(order);
call check_data(order);

until order.data_ok = 1;

Loop - exit when : generalized repeated execution

Syntax:

loopstmt =
"loop" [nodename]

[statseq1]
"exit" "when" cond;
[statseq2]

"end".

153

7.1. WDL

Description:
The statements in statseq1 are executed. The condition of the "exit when" is evaluated. If
this result of the evaluation is false, the statements of statseq2 are executed and the loop is
executed again. If the evaluation result is true, the loop terminates without further execution
of statseq2.

Andpar and Orpar: parallel execution

Parallel execution of process paths can significantly reduce the overall processing time. The
two control structures andpar and orpar allow the definition of a predetermined number of
parallel execution paths.
Syntax:

par =
("andpar" | "orpar") [nodename]

statseq
{ "|" statseq }

"end" ["do" parmethod].

Description: The parallel branches are separated by the bar "|". When the par is reached,
all parallel branches are instantiated simultaneously. Continuation depends on the kind of
parallelism:

• andpar: Process is continued, when all parallel branches are finished.

• orpar: Process is continued, when one parallel branch is finished.

The parmethod is described down below.
Example for andpar:
For the handling of a complicated business case the consultation of three assessors is nec-
essary. After they make their assessment, a final judgment can be performed.

...
andpar

assessor1 make_assessment(s_form1);
| assessor2 make_assessment(s_form2);
| assessor3 make_assessment(s_form3);

end
s_ou!manager judge(s_form1, s_form2, s_form3)

...

Example for orpar:
When calculating the route for a business trip two route planners are consulted. However,
the result of one of them is sufficient for going on in the process:

...
clerk insert_tripdates(flyform);
orpar

clerk check_routeplanner1(flyform);

154

7.1. WDL

| clerk check_routeplanner2(driveform);
end
...

The (paramethod) can be specified at the end of an andpar and is used to implement gen-
eralized forms of parallelism.
When a fixed number of branches (n of m) have to be finished, the method

com.groiss.wf.SystemAction.join(n,action)

can be used. Both parameters are strings:

• n: the number branches that must be finished, in order for the whole par construct to
be finished

• action: contains the value none or cancel. Active branches will be aborted by setting
the value cancel.

Example for an andpar with n of m finished branches:
For the handling of a simpler business case, the consultation of two assessments out of three
are necessary:

...
andpar

assessor1 make_assessment(s_form1);
| assessor2 make_assessment(s_form2);
| assessor3 make_assessment(s_form3);

end do com.groiss.wf.SystemAction.join("2","cancel");
...

If overall completion of parallelism can not be defined by completion of a fixed number of
branches, but is rather computed at run time, an arbitrary Java method can be called. More
about that can be found in the Application Development Guide.

Parallel For: runtime determined number of parallel branches

The parallel for statement can be used to split the process execution into a number of
identical parallel paths where the number is determined at runtime.
Syntax:

parforstmt =
"parallel" "for" (localformid "in" formid"."subformtableid ["when" cond]

| iteratorclass)
"do" [nodename]

statseq
"end" ["do" parmethod].

With the help of this control sequence it is possible to either generate a parallel branch
for each row of one of the subform tables of a main table or to generate parallel branches
according to an iterator.
Description:

155

7.1. WDL

• localformid: new local variable referring to the corresponding sub form within the
parallel branch.

• formid: id of the mainform.

• subformtableid: id of the sub form table as defined in the tablefield for the formtype
of the mainform.

• cond: Optional condition, if parfor branch should be started or not (true/false return
value).

• iteratorclass: name of a class which implements the interface com.groiss.wf.ParForIterator

The end node of a parallel for can take an optional parmethod in order to implement
specific end conditions: When a fixed number of branches (n of m) have to be finished, the
method

com.groiss.wf.SystemAction.parforJoin(n,action)

can be used. Both parameters are strings:

• n: the number branches that must be finished, in order for the whole par construct to
be finished

• action: contains the value none or cancel. Active branches will be aborted by setting
the value cancel.

If overall completion of parallelism can not be defined by completion of a fixed number
of branches, an arbitrary Java method can be called. More about that along with exam-
ples of parfor constructs with subforms and with iterators can be found in the Application
Development Guide.

Branch Statement:

The branch statement allows one to split the process execution into a main path and into an
ancillary flow (the branch).
Syntax:

branchstmt =
"branch" [nodename]

statseq
"end".

Statements in the branch execute in parallel to the statements in the main flow. Termination
of either one does not terminate the other one, so branches may outlive the main execution
path of the process.
Example:

begin
..
clerk enter(f);
supervisor check(f);

156

7.1. WDL

branch "hold in evidence"
recordkeeper inform(f);
...

end;
worker build(f);
...

end

Goto Statement:

Gotos allow to deviate from the structured flow of control and to jump to other parts of the
process specification.
Syntax:

gotostmt =
"goto" labelid.

The flow of control resumes at the statement denoted by the labelid.
Example:

<entry> clerk enter(f);
supervisor check(f);
if (f.quality <> "OK") then /* denotes exceptional case */

goto entry;
end;
worker build(f);

In this script the goto statement causes that the tasks enter and check to be repeated when
the quality is not acceptable. Note that a repeat until would usually be a better formula-
tion of the flow, but the designer might have chosen the goto explicitly to distinguish the
exceptional flow from the usual execution sequence.
When used excessively or with poor judgment, gotos can severely harm the readability of
a process description and make it almost unmaintainable. If at all, use them with care and
only in well founded cases.

7.1.6 Event Mechanism

The event mechanism allows to signal process progress to (other) process instances which
expressed interest in such an event. On arrival of such an event a handler can be called or
the execution of a stalled process can be continued. Detailed information about events can
be found in the Application Development Guide.
Syntax:

An event can be raised with:

raiseEvent =
"raiseEvent" "(" eventname "," "current_tx" ["," form] ")".

Events can be waited for with:

157

7.1. WDL

sync =
"sync" "(" eventname ["," eventhandler ["," form]] ")".

Registration of a handler for an event is done via::

registerForEvent =
"registerForEvent" "(" eventname ["," eventhandler ["," form]] ")".

Handlers can be unregistered with:

unregister =
"unregister" "(" eventname ")".

Description:

• eventname: the name of the event.

• current_tx: the event handler should be carried out in the same transaction (no other
value possible).

• form: either a form or a form field which serves as the context object; alternatively the
keyword process can be used which designates the parent node of the current activity
instance as the context objext.

• eventhandler: a Java class implementing the interface com.groiss.event.IEventHandler.
If none is given, com.groiss.event.EventHandler is used.

7.1.7 Web services

The WDL provides elements to incorporate Web Services into process descriptions in a
straightforward manner. Web services can be called via invoke, process execution can be
stalled with receive until a web service is called by an external entity, or a reply can be
send as an answer to a webservice invocation issued earlier.
Web services nodes must reference the service operation to be used and provide a mapping
between the message elements and the process data containers (the forms). Web services
and operations are defined via the admin interface in @enterprise manually or on the basis
of a WSDL file.
Details can be found in the Application Development Guide.
Syntax:

Incoming Message (RECEIVE):

receivestmt =
"receive" ["start" "process"] operationspec "(" [incorrparams] ")" ["end"].

Reply Message (REPLY):

replystmt =
"reply" operationspec "(" [outparams] ")".

Outgoing Message (INVOKE):

158

7.1. WDL

invokestmt =
"invoke" [address "."] operationspec "(" [inoutparams] ")"

["success" statseq]
["exception" statseq]

["end"].

Common statement-parts, which are used by the webservice-nodes are:

operationspec =
serviceid "." operationid.

incorrparams =
incorrparam {"," incorrparam}.

incorrparam =
inparam | corrparam.

corrparam =
("corr" | "correlation") xpath "=" messagecomp.

inoutparams =
inoutparam {"," inoutparam}.

inoutparam =
inparam | outparam.

inparam =
["in"] xpath "=" messagecomp.

outparams =
{"," outparam}.

outparam =
["out"] messagecomp "=" xpath.

Short description of the syntactical elements:

• serviceid: The ID of the web service.

• operationid: The operation-ID of the web service.

• address: The URL of the web service.

• messagecomp: The ID of the (IN/OUT)-parameter of the message.

• xpath XPath expression denoting the form element to map.

• statseq: Sequence of statements.

159

7.1. WDL

Example for webservice nodes:

...
invoke mywebservice.SendMessage(

MessageTemplate="form_ticket/messageTemplate",
MessageType="$form_ticket/messageType", enterpriseid="$pi/id",
xeoxid="$form_ticket/xeoxId", reporter="$form_ticket/reporter",
’subject’="$form_ticket/subject", """0"""=SendMessageResult)

exception
administrator inform(ticket);

end;
...
receive kserver.sendMessage(

corr "$pi/id"=enterpriseId,
"$form_ticket/messageTemplate"=messageTemplate,
"$form_ticket/messageType"=messageType,
"$form_ticket/enterpriseId"=enterpriseId,
"$form_ticket/xeoxId"=xeoxId,
"$form_ticket/reporter"=reporter,
"$form_ticket/subject"=’subject’,
"$form_ticket/text"=text,
"$form_ticket/analyst"=analyst

) waitforincomingmessage;
...
reply kserver.sendMessage(’out’="""0""");
...

160

7.2. THE PROCESS EDITOR

7.2 The process editor

The @enterprise process editor provides you an easy way to define workflows. The pro-
cess editor supports the notations BPMN (Business Process Modeling Notation - see figure
7.1).

To start the process editor, go to the system administration, select the application where you
want to define the process and click on the link "Processes":

• Click on the toolbar icon "New process (Editor)" to create a new process with the
editor. The editor is opened in BPM-Notation.

• If you want to edit a process, select it in the list and click "Edit in editor". The process
editor will start and show the selected process definition.

7.2.1 The process editor window

The main window of the process editor has the following sections:

• Title bar: In the title bar you see the name of the process you edit.

• Menu bar: The menu bar contains the following menus:

– Process

– Edit

– View

– Help

– Symbol bar

• Drawing area: In this area you see the graphical workflow definition.

• Function list: The function list shows the function buttons for editing the process
definition.

Hint: To avoid problems with popup-blocker, we recommend to turn it off!

7.2.2 Using the process editor

Before describing the various elements and functions of the editor in detail we provide an
overview on how editing of a process is done using this editor.

Adding elements

All elements you can add to your process are listed in the function list to the left of the
drawing area. To provide a better overview those elements are grouped in categories, e.g.
category control structures for modeling conditional branches or loops.

To add an element perform the following steps:

161

7.2. THE PROCESS EDITOR

Figure 7.1: Process Editor

• Click on the required element in the function list to switch to insert mode.

• Move the mouse into the drawing area. This will change the mouse cursor to indicate
that the editor is now in insert mode (see Fig. 7.2).

• A new element can only be added on a line connecting two existing elements. There-
fore move the mouse over the desired line (the line will then be highlighted and the
mouse cursors will change again) and click on the position at which you want to insert
the selected element(see Fig. 7.3).

Hint: Annotations are the only elements that are not added on lines but by clicking
on any empty space in the drawing area. You can also attach annotations to elements

162

7.2. THE PROCESS EDITOR

Figure 7.2: Insert mode for Task

Figure 7.3: Adding a Task

by selecting that element and activating menu item Annotate. This will add an anno-
tation connected to that element by a dashed line.

• If adding is prohibited, which is only the case for a few specific lines, this will also
be displayed by the mouse cursor – and the line will not be highlighted is such a case
(see Fig. 7.4).

Hint: you can cancel the insert mode by pressing the ESC key on your keyboard or
by selecting option Selection in the function list.

The process editor ensures that each insert action will lead to a valid process model. So
when adding an If construct for example not only one element will be added but all ele-
ments needed for this construct, i.e. the start and end elements and 2 connecting lines, one
for the true and one for the false path of that condition (see Fig. 7.5).

This is a major distinctive feature to many other process modeling tools which do not sup-
port such a structured approach. A full list and description of all available elements in the
function list can be found in chapter 7.2.8.

Hint: constructs like Parallelism and Choice may have many paths but only two paths
will be added initially. If you want to add more paths select the start node of that construct
and activate menu item Add edge.

163

7.2. THE PROCESS EDITOR

Figure 7.4: Insert not allowed

Figure 7.5: Inserted If construct

Edit elements

Elements have properties like e.g. a name. You can edit those properties in different ways:

• Double-click the element

• Select the element, open its context menu by clicking the right mouse button and
activate menu item Activity properties

• Select the element, open menu Edit in the menu bar and activate menu item Activity
properties

Each of these actions opens a details window in which you can edit the properties available
for the current element. More details on that can be found in chapter 7.2.9 and following.

For elements like e.g. Task you may also change the size of that element. To do so select
the element. Small squares will now be displayed at the borders of the element. Those
can be used to change the width (squares at the vertical borders), the height (squares at the
horizontal borders) or both at once (squares at the corners). Move the mouse over such a
square and a changed mouse cursor will indicate that you can adjust that border by moving
the mouse with the left mouse button pressed (see Fig. 7.6).

164

7.2. THE PROCESS EDITOR

Figure 7.6: Selection frame with resizing squares

Hint: if no such squares are visible the size of the selected element cannot be changed.
This is the case for all elements represented by a circle or diamond.

Move elements

You can change the position of existing elements via Drag & Drop. Therefore select the
element and move the mouse with left mouse button pressed. When you let loose the mouse
button the element will be placed at the current mouse position(see Fig. 7.7).

Figure 7.7: Moving element

You can move multiple elements at once by extending the selection. To do so click on ad-
ditional elements with CTRL key pressed. Alternatively you can click on an empty space in
the drawing area and move the mouse with left mouse button pressed to mark the selection
area.

Connecting lines can also be moved, e.g. to avoid lines crossing other lines or elements.
Just select a line by clicking on it and you will see small squares. All squares except the
two at the start and the end of the line can be used to move the line. Therefore move the
mouse over such a square and as soon as the mouse cursor changes you can adjust the
line by moving the mouse with left mouse button pressed. Vertical lines may be moved in
horizontal direction and horizontal lines in vertical direction (see Figures 7.8 and 7.9).

Hint: You can undo your manual line modifications at any time by activating menu item
Route automatically which is also available in the context menu of a line.

165

7.2. THE PROCESS EDITOR

Figure 7.8: Moving vertical line

Figure 7.9: Moving horizontal line

Delete elements

To delete elements just select them and either press the DEL key on your keyboard or acti-
vate menu item Delete.

Enlarge drawing area

You can enlarge the drawing area if more space is needed. To do so just move an arbitrary
element via Drag & Drop to that border of the area which shall be extended.

Hint: this operation may be a bit stubborn sometimes. In this case please move the mouse
cursor inside the border with small movements from top to bottom or left to right – that
should trigger the extension in the desired direction.

Data modeling

Every process gathers and computes data, if it is data used by the users or data to control
the process flow. In @enterprise such data are modelled in a structured way using forms –
see chapter 6.4. You can attach those form to your processes as follows:

• Activate menu item Properties in menu Process

• In the displayed property window select tab Forms

• Click on button New (plus icon) and fill in the fields as described in chapter 7.2.4
section Forms, then click OK

• Now click on Save and close in the property window

166

7.2. THE PROCESS EDITOR

Hint: Save and Close will only apply the changes into the editor but the process itself will
not be saved already – this will only be done via function Save in the editors menu.

To enable the user to see and edit those forms you need to assign them to the interactive
steps – the Tasks. Therefore select the required task in your process model and activate
menu item Activity properties. In the displayed property window you can assign all the
forms attached to the current process to that task. Additionally you can specify the visibility
modes (invisible/read-only/read–write) for each field in those forms in the context of this
task. More details about the property window and its fields and functions can be found in
chapter 7.2.10.

7.2.3 The Functions of the menu bar

The Process menu

• New: With this function you discard the current contents of the process editor and
start editing a new process.

• Open: With this function you can open existing processes for modification.

• Save: You save the changes. This means the process is stored in the server’s database.
The system informs you, whether the operation was successful. If steps are not speci-
fied sufficiently (e.g. no task is assigned to an activity), the process will be saved and
set on inactive. Then the process has to be enabled manually, if you want to use it
(see chapter 6.5).

Note: Saving a process is possible when at least the name and the id has been set (see
function Properties).

• Save as ...: Save the current process under a new name. A dialog window for speci-
fying name and id will appear (Fig. 7.10).

Figure 7.10: Function "Save as"

• Properties: This function opens the process-properties (see section 7.2.4).

• Tasks: With the help of the task mask you are able to specify those task which can
be assigned to a recipient of a task while you are changing the agent of a task.

167

7.2. THE PROCESS EDITOR

• Escalations: The reaction to process timeouts is defined here (see section 7.2.6).

• Process Plans: Managing of process plans for this process (see section 7.2.7).

• Print ...: Print the process with the format properties defined in the "Settings" dialog.

• Download graphic: This function allows to download a picture of the process.

• Exit: With this function you leave the process editor. If you have unsaved changes, a
dialog appears which allows discarding the changes or saving them.

The Edit menu

• Undo: With this function the last n steps can be undone in the drawing area.

• Redo: This function is analog to Undo.

• Cut: With this function it is possible to cut elements from a place in the process and
paste it to an other place in the process. Click on the elements first and then select
this function. If you cut elements, you can paste it one time only. All settings will be
kept for the cut elements.

• Copy: With this function it is possible to copy elements from a place in the process
and paste it to an other place in the process. Click on the elements first and then select
this function. If you copy elements, you can paste it more than one time, but not all
settings will be kept (e.g. visibility of forms).

• Paste: This function pastes previous cut or copied elements at the selected place.
Select this function first and then click on the desired place to insert the element. The
element in the clipboard is displayed beside the mouse cursor until you have pasted
the element, selected another function or you have pressed the key Escape.

• Delete: This functions allows to delete individual elements. If a node (e.g. Loop)
contains further elements, a popup windows appears and asks you, if you really want
to delete. Click on the element first and then select this function.

• Activity properties: This function opens the detail-view of this task, where you can
add actors and forms.

• Eskalationen: This function allows to define escalations for Task-, Synchronize- or
Batch-steps which should be fired. More information is available in sections 6.5.9
and 7.2.6.

• Task properties: This function opens the task-properties for this activity (see chapter
6.2) or in case of subprocess a new process editor window with the selected process.

• Plan entry: If at least one process plan has been defined, this function opens the
dialog Plan entry for this process step (see section 7.2.7). More details concerning
process plans are available in section 7.2.7.

• Annotate: This function allows to annotate each node in process editor (node must
be selected first). The annotation will be linked with the selected node. Perform a
double-click on the textfield to add a text and then confirm with Return.

168

7.2. THE PROCESS EDITOR

• Add/Remove exception handling: This function is available for node Outgoing
Message (INVOKE) only. It allows to add (and remove) an exception flow to this
node which will be executed, if the invoke-function fails (e.g. server does not reply).

• Additional edge: With this function additional edges can be added to Choice, AND-
Parallelism and OR-Parallelism. Select one of this object first and the choose this
menu point.

• Select all: All elements in the drawing area are selected by this function.

• Invert selections This function selects all elements in the drawing area, which are
not selected before.

The View menu

• Zoom: This function contains following 3 subfunctions:

1. Normal viewing: The drawing area is shown in the size, which is given at the
start of the process-editor.

2. Zoom in: The shown area will be enlarged.

3. Zoom out: The shown area will be reduced.

• Align: With this function the elements of the drawing area can be aligned.

• Show end node: This function marks the end-node of the selected element.

• Route automatically: You have the possibility to remove edges: Select the edge and
move it in the desired direction. For automatically routing of the edge, select the edge
and then this function.

• Settings: With this function you can set following properties:

– Snap to grid: The elements and edges will be aligned by the grid.

– Show grid: Activating this checkbox results in displaying a grid in drawing
area.

– Show page borders: This function shows margins in the drawing area.

– Page format: Here a format can be selected which is relevant for printing
function.

– Printer zoom: You can define the print-zoom of the process here.

– Hide control edges: This function allows to hide light grey dotted edges in
process editor, e.g. the control edge of a GOTO node.

– Hide goto-help: If this function is activated, the help-window will not appear
when you insert a goto.

– Hide welcome message: If this function is activated, the welcome message
will not appear when editor is started.

The Help menu

• Help: The help–page of the process editor is shown (see section 2).

169

7.2. THE PROCESS EDITOR

The symbol bar

You can reach the most used functions in a faster way than using the previous described
menus:

• New: see section 7.2.3

• Open: see section 7.2.3

• Save: see section 7.2.3

• Undo: see section 7.2.3

• Redo: see section 7.2.3

• Cut: see section 7.2.3

• Copy: see section 7.2.3

• Paste: see section 7.2.3

• Delete: see section 7.2.3

• Normal viewing: see section 7.2.3

• Zoom in: see section 7.2.3

• Zoom out: see section 7.2.3

• Show activity properties on node double-click: If this function is activated and you
make a double-click on a node, the Activity properties will be displayed.

• Show task properties on node double-click: If this function is activated and you
make a double-click on a node, the Task properties will be displayed or in case of
subprocess a new process editor window with the selected process.

• Show plan entry on node double-click: If at least one process plan has been defined,
this function is activated and a double-click on a node will be performed, the dialog
Plan entry for this process step will be opened (see section 7.2.7). More details
concerning process plans are available in section 7.2.7.

The context menu

The context menu is a fast and comfortable form of handling in the drawing area. By
clicking the right mouse button on an element in the drawing area the menu will be opened.
The context menu includes some components of the menu bar:

• Cut: see section 7.2.3

• Copy: see section 7.2.3

• Delete: see section 7.2.3

• Activity properties: see section 7.2.3

170

7.2. THE PROCESS EDITOR

• Escalations: see section 7.2.3

• Task properties: see section 7.2.3

• Plan entry: see section 7.2.3

• Annotate: see section 7.2.3

• Add/Remove exception handling: see section 7.2.3

• Additional edge: see section 7.2.3

Hint: If you want to work faster with the process editor, you can use Shortcuts. The
particular shortcut of a function is displayed beside the function.

7.2.4 Process properties

On the process–properties mask you have the possibility to set properties relating to the
process. The tabs are described here:

• Common: Analog to 6.5, but the field Apply changes at is not available.

• Forms: Here you can set the forms for the process. With a click on the button Add a
new window appears (see figure 7.11), where you can select a form type and define
some information about the usage of the form in the process. The window Add Form
contains following information:

– Id: You have to give the form a local id in the process.

– Name: Here you can enter a name for the form (optional).

– Type: Select one of the listed types for the process form. You can add additional
forms by clicking on the button New beside the list (see section 6.4).

– Mode: Here you can specify the purpose of the adding form.
Local: An instance of the form is created when the process is started (a process
instance is created). This is the default.
InOut: The form is handed over from another process. This means that the
currently edited process is used as subprocess.

– Baseform for view: Select here the baseform for the view. The type of the form
currently defined and the base form must be compatible, i.e. the form must be a
view to the baseform.

The buttons Ok and Cancel work in the usual manner.
Use the button Remove to remove a form from the process. Use the button Edit
to change the Mode or Id of the process form. If you change an existing form id,
the id’s will be replaced automatically in objects like activity. In structures like If
where a condition field exists, the id must be changed manually, otherwise you will
be informed when saving the process. If you use the button Remove or Edit, a form
must be selected first.

171

7.2. THE PROCESS EDITOR

Hint: If view forms are used as process forms, assign these forms to tasks only
(setting form visibilities). For all other cases (e.g. process control via form fields) the
appropriate base form should be used!

• Source: Analog to 6.5.

• Components: Analog to 6.5.

• Visibility of forms: Analog to 6.5.

• Escalation: Analog to 6.5.

• History: Analog to 6.5.

• Access: Analog to 6.5.

• Referenced by: Analog to 6.5.

Figure 7.11: Add form to process

7.2.5 Tasks

With the help of the task mask (see figure 7.13) you specify those task which can be assigned
to a recipient of a task while you are changing the agent of a task. This function is not
activated for the worklist by default. For this purpose add the action key adHoc in the GUI
configuration at the node type Worklist -> Functions. More details can be found in section
6.7.1.

Add Task

The following steps are necessary:

1. Select the menu item "Process -> Tasks". A table appears where the toolbar function
New must be activated. The dialog of figure 7.13 is shown.

172

7.2. THE PROCESS EDITOR

Figure 7.12: WDL source

2. Task: Select a task or create a new one which is added to the selection.

3. Step name (optional): Specify the name of the node which can be localized, if the
value starts with @@@ and ends with @@, e.g. @@@myname@@.

4. Step Id (optional): Must be unique within the process and has the same syntactical
conditions as a @enterprise-id.

5. If you want to assign a form to a task then do the following:

(a) Select a form of the list "Available forms".

(b) Click the "Add form"–button. Now the added form appears in the list "Added
Forms".

6. Click the button "OK". Now your entries are stored in the database and the dialog is
closed.

Delete Task

The following steps are necessary:

1. Select one or more tasks of the tasks table.

2. Click the toolbar function Delete.

173

7.2. THE PROCESS EDITOR

Figure 7.13: Tasks

Delete an assigned Form from a Task

The following steps are necessary:

1. Select the menu item "Process -> Tasks". A table appears where an entry must be
selected and the toolbar function Edit must be activated. The dialog of figure 7.13 is
shown.

2. Select the form you want to delete of the list "Added forms".

3. Click the button Remove beside the list "Added forms". If you want to delete more
than one form repeat the steps 2 to 3 as often as required.

4. Click the button "OK".

7.2.6 Escalations

This function allows the definition of escalation steps which are executed when escalation is
fired. An escalation step can be a task which should be executed or a process which should
be started. In both cases an escalation step object must be created which can be selected in
select list Start step at definition of an escalation (see section 6.5.9).

174

7.2. THE PROCESS EDITOR

Figure 7.14: Escalation

Add escalation

The following steps are necessary:

1. Select the menu item "Process -> Escalations". A table appears where the toolbar
function New must be activated. The dialog of figure 7.14 is shown.

2. Task: Select a task or create a new one which is added to the selection.

3. Step name (optional): Specify the name of the node which can be localized, if the
value starts with @@@ and ends with @@, e.g. @@@myname@@.

4. Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

5. Agent(s): Define a list of agents of role, users, tasks, form fields or methods (see
section 7.2.10 for more details).

6. If you want to assign a form to a task then do the following:

175

7.2. THE PROCESS EDITOR

(a) Select a form of the list "Available forms".

(b) Click the "Add form"–button. Now the added form appears in the list "Added
Forms".

7. Click the button "OK". Now your entries are stored in the database and the dialog is
closed.

If you want to add more escalations of type Task, repeat steps 2-6 before executing step 7.

Alternatively a process can be defined as escalation step. For this purpose execute step 1,
change to tab Process and select in step 2 a process instead of a task. The remaining steps
(excepting agent selection) are the same as on tab Task.

Delete escalation

The following steps are necessary:

1. Select one or more tasks of the escalations table.

2. Click the toolbar function Delete.

7.2.7 Process plans

This function offers the possibility to generate process plans to have realistic deadlines for
the process and process steps. For a process definition several process plans can be defined
with the attribute Plan type (is only assignable one time per process definition). Plan types
are managed per application in submenu of Processes and must be defined before a process
plan can be created (see section 6.5.16).

After selecting the menu item Process plans a dialog appears where the process plans of
this process can be managed (see figure 7.15). The toolbar of this dialog contains functions
to create and adapt process plans (New, Edit, Delete) and also a Copy function to create
similar process plans. After activating this function a dialog appears where a plan type must
be defined. Select a plan type which is not used by any other process plan in this process
definition! By activating the button Ok a copy of the selected process plan will be created.
The plan type of the copy will be changed to the selected one.
Another toolbar function is Compare plans which allows to compare several process plans
in detail. For this purpose select several process plans and activate this toolbar function.

Definition of process plans

After activating toolbar function New or Edit the dialog Process Plans is displayed (see
figure 7.15):

• Type: The plan type is a compulsive attribute and can be used only one time per
process definition for a process plan. Plan types are defined in the administration of
@enterprise in submenu of Processes (see section 6.5.16).

• Name: Optionally a name for the process plan can be defined which could be used as
short description.

176

7.2. THE PROCESS EDITOR

Figure 7.15: Process plans

• Default: This option defines, if a process plan should be used by default at process
start, i.e. when process is started the default process plan is used to calculate a plan
(displayed in tab Plan). Please note that only one default process plan per process
definition can be defined!

• Computation: Define the kind of computation for the process plan which is either
From start, which means the time of process start, or From due date which means the
calculated due date of a process.

• Duration: This attribute shows the calculated duration of the plan entries.

• Plan entries: This table contains all plan entries due to available process steps. The
table contains following information:

– Position: The position of the process steps due to y-axis in process graph.

– Step: The name of the process step.

– Duration: The duration of the process step. If the task attribute Max. duration
is already defined, this value will be taken for attribute Duration when gener-
ating plan entries. The duration is calculated due to worktime settings under
Configuration/Calendar!

– Finished: Interval of process step’s end time at the beginning of a process. This
value can be set with function Compute plan or manually.

177

7.2. THE PROCESS EDITOR

– Milestone: The name of the milestone which is used for this plan entry. The
definition of milestone is done in @enterprise administration in submenu of
Processes (see section 6.5.15).

When creating a new process plan the plan entry table is empty initially. By activating
the button Save plan entries will be generated, but no plan will be computed. You can
modify the attributes of a plan entry manually or set automatically by using toolbar
function Compute plan. Please note that for automatic computation each plan entry
needs a duration! Plan entries can be adapted by double-clicking on a plan entry or
selecting one first and activating the toolbar function Edit (see section 7.2.7).

• Delete: By activating this button the process plan (incl. plan entries) will be deleted
and the dialog will be closed. The table Process Plans will be refreshed afterwards.

• Save and close: Activating this button saves the changes of the process plan and
closes the dialog. The table Process Plans will be refreshed afterwards.

• Save: Activating this button saves the changes of the process plan, but the dialog is
kept open.

• Cancel: By activating this button the changes of the process plan are discarded and
the dialog is closed.

Plan entry

The dialog Plan entry consists of following attributes (see figure 7.16):

Figure 7.16: Plan entry

• Step or Plan: If the plan entry dialog has been opened in context of a process plan
(see section 7.2.7), the name of the process step is displayed here (read-only). If this
dialog has been opened via function Plan entry in process graph (e.g. via context
menu of a process step), the selection list Plan is displayed. After selecting a plan the
appropriate information for the plan entry is displayed.

• Duration: The duration of the process step. If the task attribute Max. duration is
already defined, this value will be taken for attribute Duration when generating plan
entries. If the value is an integer, the unit s for seconds will be added. It is also
possible to define the unit(s) directly like in following example: 3d 4h 30m (= 3 days,
4 hours and 30 minutes). The duration is calculated due to worktime settings under
Configuration/Calendar!

178

7.2. THE PROCESS EDITOR

• Effort: The effective effort for execution is defined here which is not used for the
calculation of the process plan. If the task attribute Effort is already defined, this
value will be taken for plan entry’s attribute Effort when generating plan entries. If
the value is an integer, the unit s for seconds will be added. It is also possible to
define the unit(s) directly like in following example: 3d 4h 30m (= 3 days, 4 hours
and 30 minutes). The effort is calculated due to worktime settings under Configura-
tion/Calendar!

• Finished: Interval of process step’s end time at the beginning of a process. This value
can be set with function Compute plan or manually. If the value is an integer, the unit
s for seconds will be added. It is also possible to define the unit(s) directly like in
following example: 3d 4h 30m (= 3 days, 4 hours and 30 minutes).

• Milestone: Optional selection of a milestone which should used for this plan entry.
The definition of milestone is done in @enterprise administration in submenu of
Processes (see section 6.5.15).

• OK: Activating this button saves the changes of the plan entry and closes the dialog.
The table Plan entries will be refreshed afterwards, if this dialog has been opened in
context of process plan dialog.

• Cancel: By activating this button the changes of the plan entry will be discarded and
the dialog will be closed.

7.2.8 The function list

The function list contains the functions for the graphical modeling of processes.
After selection of a function you can perform the action in the drawing area of the process
editor window. The nodes can be moved only vertically or horizontally by pressing the
Shift-Key and moving the mouse.

• Selection: In this mode you can move and edit the objects in the drawing area.

• Task: This function allows the insertion of new activities. After selection of this
function you can drop an activity on en edge in the process graph by simply clicking
on this edge. A new activity will appear. On a double–click on the activity a property
window for setting the activity properties appears.

• Subprocess: Subprocesses can be inserted in the same way as above.

• System step: System steps can be created and the method to be called can be speci-
fied. Enter the fully qualified name of a Java method which should be executed in the
step.

• Batch step: Batch steps can be inserted, the name of a Java class (the batch adapter)
can be specified. The class provides a callback interface for events during the life
cycle of a batch step. For details, please consult the Application Programming Guide
and the API documentation.

179

7.2. THE PROCESS EDITOR

• If: The if control structure consists of two nodes, an if node and a corresponding end
node. These two nodes are connected with two edges, a green and a red one. The
green edge is the path followed when the condition of the "if"-node evaluates to true,
the red edge is the path followed when the condition evaluates to false.

A double–click on the "if"-node opens a window where you can edit the condition.

If you click in the if-mode on the red edge you add an additional if-node without
a corresponding end node. This control structure corresponds to the if-elsif control
structure:

if condition 1 then
action 1

elsif condition 2 then
action 2

elsif condition 3 then
action 3

else
action 4

end

Note: Use the WDL-Script window to see how the graphical definition corresponds
to the WDL script.

• Choice: Every choice branch has a name and an optional condition. At run-time
the engine first checks the conditions of all branches, only the branches where no
condition is specified or the condition evaluates to true are shown for selection.

Insert the choice in the usual way. You see a black arrow, whereas the black arrow is a
possible choice branch, where you can add activities. If you want to add alternatives,
select the choice and activate Additional path in the menu Edit or click with the right
mouse button on the choice and select in the context menu Additional path.

• While loop: With this control structure you create a condition node, where the green
edge goes in a loop back to this node, the red edge goes to the original following
node. Activities dropped onto the green edge are the loop body. Process execution
goes through the body until the condition of the while node becomes false.

• Loop: The loop control structure consists of two nodes, the loop node, and the exit
node. The exit node is a conditional node, so two edges leave this node: The red one
goes back to the loop node, the green one goes to the original follower.

• Parallel for: The parallel for control structure consists of two nodes in WD-notation,
the parfor node and the end node. In BMP-notation this control structure is repre-
sented as BMPN-subprocess. If you click within the Parallel for border, but not on
an element, the whole frame will be selected. In this case e.g. you can move the
whole Parallel for-structure or delete it. A double–click opens the same dialog as
double–clicking on Parallel for start-node.

180

7.2. THE PROCESS EDITOR

• AND-parallelism: With this control structure you can create parallel process execu-
tion paths. Between the nodes "par" and "andjoin" several paths can be created. To
add alternatives, select "par" and activate Additional path in the menu Edit or click
with the right mouse button on "par" and select in the context menu Additional path.
See the section about parallelism in the WDL chapter of this book for an example of
an andpar.

• OR-parallelism: Works like the AND-Parallelism above, the only difference is at
run-time: The process execution continues after one parallel path has been finished.

• Branch: The branch allows to add an additional path which is processed indepen-
dently by the main process flow. For example the main process flow is finished, but
the branch can be processed furthermore.

• Goto: Use the goto function to jump to an arbitrary node in the process structure.
For inserting a goto do the following: Activate the goto function by clicking it in the
function list. Click on the edge where the goto should start. Then take the arrowhead
of the drawn through line and put it by pressed left mouse button to the destination
node and leave the left mouse button. The dashed line from the goto shows the orig-
inal way of the process. If the drawn through line shows on an activity, the label of
this activity is shown in the detail view of the goto. In the detail view of a goto you
can set the Target Label. If the drawn through line shows on an element in the process
editor and you change the label in the goto, the changes will be accepted in the target
node.

A special kind is Goto end to jump to the end of the process automatically. Inside a
parfor this element is not allowed!

Hint: In BPM-Notation the drawn through line cannot cross the borders of a Paral-
lel for.

Be careful when using gotos! Jumping out of and-parallelism can cause strange ef-
fects.

• Events: This event control structures consists of a single node which stands for a
special action in the context of events. The event control structures are Raise-Event,
Sync-Event, Register-Event, Unregister-Event and Wait which is a special case of
event. See the section about "Events" in the WDL chapter of this book for an example
of an event.

• Web services: In this area following nodes can be selected:

– Outgoing message (INVOKE): If this node is selected, the defined web service
is called during run-time and the appropriate data will be submitted. If this
action fails and an Exception Handling has been defined, the exception flow
will be performed (see definition of exception handling in section 7.2.3).

– Incoming message (RECEIVE): If this node is selected, it will be waited for data
of the (previous called) web service. If data are received, they will be processed
according to the definition.

181

7.2. THE PROCESS EDITOR

– Reply message (REPLY): If this node is selected, a reply message will be send
when node Incoming Message has been processed successfully.

The properties of each node are described in section 7.2.19.

• Annotation: If you have selected this function, you can add a textfield at any place
in the drawing area. Perform a double-click on the textfield to add a text and then
confirm with Return.

7.2.9 The common attributes of a node

For each node a Step name and a Step Id can be defined. The step name for a node can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@. If
nothing is entered, the default step name is used. The step id must be unique within the
process and has the same syntactical conditions as a @enterprise-id.

7.2.10 Properties of an activity

You can edit the properties of an activity, when you perform a double–click on the node
(if function Show activity properties on node double-click is activated only) or click with
the right mouse–button on the node an select in the context menu Activity properties - the
property window will appear (see Fig. 7.17).

Figure 7.17: Properties of an activity

• Task: Specify the activity by inserting a task id or using the task selection window.

182

7.2. THE PROCESS EDITOR

• Step name: Specify the name of the node which can be localized, if the value starts
with @@@ and ends with @@, e.g. @@@myname@@.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Icon: The icon which will represent the activity in the drawing area of the process
editor. If no icon is specified here the default icon of @enterprise is used. An
icon is handled like a resource in @enterprise, i.e. the icon is part of the classpath.
Example: Path lang/default/images/pred/nodes/event_register.png shows the icon for
node Register-Event.

• Fill color: Here you can define a color for the graphical representation of the step.
The color can either be selected using Color picker or entered as a hexadecimal code.

• Agent(s): Add an agent by clicking the "+" button besides the agent list. The agent
selection window appears. You have several possibilities to define an agent, the tabs
on the window let you choose between them:

– User: Select a user in the list and click apply. The user id appears in the agent
line on the bottom of the window.

– Role: Select a role and click apply.

– Task: Select a task in the list. The agent will be set at run-time to the last agent
of the selected task. Note, that you can only select a task which is performed
before the current task.

– Form field: Select a form and then a field in the form. The agent is taken at
run-time from the content from a field in a process form. The content must be
either a role id, an user id, a role id together with an organizational unit id, or an
agent of a previous step. See the WDL description for the syntax of the agents.

– Organizational unit: Org. units can be combined with role and user. At run-
time, the organizational unit of the current task will be set to the given OU. The
organizational unit of the overall process will not change.

– Method: Define a JAVA method (no Groovy script). Return value must be an
Agent or a String in WDL syntax. See page 147 for details.

To remove an agent, select it in the list and click the "x"-button right or the list.

• Skipable: When the checkbox is activated,the task is skipable, this means when no
agent is set at build-time and run-time, the task is skipped.

• Available forms: Add and remove process forms to/from the activity. To add a
process form, select the form in the list an click on the arrow button. To remove it,
select it in the "Added form" list and click the "x"-button. You can set the visibilities
of a form by selecting an entry in the list of Added forms and click on the Edit icon
beside this list (analog to process). The order of process forms can be changed by
using the buttons beside the list, i.e. the form at the top of this list is displayed as
leftmost tab in worklist.

183

7.2. THE PROCESS EDITOR

7.2.11 Conditions for Ifs, Choice, Loops

Perform a double–click on the node, the property window will open where a condition can
be defined. For this purpose the condition editor is available which is described in section
7.2.20.

Furthermore for each node a Step name and a Step Id can be defined. The step name for a
node can be localized, if the value starts with @@@ and ends with @@, e.g. @@@my-
name@@. If nothing is entered, the default step name is used. The step id must be unique
within the process and has the same syntactical conditions as a @enterprise-id.

7.2.12 Properties for system steps

Perform a double–click on the node, the property window will open. There are two possible
ways to define the methods, that should be executed in this system step, which are men-
tioned in the following sections.

Furthermore for this node a path to an Icon (which is a resource in @enterprise classpath),
a Fill color, a Step name and a Step id can be defined. The step name for a node can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@. If
nothing is entered, the default step name is used. The step id must be unique within the
process and has the same syntactical conditions as a @enterprise-id.

See section 7.1.4 for the syntax of system steps.

Editor

The editor tab allows to add, edit and remove Java methods of the system step by selecting
them from a list. Furthermore the order of the method sequence can be changed with ap-
propriate functions. When adding or editing a method, the editor window opens (see Fig.
7.18) where useful methods of @enterprise are shown by default. If own methods should
be available in this list, they must be annotated with @CallableMethod (more details about
this topic can be found in the Applications Development Guide, section Adding methods to
the system step editor).
By selecting an entry an area with parameters is shown (if available for this method) which
are provided by this method. By activating the button Ok, the window closes and the method
is added to the sequence or an already available entry is updated.

Input

This tab offers the possibility to insert and edit methods by hand. To add a method, insert
the full qualified method name, including the optional parameters in the text area of this
tab. If a sequence of methods is to be executed, the methods must be separated by ; . The
methods can be checked for correct syntax with the check icon beside the input field. If
the icon changes to a red exclamation mark, the syntax of the method is wrong. A green
check mark indicates that the syntax of the method is correct. The availability in class path
is checked too.

184

7.2. THE PROCESS EDITOR

Figure 7.18: The system step editor

7.2.13 Properties for Batch steps

Perform a double–click on the node, the property window will open. Insert the full-qualified
class name of the BatchAdapter without parenthesis (round brackets). The field Param-
eter allows to enter the parameter for the BatchAdapter class (in WDL theses parameter
are within the parenthesis). The execution of the batch steps can be modified using the
checkboxes. Details can be found in the Applications Programming Guide and in the API
documentation.

Furthermore for this node a path to an Icon (which is a resource in @enterprise classpath),
a Fill color, a Step name and a step id can be defined. The step name for a node can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@. If
nothing is entered, the default step name is used. The step id must be unique within the
process and has the same syntactical conditions as a @enterprise-id.
See section 7.1.4 for the syntax of batch steps.

7.2.14 Properties of a subprocess

Perform a double–click on a subprocess and a property window opens, where you can select
the process and the forms handed over to the subprocess.

• Process: Specify the process by inserting a process id or using the process selection
window.

• Step name: Self defined name for this node which replaces the default name. Can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@.

185

7.2. THE PROCESS EDITOR

• Step id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

• Fill color: Here you can define a color for the graphical representation of the step.
The color can either be selected using Color picker or entered as a hexadecimal code.

• Available forms: Add and remove process forms to/from the subprocess. To add a
process form, select the form in the list an click on the arrow button. To remove it,
select it in the "Added form" list and click the "x"-button.

7.2.15 Properties of a parallel for

Perform a double–click on the "parfor"–node and a property window opens, where you can
edit the following properties of the parfor statement:

• for each Subform in: If this radio button is checked the parallel for statement is
executed for the sub form entries of a form, like it is described in the WDL sub
section (see case one of Parallel For under 7.1). Select the appropriate subform
(Mainform.Subform-Id) from the dropdown-list.

– Form Id within the loop: The id of the selected subform within the parallel for
construct.

– Form Name within the loop: The name of the subform within the parallel for
construct.

– Condition: A method (with boolean return value) or a simple expression can
be defined, if a parfor-branch should be executed or not, e.g. localform.isopen
= 0 (localform is the id and isopen is a field in subform). By activating the
wrench-icon the condition editor is opened which allows to define a more com-
plex condition (see section 7.2.20 for details).

• Iterator: If this radio button is checked the parallel for statement is executed for the
specified class, like it is described in the WDL sub section (see section 7.1.5).

• Step name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

Furthermore it is possible to define a method in end-node of parfor (see section 7.1.5).

7.2.16 Properties of AND-/OR-parallelism and end node of Parallel for

Perform a double–click on the "andpar"–, "orpar"–node or end node of PARFOR construct
and a property window opens, where you can edit the following properties:

186

7.2. THE PROCESS EDITOR

• Method call: If overall completion of parallelism can not be defined by completion
of a fixed number of branches, but is rather computed at run time, an arbitrary Java
method can be called. More about that can be found in the Application Development
Guide.

• Step name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

For more details concerning the syntax see sections 7.1.5 for AND-/OR-parallelism and
7.1.5 for end node of Parallel for.

7.2.17 Properties of an event

There are following events:

• Raise: raise an event.

• Synchronize (Sync): stop process execution and wait for an event.

• Register: register for a certain event.

• Unregister: unregister for a certain event.

• Wait: is a special case of event and is described in section 7.2.17.

Perform a double–click on an event and a property window opens. where you can edit the
following properties of the event:

• Event name: the event name.

• Event handler: a Java–class implementing the interface "com.groiss.event.EventHandler".

• Context: the context object: either a form or a form field which serves as the context
object; alternatively the keyword process can be entered and so the current process
instance (oid) is the context object.

• Step name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id. The step id is relevant for process escalations of type Sync
unfinished (see section 6.5.9).

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

By clicking the button "Ok" your entries are stored and the current dialog will be closed.
By clicking the button "Cancel" your entries are discarded and the current dialog will be
closed.

See section 7.1.6 for the syntax of events.

187

7.2. THE PROCESS EDITOR

Event Wait

A wait step can be used to halt the process execution for a time duration or until a certain
point in time. The wait step is finished automatically by timer Suspension, i.e. the wait step
is finished at the earliest when the time period is exceeded depending on the next execution
time of timer Suspension. Another possibility is to finish the step manually via process
history. Perform a double–click on the wait step and a property window opens. where you
can edit the following properties of the event:

• Duration: In this area you can enter either a time interval or an expression:

– Time interval: Enter a positive integer value for duration to wait. The time units
minutes, hours, days and working days are available.

– Expression: Enter an expression which returns a point of time (= date) or a time
interval as integer in minutes. Possible expressions are methods, form fields,
xpath- and groovy-expressions (see section 7.1 for more details).

• Step name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

By clicking the button "Ok" your entries are stored and the current dialog will be closed.
By clicking the button "Cancel" your entries are discarded and the current dialog will be
closed.

More information about wait steps is available in section 7.1.4.

7.2.18 Properties of a GOTO

Perform a double–click on the "GOTO" construct and a property window opens, where you
can edit the following properties:

• Step name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Target label: The label of the target node can be changed here. This field is filled
automatically, if the drawn through line has been set on a node in the process editor.
Changing the label here also changes the label on target node.

See section 7.1.5 for the syntax.

188

7.2. THE PROCESS EDITOR

7.2.19 Properties of Web service nodes

Select a web service-node and perform a double–click on the node to open the appropriate
property window. For each node you can define a Step Name which can be localized, if the
value starts with @@@ and ends with @@, e.g. @@@myname@@. If nothing is entered,
the default step name is used. Furthermore a Step Id can be defined which must be unique
within the process and has the same syntactical conditions as a @enterprise-id. The step
id in node Incoming Message is relevant for process escalations of type Receive unfinished
(see section 6.5.9).
Following properties can be defined for node Outgoing Message:

• Webservice operation: Select an existing web service client operation which was
created previously (for this application). See section 6.10.1 for more details.

• Step name: Self defined name for this node which replaces the default name. Can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

• Address: Select an address to call the web service. You can choose between reading
the address from WSDL-file, enter a XPath-expression or enter an URL.

Example for XPath-expression: Read from configuration parameter of application
myappl:

string($configuration_myappl/property[@name=’webservice.address’])

• Out-parameter: Here you can enter a list of parameter as XPath-expression which
should be submitted. The parameters are defined in WSDL-file and has been defined
during the creation of the web service client.

• In-parameter: Analog to Out-parameter, but for data which should be read from
web service.

Following properties can be defined for node Incoming Message:

• Webservice operation: Select an existing web service server operation which was
created previously (for this application). See section 6.10.2 for more details.

• Start process: If this checkbox is activated and this node is the first step in the
process flow, a new process instance will be started. If this checkbox is no activated
in this case, no instance can be created. If this node is not the first step in process,
this checkbox must not be enabled!

• Step name: Self defined name for this node which replaces the default name. Can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@.

189

7.2. THE PROCESS EDITOR

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

• In-parameter: Here you can enter a list of parameter as XPath-expression which
should be read. The parameters are defined in WSDL-file and has been defined during
the creation of the web service server.

• Correlation parameter: Here you can enter a list of parameter as XPath-expression
which has been defined during creation of the web service server. A mapping can be
defined to assign automatically an Incoming Message to a process instance.

Following properties can be defined for node Reply Message:

• Webservice operation: Select an existing web service server operation which was
created previously (for this application). See section 6.10.2 for more details.

• Step name: Self defined name for this node which replaces the default name. Can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@.

• Step Id: Must be unique within the process and has the same syntactical conditions
as a @enterprise-id.

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

• Out-parameter: Here you can enter a list of parameter as XPath-expression which
should be submitted. The parameters are defined in WSDL-file and has been defined
during the creation of the web service server.

By clicking the button "Ok" your entries are stored and the current dialog will be closed.
By clicking the button "Cancel" your entries are discarded and the current dialog will be
closed.

For more information about the wdl-syntax please take a look in section 7.1.7.

7.2.20 Condition editor

The condition editor allows to define complex conditions in 2 different ways:

Tab Editor

This tab allows to define conditions in XPath syntax graphically. For this purpose the tool-
bar offers functions to add, remove and move condition rows. Setting parentheses allow to
manipulate the kind of evaluation by selecting the appropriate rows and activate the toolbar
function Set Parentheses. New added condition rows are linked with logical AND by de-
fault, but the operator can be change to logical OR by clicking on the operator button, i.e.
klick on AND changes to OR and inverse.

A condition row consists of following components:

190

7.2. THE PROCESS EDITOR

Figure 7.19: Graphical condition editor

• Expression 1: The first dropdown list offers following selection:

– Current user: During evaluation of the condition the current user (thread user)
is taken for comparison.

– Current process: During evaluation of the condition the current process instance
is taken for comparison. In second dropdown list a process attribute must be
selected for comparison.

– Current date: During evaluation of the condition the current date is taken for
comparison.

– Forms: All added process forms are selectable (see definition in section 7.2.4).
The second dropdown list offers all form fields of the selected form are listed
and one form field must be selected for comparison.

– Configurations: If configurations of applications are available, this one are listed
here (see definition in section 6.1.2). In second dropdown list a configuration
parameter must be selected for comparison.

• Operator: A dropdown list offers different operators to allow comparison of expres-
sion 1 and 2.

• Expression 2: Either the definition of an expression analog to expression 1 can be
done here or a direct comparison with a value. Depending on expression 1 either the
value is free text or a dropdown list is offered where a value can be chosen (e.g. if
expression 1 is a form field of type radio button, the dropdown list in expression 2
offers all options of this radio button). Please note that in some cases the free text
value must be wrapped within double quotes (e.g. if a string attribute is selected in
expression 1).

If a condition has not been defined correctly or it is faulty, a warn-icon is displayed at the
beginning of the row. The conditions are stored in XPath syntax. If the whole expression
is wrong or not in XPath syntax, an error message is displayed in this tab.

The button Ok saves the conditions or applies them to the referenced field in XPath syntax.
The button Cancel discards all changes which are not saved before.

191

7.2. THE PROCESS EDITOR

Tab Input

This tab offers the possibility to define conditions in 3 different ways:

• XPath: The XML Path Langauge (XPath) is developed by the W3-consortium for
addressing parts of an XML-document (considered as tree). The tab Editor generates
XPath syntax which is displayed here, but it is also possible to define own XPath
conditions (if evaluable these conditions are displayed in tab Editor). For more infor-
mation take a look into Application Development Guide.

• WDL / Java method: The Workflow Definition Language has resemblance to a struc-
tured programming language and allows the definition of conditions (see section 7.1).
Alternatively a Java method can be entered which returns a boolean value.

• Groovy: GROOVY is an object oriented programming language for the Java plat-
form. For more information take a look into Application Development Guide.

Each condition can be checked for correct syntax with the check-icon beside the input field.
If the icon changes to a red exclamation mark, the syntax of the condition is wrong. A green
check mark indicates that the syntax of the condition is correct. In case of Java method the
availability in class path is checked too.

The button Ok saves the entered condition or applies it to the referenced field. The button
Cancel discards all changes which are not saved before.

Figure 7.20: Textual condition editor

192

8 The Search of @enterprise

8.1 Process search

The process search allows you to find process instances you have been involved in as a user.
A detailed information about this functionality is described in User manual.

8.2 Document search

This function can be activated by clicking on the link Document search in the navigation
area. A detailed information about this functionality is described in User manual.

8.3 Report designer

This function offers extended functionality for finding process instances and is available
only, if right Statistic is assigned. A detailed information about this functionality is de-
scribed in Reporting manual.

8.4 Reports

In this table all stored reports can be adapted or executed. A detailed information about this
functionality is described in Reporting manual.

193

9 Administration tasks

9.1 Server

9.1.1 Server Monitor

@enterprise uses the tool Java Melody which measures and calculates statistics on real
operation of an application depending on the usage of the application by users. It is possible
to display this information in the Browser or export it to a PDF.
The Server Monitor offers following information (see figure 9.1):

• Common statistics

• Statistics for HTTP requests

• Statistics for SQL statements

• Statistics for HTTP system errors

• Statistics for system error logs

• Current requests

• System information

• Threads

By default Java Melody is used, but can be deactivated in section Tuning of @enterprise
configuration or the web.xml deployment descriptor of @enterprise must be changed. For
this purpose remove following block from web.xml:

<filter>
<filter-name>monitoring</filter-name>
<filter-class>net.bull.javamelody.MonitoringFilter</filter-class>
<async-supported>true</async-supported>

</filter>
<filter-mapping>

<filter-name>monitoring</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

It is also possible to define additional parameters within the filter tags in following way:

194

9.1. SERVER

<filter>
...
<init-param>

<param-name>log</param-name>
<param-value>true</param-value>

</init-param>
</filter>

Some parameters are worthy of mention:

• storage-directory: Storage directory (path must be absolute) of Java Melody, default
is <ep-tmp-director>/javamelody. The default Java Melody directory location is usu-
ally specified by the system property ’java.io.tmpdir’. This value can be found e.g.
via the corresponding link in the Server-Control of the @ep administration.

• warning-threshold-millis und severe-threshold-millis: Thresholds in in ms. These
threshold parameters can serve as a basis for a SLA (service level) of an application.

• system-actions-enabled: This parameter (true by default) enables or disables the
system actions garbage collector, http sessions, heap dump, memory histogram, pro-
cess list, jndi tree, opened jdbc connections, database (near the bottom of reports).
These actions do require confirmations when necessary.

In addition to these parameters the @enterprise configuration parameter ep.melody.initparams
in section Other parameters allows to define initialization parameters of the Java Melody
filter. These parameters can be used to reduce the memory footprint / general overhead of
Java Melody. Issues with monitoring in a production environment could include:

• Excessive use of file descriptor

• Memory hogging during startup

• Some delay during startup

Sensible initial values for those parameters even in production environment might e.g. be:

displayed-counters=http,log,error,sql
http-transform-pattern=(?<=/webdav/).*|\\d{10,}
sql-transform-pattern=(?<=[iI][nN] ?)\\([\\d,]*\\)|\\d{10,}

All these infos are accessible via JMX calls, if the parameter ep.melody.initparams is set
to value jmx-expose-enabled=true. More information of an @enterprise server via JMX
can be determined via interface com.groiss.server.ServerInfoMXBean (see APIDoc for
more details). If @enterprise is running with Java 1.8 or higher, the server must be started
with following parameters:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=<jmx_port> //needed in Tomcat

195

9.1. SERVER

Figure 9.1: Server Monitor

Hint: More information of Java Melody can be found in the Online help which is acces-
sible via a link in Server Monitor or on https://github.com/javamelody/javamelody/wiki.

9.1.2 Server Control

Here you can control the server with the following functions:

• Started: The date when server was started.

• Shutdown: Shut down the @enterpriseServer.

• Restart: Restarts the @enterpriseServer.

• Disable/Enable login...: This function disables/enables the login to the server, only
the users, which have the right Configuration, may login in this mode. Other users
receive the message you provide in the message area.
There are following information available:

– Logins enabled: If this radio–button is activated, there are no restrictions at the
login.

– Logins disabled: If this radio–button is activated, only system administrators
can login after server restart. At server restart upgrade(s) of application(s) will
be performed (if defined). For further information about upgrading applications,
please take a look in the API of @enterprise (ApplicationAdapter.getVersion()
and ApplicationAdapter.upgrade()).

– Message: If the login is disabled, you can enter a message here, which will be
shown, when a user logs into the system.

196

9.1. SERVER

• Reload database connections: All database connections (of the current node) will
be marked as "old". Before assigning a connection to a transaction the "age" will be
checked first, then old connections will be closed and new ones opened.

• All passwords have to be changed on next login

• Scan for new JAR-libraries: This function searches for new jar files and add them
to the @enterprise classpath.

• Health Check: This function checks the system status. Following checks are per-
formed:

– General: Checks, if the times of @enterprise server, database server and client
are synchronized and check which password for sysadm is used.

– Shadow classes: Checks, if @enterprise resources are shadowed.
– Directories and files in configuration: Here the configuration parameter Direc-

tory of form classes, Directory of temporary files, KeyStore file,
httpd.jetty.webxml.location, avw.java.compiler and httpd.jetty.favicon.path are
checked, if the paths/files are available on file system.

– Methods and classes in configuration: Here all possible methods and classes
of @enterprise configuration are checked. Examples: JDBC Drive Class, Au-
thorization Class, Settings Class, Notification Provider Class, Archiving Class,
Error-Formatter Class, DMS Archiving Class, Holiday Class, etc.

– Directories and files in applications: This area checks, if template files of form-
types are available on file system. Furthermore available gui configuration ob-
jects are checked, if the appropriate xml files are available on file system.

– Methods and classes in applications: This area checks all entered methods/classes
of application objects. Examples: Process DMS table handler, form event han-
dler, methods entered in tasks, methods defined in escalations, methods of func-
tions, time methods and java-methods of mailboxes.

– System tables: Checks whether all system tables exist.
– Form tables: This area checks all form tables of all applications and lists find-

ings where the column size of database is different to form field size. With
button Fixing field sizes it is possible to adapt automatically the column size
of all varchar columns according to form field definition. This is done only
for columns with different sizes and where the column size of the database is
smaller than the form field size of the form.

– Role assignments: This area lists all faulty role assignments, e.g. if a local role
without org-unit is assigned to a user.

• Check foreign keys: This function checks, if the foreign keys in the database are
created correctly. In addition this function tries to create missing foreign keys (shown
next to labels "created" and "failed").

• Check supporting indexes for foreign keys: This function checks, if the supporting
indexes for the foreign keys are created. SQL statements for the creation of missing
indexes will be generated, but the indexes themselves are not auto generated to avoid
performance impacts. Please use with care.

197

9.1. SERVER

• Threads: This function allows to create multiple thread dumps by clicking multiple
times on the link.

• Server info: This function offers information about the @enterprise server like used
license, used database, used JDK, etc.

• Client info: This function offers information about client specific things like used
cookies, session variables, etc.

• Send a message to all logged-in users: This function allows to send a message to
all logged-in users. The message is displayed as own dialog in smartclient after
activating button Send.

• Reload configurations: This function allows to search for changes in configuration
files of @enterprise (e.g. avw.conf) and the appl.prop of each application (but not in
configuration parameter definition properties.xml) which has not been changed via
GUI and load the changed values into the memory of @enterprise (Configuration
object). After loading the method reconfigure() is called for each service (and each
application where application class implements the interface
com.groiss.component.Service). More information can be found in the Application
Development Guide - chapter The configuration file. Underneath a table of applica-
tions is displayed with following columns:

– Id: The id of the application. By activating the link a new window will be
opened where all parameters of the configuration files of this application are
shown. If the parameter ep.configuation.store.in.database under Configura-
tion/Other parameters is activated, in addition to the parameters of the con-
figuration files the parameters stored in the database are displayed - this part
is marked with the text Configuration content from DB follows. More infor-
mation about the parameter ep.configuation.store.in.database is located in the
Installation Guide of @enterprise.

– Loaded at: The time stamp when configuration has been loaded into memory of
@enterprise.

– Up to date: This column contains the status of the configuration.

* is current: The current configuration in the memory of @enterprise is con-
sistent with the configuration of the files and database.

* is not current: The current configuration in the memory of @enterprise is
different from the configuration given in files and database, i.e. the values
of the files/database are newer than the values in the memory of the @en-
terprise server. In this case activate function Reload configurations to
get a consistent state of @enterprise memory and files/database, i.e. the
parameter values of files/database are read and updated in the memory of
@enterprise.

* unknown: No configuration is available for this application which can be
read and updated.

– Files/Change time: The paths to the configuration files and the time stamp when
the files have been changed are displayed in these 2 columns. If the column
Change time contains the value N/A, the configuration file is not available.

198

9.1. SERVER

– Database/Change time: These columns are displayed only, if the parameter
ep.configuation.store.in.database under Configuration/Other parameters is ac-
tivated. In the column Database the ID is displayed which is used for this
configuration to identify it in the database. The column Change time shows the
time stamp when the configuration has been changed in the database. If the col-
umn Change time contains the value N/A, the configuration is not available in
the database.

• Java System Properties: This function opens a window with a list of all set java
system properties.

• Environment Variables: This function opens a window with a list of all environment
variables.

• Current state: An overview of reports that are currently being executed or are wait-
ing to be executed.

• Show Reporting schema: Displays the reporting schema (XML file) in a separate
window.

• Reparse Reporting schema: Reloads the reporting schema.

• Show cache statistic: Displays statistics about the permission cache for debugging
purposes.

• Show cache info: Displays internal information about the permission cache for de-
bugging purposes.

Worklist Cache

The engine constructs the worklists via heavily cross-linked in-memory structures. Database
operations are hardly ever invoked.
The state of the worklist cache can be configured via the server configuration in section
Tuning.

Refresh Cache: A refresh of cache structures is needed in the following cases: new ap-
plications, new departments, changes in the department-tree, new roles.
For this purpose following functions are available which can be executed manually:

• Refresh cached org. structures: With the help of this function you can refresh the
organizational structures of the cache.

• Refresh activity instances: This function refreshes the Workitems. This would be also
accomplished by switching the worklist cache off and then on again.

• Repair WLCache: If there have been inconsistencies in the worklist cache of one
Node N due to "stop the world" garbage collection pauses, they can be repaired with
this function. By entering a time interval (e.g. start and end of the GC-Phase of the
inconsistent node) and by selecting another node M, node N gets information from

199

9.1. SERVER

node M which step instances changes during the interval. Nod N uses this information
to update its internal state to the current data base state of those step instances.

For each function the timstamp of last execution is displayed within the brackets.

When a user logs in, his current roles and substitutions are accounted for. So changes in the
assigned roles of the user (or the users he substitutes) are reflected after the login.
Changes in the substitutions are accounted for immediately after the changes (without the
need for the substitute to log in again). This is the case for manual changes of substitutions
as well as for changes made by the CurrentSubstitutesTask because the period of substitu-
tion starts or ends. Please note that the CurrentSubstitutesTask must be set to active in the
Timer administration.
During a refresh of the cache structures, some of the structures are instantiated twice (the
old and the new version). So additional memory usage during cache refresh and after it
should be expected until garbage collection kicks in.
Two methods are available to refresh cache structures:

• com.dec.avw.wlcache.WLCache.getInstance().refresh() This takes into account all or-
ganizational changes. Corresponds to the link "Refresh" in Administrative Tasks /
Cache Administration. Use e.g. after importing a batch of users programatically.

• com.dec.avw.wlcache.WLCache.getInstance().refreshUser(User u) This function con-
siders changed roles and changed substitutions for one user. It does not take into
account new applications, departments, depttrees, roles, . . .

Check and refresh cache for user: With the help of this function Show you can check
the cache consistency for a selected user. The system compares the contents of the users
personal worklist, role worklist, suspension list, role suspension list and pending items list
according to the worklist–cache to the contents of the corresponding lists according to the
database state.

If no discrepancies could be detected, the lists will show an icon in the form of a green tick.
In case of discrepancies, the affected lists are marked with a red cross and the offending
items are displayed. The administrator can then fix such discrepancies by clicking the pro-
vided Update-links in popup window or using the function Refresh org. structures for user
which refreshes the whole cache for the current user. The changes are reflected immedi-
ately, that is the worklist cache is updated with the latest state of the step instance in the
database. Display refresh must be triggered explicitly by the administrator.

9.1.3 Log files

Depending on the defined log level all accesses are logged (see Installation- and Configu-
ration guide for more details).

Following tasks can be done on this mask:

• Table handling: The current log(s) are displayed in bold letters and each row can be
sorted.

200

9.1. SERVER

• View log file: After selecting a table entry this function opens the log file in view
mode. Double clicking on a table entry executes the same function.

• Length of tail and View tail of log file: Depending on the value in the input field
the last n rows of the selected log file are displayed when function View tail of log
file is activated. The default value of the input field is defined in section Logging of
@enterprise configuration.

• Download: This function allows to download the selected log file as ZIP- or text file.

• Initialize log file: When activating this function the current log file will be closed
and a new log file will be created. Use this function if you want to record some events
in a log file.

9.1.4 Database connections

This table shows the current open database connections used by executed statements. If a
statement in column Statement is displayed in italic letters, the statement is already finished,
but the connection is open (i.e. no commit has been done).
If Oracle is used as database, database connections can be labeled with the ThreadUser and
the busyObject in column In use, e.g. sysadm*Thread[JHttp-23,5,main]. The label is set
when a connection is attached to a thread and is reset when the transaction ends. The label
is available in the client_identifier field of view v$session. Set the parameter DB connection
reservation warning interval (secs) in Configuration/Database to a positive value to activate
labeling.
The toolbar offers following functions:

• Refresh: This function reloads the table.

• Cancel statement: Executing this function could be necessary, if a statement is al-
ready running und must be aborted.

• Release transaction: This function allows to release transactions. The function will
roll back the user-transaction corresponding to the selected db connection. Every db
connection of the user-transaction will be roll backed, closed, given back to the pool
and set to dubious state. Furthermore the afterCompletion() methods of SessionSyn-
chronization beans will be called.

• Histogram: This function shows the db connections in a histogram. You can define
Unit and Columns.

• Statement statistics: If parameter Statement statistics is activated under Configura-
tion/Tuning, all database statements of the system will be displayed.

9.1.5 Object history

View the history of the objects in the database. You can see who has changed which objects
and view older versions of objects. After activating the button Start search a result table
with all changes is displayed depending on the search criteria. The button Reset deletes the

201

9.1. SERVER

values entered as search criteria. By performing a double-click on an entry in result table
the details of the change are displayed.

9.1.6 User sessions

With the help of the administration function User sessions it is possible to get information
about the logged in users and when they were logged in.

When a user is logged in, the number of the logged in users will be checked with the license
(Concurrent-User). If the login is possible, an user session will be generated. This user
session is as long as valid, until the user activates the Logout button. If no logout happens,
the user-session is valid for 24 hours and will be finished automatically. Only user sessions
which are inactive less than 2 hours, will be checked with the license.

You can display the user sessions as user list or in form of a histogram. Further you can
set the time horizon for better display. After activating the button Start search a result table
with all user sessions is displayed depending on the search criteria. The button Reset deletes
the values entered as search criteria. By performing a double-click on an entry in result table
or with the help of the function Details the details of the user session are displayed. The
information will be shown in a new window in which you can get detailed information
about the activity (including HTTP–sessions). If a thread is currently running (an action
is performed by the user), it will also be displayed. The function Refresh updates the data
for the existing session. The detailed overview of the HTTP–session is displayed in a new
window with help of the function HttpSession.

User list: For displaying the user list, you have to take further restrictions.

• Logged in users: All user sessions which are active.

• All users: All user sessions, also inactive sessions.

• User: All user sessions of the selected user.

With option Last access (minutes) you can define (depending on selected User list option)
which users should be displayed where last access was done x minutes before.
You will find following information in the result table:

• User: Contains the first and last name of the user.

• Client IP: The IP-address of the user.

• Login: The initialization-date of the user session (login date of the user).

• Last access: The date, when the user was active in the system.

• Date of logout: You can see the date of logout. Activating the toolbar function
Logout kills the selected sessions and the users will be logged out (even clusterwide).

• Node Id: Contains the cluster node id.

• Trace Level: The trace level is displayed here. The trace level for a session or more
sessions can be defined or changed with the toolbar function Set trace level.

202

9.1. SERVER

Histogram:

• Hour: The time interval starts with 0 minutes.

• Day: The time interval starts at 12pm.

• Week: The week starts with the start-day of the time horizon at 12pm.

9.1.7 Events

In the section Events you can search for all recorded system events of @enterprise:

• From and To: Here you can set time restrictions

• Type: The event type startup or shutdown can be selected

• Start search: This function searches all recored system events, depending on the
search-options. If no option was set, all recorded events will be displayed in a table.

• Reset: With this function you can delete the values entered as search criteria.

• Delete all: With this function you can delete all recorded events which are displayed
in the table.

9.1.8 Timers

The timer triggers time-controlled events. It is used for some system tasks but also open
for application timers. If you click the "Timer"-Link you see the list of timers already
defined. You can add entries or change the properties of existing entries in the usual manner.
Furthermore the following toolbar functions are available:

• Execute: allows you to execute the selected timer.

• Timer manager infos: displays internal state information of the timer manager.

The object-details of timer contain the following tabs:

• General

• Access

• History

Tab: General

You can edit the following attributes (required fields are bold):

• Id: Short name of the entry.

• Class name: Name of the class which contains the timer action. The class should
implement the interface com.groiss.timer.TimerTask

• Parameter: A String parameter for the "run" function.

203

9.1. SERVER

Figure 9.2: Tab: General (Timer)

• Application: An application which the timer belongs to. The timer is listed in the
timer-table of the appropriate application.

• First time: The time of the first run.

• Period: Interval in seconds or in form of cron-pattern (see section 9.1.8).

• Essential: Activate this checkbox to mark the timer as essential one. Essential timers
provide a means to automatically reschedule erroneous or missing timer runs. A timer
watcher component in the system records the planned execution dates of essential
timers. Periodically, those schedules are checked for late or unfinished ones. When
such a situation is encountered (e.g. error in timer, database connection lost, etc.), a
mail is being send to the administrator and a retry run is scheduled. After a successful
timer run, the original schedule pattern (= field Period) is used to determine the next
planned schedule. The schedule of the retry run can be a delay in seconds or a cron-

204

9.1. SERVER

pattern (= field Rerun Pattern). Check for late runs or missing runs are made every
60 seconds, but this period can be set via the ep.timerentry.essential.check.seconds
configuration parameter located in the Other parameters section.
Please take notice of following hints when using an essential timer:

1. It is recommended to issue essential timers in their own thread, i.e. enter a
Thread Id!

2. It is not recommended to activate checkbox Run on startup!

3. In an @enterprise clustered installation activate checkbox Run on each node!

Example:
Consider a long running summation activity to be carried out at the beginning of
each quarter. The corresopnding timer pattern would e.g. be "0 3 1 1,4,7,10 *", that
is on 3:00 a.m. on the first on January, April, July and October. If this timer is a
nonessential one, then outages (e.g. system is down, network or database issues)
at this points in time would result in an erroneous or unscheduled timer run. The
"missing" run would need to be initiated manually at some convenient later point in
time after the issues were dealt with. To continue the example, when a rerun pattern
of "*/5 3-5 * * *" is specified, missed runs would be re-scheduled every five minutes
between 3 a.m. and 5 a.m. on each day. This could be a meaningful pattern, if the
timer is rather long running and puts some load on the system. To be completed
before prime time, a start later than 5 a.m. would not be viable.

• Rerun Pattern: Interval in seconds or in form of cron-pattern for essential timer.

• Active: Only when checked, the timer task is performed.

• Run on startup: When checked, this timer task is started on startup.

• Run on each node: The timer is running locally on every node of the cluster.

• Thread Id: If you specify a non-empty string, the string is used as thread identifier.
All timers with this string as thread id are executed in the same thread. Default is,
that all timers are executed in one thread.

• Description: Free text.

• Last run: Shows, when the timer had its last run (start- and end-time) and the dura-
tion (in seconds).

• Passivated at: Time, when the timer was set temporarily inactive because of an
exception (only for timers which are not marked as Essential).

• Original schedule: Time of the next original planned schedule (field Period) of an
essential timer.

• New schedule: Time of the next planned schedule of an essential timer. In case of an
error the next schedule is determined depending on the value of field Rerun Pattern.

205

9.1. SERVER

• Run state: The state of an essential timer. Normally the state is Scheduled which
means that the timer is waiting until the next run (= value of New schedule). If a
timer is already executed, but not finished, the state is Started. Another state is Failed
which indicates an erroneous timer-run.

Activating the button Execute, executes the actual timer immediately.

Activating the button Reactivate, releases the timer of the passive status.

The buttons Cancel run and Retry run are relevant for essential timers only. If the button
Cancel run is activated, the plan for the next run (= New schedule) will be canceled and a
new plan according to the setting in field Period will be calculated.
If the button Retry run is activated, a new plan (= New schedule) will be calculated which
is 1 minute in future.

By clicking on this symbol a popup-window will be opened, where you can enter the period
in seconds or in form of cron pattern (see section 9.1.8).

If you click on this symbol, a popup-window will be opened, where the next ten invocations
are shown.

Cron-Pattern

The cron-pattern comes from the UNIX-world and is used for tasks, which should be exe-
cuted automatically in recurring intervals.
@enterprise uses this pattern to start timers as desired. @enterprise adheres to the V7-
standard of cron.

A row consists of five defined columns. These columns contain the time data (minutes,
hours, days, months, weekdays), whereas the columns are separated by spaces. The entries
for the time data are shown in the following:

Minutes 0-59 and * for all minutes
Hours 0-23 and * for all hours
Days 1-31 and * for every day
Months 1-12 and * for every month
Weekdays 0-7 and * for every weekday (0 and 7 for sunday)

Furthermore cron offers following advanced functions:

• A comma , allows more time data

• A hyphen - specifies a period

• A slash / divides into a time range

Examples:

206

9.1. SERVER

• Every day at 9h and 15h the timer will be executed: 0 9,15 * * *

• On the 15th of every month at 09:50h the timer will be executed: 50 9 15 * *

• The timer will be executed every Saturday at 00:00h: 0 0 * * 6

• The timer will be executed every 30 minutes: */30 * * * *

• Every day from 8h to 20h the timer will be executed every 20 min: */20 8-20 * * *

For further information about cron, please take a look at http://en.wikipedia.org

Overview about Standard-Timers

Standard-timers are:

• BatchManager: Starts and finishes batch jobs. Only needed, when batch job steps
are used in process definitions.

• BuildTimer: Builds the active classifier assignments of all active processes. This
timer is only needed for classifier assignments which are build dynamically instead
of using a manually defined decision tree. The following optional parameters may be
defined:

– processes: the (comma-separated) ids of the processes to respect

– assignments: the (comma-separated) names of the classifier assignments to be
built

– mailTo: an email address to which an email containing the evaluation results of
the built classifier assignments will be sent

– accuracyThreshold: a threshold for the accuracy of the built classifier assign-
ment. Only evaluation results of classifier assignments which accuracies are
below that threshold (or which could not be build due to an error) will be con-
tained in the email mentioned above. Supported are values between 0 and 100
which may also contain decimal places.

Example configuration:

processes=incident
assignments=category
mailTo=heisenberg@frequentis.com
accuracyThreshold=87.5

• CalendarReminder: Checks, if there are any calendar entries which specified re-
minder time is reached and sends mail notifications for those entries. Keep it switched
on, if the DMS is used.

• CheckForUpdatesTimer: This timer checks for updates periodically in application
repositories. If updates are available, an email with affected applications is sent to
administrator.

207

9.1. SERVER

• CleanUpDMS: Deletes empty directories in the checkout area and also deletes ACLs,
which where DMS-object specific, but are now unreachable. Keep it switched on, if
the DMS is used.

• ClusterCheck: Checks whether other nodes are running and reassigns cluster timer.
This timer is only needed, when using the @enterprise cluster. Default value for
tolerance time is 60 seconds, but can be changed by entering an integer value in field
Parameter. For more information about @enterprise cluster and related times see
the Installation Guide.

• CurrentSubstitutes: Checks, if some substitution specifications have to be enabled
or disabled due to the time periods specified at those substitution. Needed when user
or role substitutions are used.

• DeferredUpdate: On each run this timer takes a look, if there are any deferred up-
dates of master data for which the time to execute has been reached. And if so, those
updates will be performed by this timer. Keep it switched on.

• DeleteUserSessions: This timer deletes user sessions which are expired. With the
field Parameter the duration (in days) can be defined, how long a user session should
be active.

• Escalations: This timer checks on each run, if there are any escalations to fire. For
detailed information see section 6.5.9. Needed when any escalations are used in the
process definitions.

• EvaluationTimer: Performs an evaluation of the active classifier assignments of all
active processes. The following optional parameters may be defined:

– processes: the (comma-separated) ids of the processes to respect

– assignments: the (comma-separated) names of the classifier assignments to be
evaluated

– mailTo: an email address to which an email containing the evaluation results of
the classifier assignments will be sent

– accuracyThreshold: a threshold for the accuracy of the evaluated classifier as-
signment. Only evaluation results of classifier assignments which accuracies
are below that threshold (or which could not be evaluated due to an error) will
be contained in the email mentioned above. Supported are values between 0 and
100 which may also contain decimal places.

Example configuration:

processes=incident
assignments=category
mailTo=heisenberg@frequentis.com
accuracyThreshold=87.5

• HeartBeat: Informs the cluster that this node is alive. This timer is only needed
when using the @enterprise cluster. In field Parameter you can set a tolerance time

208

9.1. SERVER

(integer value) for heartbeats. It is recommended to set the value to two times of the
maximum heartbeat timer interval of all nodes. Default value is 30 seconds. For more
information about @enterprise cluster and related times see the Installation Guide.

• IndexRefresh: Refresh the full-text search index in ORACLE. This timer is only
needed, if you use full-text search under ORACLE. The timer may be configured
with the following parameters:

– index: The full text index names (comma-separated) to refresh.
Default: avw_ctxdoccont,avw_ctxfieldvals

– memory: The memory used for refresh. Default: 32M

– threads: Number of threads refreshing the index. Default: 1

– maxtime: Maximum duration of refresh in minutes, the index refresh is stopped
if this time is exceeded. The refresh will be continued at the next run of index
refresh. Default: CTX_DDL.MAXTIME_UNLIMITED

– lockwait: Oracle provides several strategies how to handle a database lock dur-
ing the index refresh. Default: LOCK_NOWAIT_ERROR

For further information have a deeper look into the Oracle Text documentation, CTX_DDL
Package, SYNC_INDEX procedures.

• LDAPDirSyncTask: Synchronizes master data with LDAP Directory Servers. For
detailed information, please see section 9.6.5. Needed only when periodic LDAP
synchronization is configured.

• Log: This timer will remove all log entries (excepting the current log entry/the last
change) which are older as specified in field Parameter. If the timer parameter is
a positive integer D, then all log entries older than D days will be removed. If the
timer parameter is a property string, the retention period can be specified for indi-
vidual classes. The property string consists of elements of the form classname=Dn
(separated by line break). If zero is used as Dn, then the classes log entries will not
be removed. If * is given as a classname, the corresponding Dn parameter applies to
log entries for all classes not explicitly mentioned in the property (all other classes).
e.g.

*=30
com.groiss.org.User=0
com.groiss.org.OrgUnit=1000
com.groiss.org.Role=1000
com.groiss.org.UserRole=365

• LogV2Migration: A timer for migrating log entries of table avw_log due to new
versioning implementation (introduced in June 2017). This timer is needed because
a migration of table avw_log during database upgrade is not possible due to the huge
number (several millions) of records in that table. Therefore the migration is done
in steps of a defined duration (in seconds) which may be passed as argument to this
timer. The second supported argument lastMigratedOid is used for performance tun-
ing when querying the table avw_log and will be updated by the timer itself after

209

9.1. SERVER

each run - so please do not change it manually. If this timer is set to active and the
migration is done successfully, the timer will be set to inactive automatically.

• MailGetter: Download mails and perform the configured actions. All emails of a
mailbox are handled and if no error occurs for a message, the defined action is per-
formed. For emails, which cannot be handled because of an error, an error message
is thrown after processing all emails. Additionally detailed information of the erro-
neous emails is written to server log and if defined, the administrator is notified (en-
tered under Configuration/Communication/Administrator email address). For more
information concerning a mailbox see section 9.6.1. This timer is needed only, if any
mailbox contents should be processed automatically.

• MailQueueTimer: This timer iterates in a predefined time (default 10 min.) over
the mail queue and tries to send the appropriate mail. If an error occurs, a status
message will be stored at the mail queue entry. If sending is successful, the entry will
be removed from mail queue. More details about the mail queue could be found in
section 9.6.2.

• PasswordExpiration: Checks, if the password of users will expire in future and
sends a warning email to the users. The settings for validity and expiration warning
can be set under Configuration/Password policy. The message template for sending
the warning email is defined in default application (id pwdExpiration).

• PerimeterReplicationTimer: This timer is used for master data replication. It must
be activated on the internal server if timer based replication is desired.

• PerimeterSyncTimer: Used for remote process creation and information about sta-
tus changes. It interprets the handover specification files externtask.xml and intern-
task.xml.

• ProcessStartTimer: This timer starts the given process in given organizational unit.
For this purpose the text field Parameter has to contain the attributes process and ou.
Optionally the parameter startNote can be added (value could be an i18n-key, e.g.
<app-id>:<resourcestring>) to attach a process note with entered subject:

process=<procdef_id>
ou=<ou_id>
startNote=<note_subject>

Example:

process=jobproc
ou=gi
startNote=Started by timer

• RecycleBin: This timer deletes all entries from the DMS recycle bins of every user
which are older than n days. The number of days can be specified as positive integer
in field Parameter. More information concerning the recycle bin is available in the
User manual.

210

9.1. SERVER

• ReportSubscriptionTimer: The timer executes all reports where an active report
subscription has been defined. More information about report subscriptions is avail-
able in the Reporting manual.

• ReportTimer: This timer executes stored reports in defined periods. Following pa-
rameters are needed in field Parameter:

– query: A list of comma separated list of id’s of stored reports are needed, e.g.
query=q1,q2. The stored reports need to be define an exporter which is an
instance of FileReportingExporter (e.g.: PDF, Excel, Chart, CSV or XML -
Exporter etc.)

– action: Define one of following action how reports should be created:

* email: Report is sent to defined email address(= target)

* dms: Report is created in DMS in defined folder (= target)

* file: Report is stored on filesystem depending on parameter target

* none: Report is executed, but without additional action (e.g. necessary for
reports with Escalation Exporter)

– target: Depending on defined action, an email address, a path to a DMS folder
(e.g. COMMON/Reports) or a filesystem path (absolute or relative to server
root path) must be entered.

– filename: This parameter allows the definition of the filename (without exten-
sion) for the exported file(s). If more than one query was defined, the ex-
tension _1, _2, etc. is attached to the filename. The default file name is:
<QueryId>_yyyy-MM-dd HH:mm:ss

– nonempty: Setting this parameter to value true assures that reports without re-
sult are not sent or saved.

– templateid: This optional parameter can contain an id to a message template(see
section 6.11). By default the message template with id reportTimer of applica-
tion default is used, if not templateid is entered.

– Parameter: For each condition of a stored report a parameter-name can be de-
fined. For each condition that’s defined as ’parameter at execution’ it is required
to either define a default-value or specify a value and optionally an operator like
in following example:

<paramname>_value=test
<paramname>_operator=like

Reports with incomplete conditions will not be executed by the report timer.

Example configuration:

query=report1
action=email
target=heisenberg@frequentis.com
filename=Report1
nonempty=true
id_value=15

211

9.1. SERVER

id_operator==
subj_value=Error
subj_operator=like

If needed, an own implementation of ReportTimer could be created which must ex-
tend the class com.groiss.reporting.ReportTimer. More information can be found
in @enterprise API.

• SeenObjectCleaner: Removes all see-information which is not needed anymore.
The seen-information is used to indicate, if a work item is new (=unseen) or not.
Keep it switched on.

• Suspension: This timer will investigate all suspended work items, if it is time to see
those items again in the various worklists (i.e. it performs a time triggered automatic
’see again’). Furthermore all active wait steps are checked, if their period of time is
exceeded (see section 7.2.17). Keep it switched on.

• TokenRefresh: Refreshes access tokens of OAuth authorizers. Those access tokens
with less than half the original validity period remaining will be refreshed.

• WfXMLTask/WfXML2Task: Sends WfXML messages from outgoing buffer and
gets messages from passive partners. This timer is only needed, if WfXML is used.
For detailed information see section 9.6.7.

9.1.9 Pending changes

In the administration task list you find the entry Pending changes showing a list of objects
having queued changes. You can also withdraw the changes in this list.

9.1.10 Event registrations

In the administration you can view the list of registrations and you can add and remove
registrations. Processes waiting in a sync can be finished manually from the process history.
The following informations are displayed in the event table:

• Event registrant: The id of the process registered for the event.

• Event name: The name of the event for which the registration took place.

• Context: The context object for the event.

• Event handler: The Java–class handling the event.

The following functions are available in the toolbar:

• Refresh: Activating this function, the table will be updated.

• View: If you activate this function, the process history associated with the process
will be displayed. This function is also triggered when you double-click on a table
entry.

212

9.1. SERVER

• Complete: After activating this function, the process will be forwarded (like in the
worklist).

• Short search: Enter an process ID in the text field and activate this function to get a
limited result.

• All entries: Activate this function to display all entries in the table.

9.1.11 Batch jobs

With the help of this function it is possible to search after batch jobs. As search criteria
the process id, the state of the batch job and/or the time-period where a batch job has been
started, can be used.
After activating the button Start search a result table with all batch jobs are displayed de-
pending on the search criteria. By performing a double-click on an entry the detail mask can
be opened and subsequently edited. By activating the button Abort and go back the batch
job will be aborted and returned to the last interactive task of the process. The button Reset
deletes the values entered as search criteria.

More details about Batch Jobs can be found in the Application Development Guide in sec-
tion Batch processing.

9.1.12 Wait steps

This function allows to search for process instances where a wait step is executed at the
moment (see section 7.2.17 for wait step definition). As search criteria the process id and/or
the time-period where a wait step has been started or should be finished, can be used. After
activating the button Start search a result table with all process instance are displayed de-
pending on the search criteria. The button Reset deletes the values entered as search criteria.
By performing a double-click on an entry in result table the details of the process instance
are displayed. The toolbar function Change end time of wait step allows either to finish the
wait step immediately or change the end time (with optional comment).

9.1.13 Class path

For the convenience of application programmers we support the reloading of classes. A pre-
condition for doing this, is to distinct between system classes and application classes (and
resources). System classes are loaded by the system class loader and can not be unloaded.
They reside in the lib directory of the installation.

The application classes are in the lib and classes directories of the applications. The form
classes generated by the system are in the forms directory. These classes are loaded from
the application class loader and are reloadable.

To enable class reloading check the checkbox in the configuration (parameter group tuning).
To check your classpath use the Classpath link in the administration.

213

9.1. SERVER

Show shadowed classed

This method lists all resources, which name is found more than once in the class path or in
subfolders of the class path entries. resources, which are found more than once, are shown
in the following syntax.

relative path of resource Number of found resource with this relative path
Absolute Path of the resource used by the system
Absolute Path of shadowed (unused) files
...

9.1.14 Manage certificates

If SSL communication is needed, a certificate must be created. Certificates and the ap-
propriate private and public keys are stored in the server keystore which must be defined
before.

Hint: In @enterprise configuration under Security and HTTP server the appropriate set-
tings must be done for using certificates (see Installation- and configuration guide). The
server must be restarted to use the certificate management correctly.

To communicate in a secure manner @enterprise server needs a certificate which proofs the
integrity of the server’s public key. You may generate a self signed certificate, which covers
the needs for internal communication, or request an official certificate from a certification
authority (CA). Anyway the server needs a RSA key pair (public and private key), which
can be generated by clicking the button “Generate self signed certificate”. @enterprise
generates the key pair by using the keytool, which automatically generates a self signed
certificate to this key pair.

Certificates are also used to sign PDF documents. Therefore users are allowed to create
certificates at their own or can be done in the @enterprise administration. To allow users
to sign as a role (e.g. sales) the administrator has to create a certificate for the appropriate
role. User and role certificates do not need a server keystore (see settings in configuration
area Security), i.e. the creation of this kind of certificates is always allowed!

Generate self signed certificate

To generate a key pair, the following parameters have to be specified.

• Alias name: The alias name is so to say the id of the specific entry in the keystore.

• Country: a two-letter country code, e.g., "US"

• Company name: The official name of the company.

• Organizational unit: the specific department

• Email: Email address of the administrator.

214

9.1. SERVER

Figure 9.3: Generate self signed certificate

• Hostname / Name: The hostname of the server

• Company site: The city where the specific department of the company is located

• State/Province: The state of the company site.

• Days the key is valid: The key and the assigned certificates may expire. The valida-
tion time of the entry can be specified in days. The default value is 90 days.

• Key length (in bit): Can be chosen: 512, 1024 or 2048 bit of length.

Create certification request

Choose the entry of the keystore, which you want to use to create a CR. You can download
the CR by double-clicking it or by choose it and click the "create Certification Request"
button. If you have created the CR you can request a certification at a certification authority
(CA). How to do this can be found in the documentation of your CA.
You can get some example certificates at "www.secude.com/trustfactory/" or "www.trustcenter.de".

Import certificate

When the CA sends the requested certificate, you need to import it into the keystore. To do
so, click on the button “Import certificates” and specify the following parameters.

• Alias name: Ensure that the alias name is the same as the alias of the key pair for
which the request was generated.

• Private key password: A password for private key must be entered here.

215

9.1. SERVER

Figure 9.4: Import certificate

• Coding of the certificate
According to the encoding of the received certificate, there are 2 different ways to
import.

– Binary (DER, PKCS#7): in this case you have to specify the file, which holds
the certificate.

– Base64 encoded: just copy the certificate including header and footer lines in to
the textarea

• Certificate type: The certificate to import can be either the certificate of the server or
the certificate of a trusted organization (also called trust anchors). A trust anchor is
the root of a certificate chain an is needed, if the “require client certificate” option is
selected. The server accepts only client certificates, which are signed by a certification
authority, which certificate is stored in the keystore as a trust anchor. If the client can
not provide a certificate which is signed by one of the trustanchors in the keystore,
the connection will be refused.

If any entry of the keystore is not needed any longer, you can delete the entry by clicking
on the delete button.
Note: After any modification of the keystore the server needs to be restarted.

Import Certificate and KeyPair

This function allows to import wildcard certificates. A wildcard certificate secures your
domain and all your subdomains. The advantage of such a certificate is that only one cer-
tificate is needed and not multiple certificates for each domain.

The dialog Import Certificate and KeyPair contains following parameters:

216

9.1. SERVER

Figure 9.5: Import Certificate and KeyPair

• Alias name: Ensure that the alias name is the same as the alias of the key pair for
which the request was generated.

• Private key password: A password for private key must be entered here.

• Certificate file: Enter the path to certificate file which must be in DER-format.

• Privatekey file: Enter the path to Privatekey file which must be in DER-format.

9.1.15 Query tool

The query tool provides a simple interface to access databases in a read-only manner. Be-
cause direct database access may be a considerable security risk, the functionality is only
available when the following two conditions are met:

• The configuration parameter database.direct.access has value true. You must di-
rectly edit it in the configuration file or activate the checkbox near the parameter
database.direct.access in Configuration/Other parameters.

• The user must have the execute right on all objects (every user having the sys role has
this). Substitutions are not considered here.

While it is primarily intended to execute SQL queries against the underlying main database
of @enterprise it can also be used to determine connectivity issues to other databases. If
the radio button Local is activated, the statement will be executed on the database schema
of @enterprise .

If the radio button Other Database is activated, a set of fields will appear which allows you
to enter the connection properties of an external database. You can use the help function
(the question mark next to the JDBC URL field) to fill the fields JDBC Driver Class and
JDB -URL with patterns for valid values. Change the specific parameters like host name,
port and database IDs to the values appropriate for your environment. The JDBC driver that
contains the JDBC Driver Class must be available in the class path (usually by placing the
corresponding *.jar file it in the lib directory of the @enterprise installation). Then enter
any credentials needed in the fields Database Userid and Database Password.

217

9.2. IMPORT/EXPORT

If in Communication→ External Stores some database connections are configured, you can
create a connection with a defined database via External database option. All configured
connections can be found in the External database drop-down list. You can find more in-
formation under 9.6.6.

Regardless whether the local or an external database is being targeted, any query (only se-
lect statements are allowed) in the text field Statement can be sent by activating the button
Execute. The results of the query will be displayed in the lower area of the page.
After the results, the corresponding query plan can optionally be displayed. This works only
when using Oracle and if the user has the STAT right. More information about how to con-
figure this functionality can be found in section Installation/ Database Preparation/Oracle
of the Installation and Configuration manual.

In addition to queries, the describe command can be used to access meta information about
the database. For details about the results, please consult the appropriate Java API docu-
mentation for java.sql.DatabaseMetaData.
The describe commands can take the following forms:

• describe DBSchemas - shows the available database schemas
c.f. DatabaseMetaData.getSchemas()

• describe SQLTypes - shows the available data types of the DBMS
c.f. DatabaseMetaData.getTypeInfo()

• describe table_name - shows information about the table: 1

– Columns: c.f. DatabaseMetaData.getColumns(),

– Primary keys: c.f. DatabaseMetaData.getPrimaryKeys(),

– Foreign keys: c.f. DatabaseMetaData.getImportedKeys() and
DatabaseMetaData.getExportedKeys(),

– Indexes: c.f. DatabaseMetaData.getIndexInfo().

The table_name can also be qualified by a schema_name or by a catalog_name as well as a
schema_name e.g.:

• describe table_name

• describe otherschema.othertable

• describe othercatalog.otherschema.othertable

9.2 Import/Export

1Under Oracle, the describe table_name command can be quite slow (several seconds); some patience is
required.

218

9.2. IMPORT/EXPORT

9.2.1 Import/Export in XML Format

The import/export functions allow you to export data (master data and runtime data) from
one @enterpriseinstallation and import it to another. The data are exported to a file in XML
format.

Export

You can export different types of data. XML Export shows you a list of all exportable data
types and lets you choose from options depending on the chosen data type. Figure 9.6 shows
the available export types. You can export only one type of data at a time. If the selected
type has additional options to choose from, an option section will become visible (like for
organizational units, as you can see in the figure). The first element of the export screen is
the "Export Description" text area - you can use this to optionally add a description to the
export file. If you import the export file later, the description text will be displayed.

The checkbox Map referenced users to sysadm tries to set as often as possible the sysadm
user as user reference. This is not done e.g. for permission list (acl) entries of step agents
of a process. As well it is not wise to use this checkbox for every kind of export, because it
falsifies the exported data.

Figure 9.6: Export in XML–Format

@enterprisecan export the following data:

Applications Export one complete application with all process definitions and other mas-
ter data defined in it. This includes all objects that are defined in the applications’

219

9.2. IMPORT/EXPORT

processes (see processes below), plus data defined in the application: rights, object
classes, task functions, tasks, form types, roles, etc.

Test cases are not exported with applications - for this purpose an own exporter is
available (see beneath).

The checkbox Incl. Application directory is not ticked by default and indicates that
the entered application directory on application detail mask is ignored at export, i.e.
if the exported file is imported on target system, then the application directory will
not be written for new created application object or replaced for existing application
object. Activate this checkbox, if the application directory on target system should be
the same as defined in application object on source system.
With checkbox Incl. Reports it is possible to define, if the reports of the selected
application should be exported or not (by default they are exported).

Processes Export one process plus tasks, steps, form types, and roles used in the selected
process definition, process interfaces and rights (e.g., rights on a form type). Rights
will be imported only if the required agents and departments already exist on the
import system.

Option Incl. Roles: If this option is selected, referenced roles are exported. Other-
wise, they are marked as references in the export file. Option Incl. Form types: If this
option is selected, referenced form types are exported. Otherwise, they are marked as
references in the export file.

Form types Export of form types. The form-templates will not be included in the export-
file (is usually part of application-jar file).

Option Incl. Subforms: If this option is selected, referenced forms are exported.
Otherwise, these forms are marked as references in the export file.

Value lists Export of one or more value lists.

Organizational units Export all organizational units.

Organizational hierarchies Export of all organizational hierarchies and their organiza-
tional units.

Users Export all users. Optionally you can include roles and rights defined for these users,
and user settings as well as the users’ dashboard elements.

Mind: user settings can contain a link to a home page. This link will not be modified
by the import/export of @enterprise- thus, if it contains OIDs of specific objects (e.g.
applications, etc.), the link will most likely not work any more after importing it to
another system. The same restriction also applies to dashboard elements, which can
contain arbitrary OIDs, too.

Permission lists Export all permission lists (ACLs) of @enterprise.

Reports Export stored reports - you can choose one or more queries in a second step.
Optionally you can include access rights defined for the exported stored reports. Ref-
erenced objects (such as process definitions, tasks, forms, etc.) will not be included in
a stored reports export. Stored reports will be imported only, if these required objects
already exist on the import system.

220

9.2. IMPORT/EXPORT

Timer Export one or more timers. If you select to export timers, you can choose the desired
timers in step two.

External Database settings Export all external database configurations defined in Com-
munication→ External Stores .

LDAP settings Export all LDAP entries. This exports the LDAP entries defined in Com-
munication→ LDAP .

Mail settings Export all Mailboxes defined in Communication→ Mailboxes .

Dashboard (default elements) Export the default dashboard elements. User dashboard
elements will not be included in this export (they can be exported directly with the
users). Default dashboard elements are the elements that an administrator saved as
default.

Process instances Export process instances (runtime data) of one or more process defini-
tions. This includes all step instances, form instances, adhoc steps, and so on. Rights
on exported objects can optionally be included. You can restrict the exported process
instances by defining a start restriction (only export process instances that have been
started between two definable dates). The target process definitions can be selected
in a second step.

Master data (like process definitions, users, roles, etc.) are not included in a process
instance export. Process instances are only imported on a target system if the required
master data already exists. Thus, on the target system you should first ensure that the
required master data exists and afterwards import process instances.

DMS folder Export a folder of the DMS with its content (runtime data). This includes
documents, forms, notes, web links and subfolders (recursive). Links to other DMS
objects cannot be exported and will be ignored. Access rights defined on the exported
objects can be included optionally. Agents (users or roles) and departments that occur
in such right definitions will not be exported. The rights will be imported only if the
required agents and departments exist on the target import system.

You can export the Common folder or a specific user’s folder (or one of their subfold-
ers). If you want to export a user’s folder, first select the user and then the folder.

Forms Export of form instances. All forms (instances), which was created in @enterprise,
can be exported. Before importing form instances, the form classes and other refer-
enced objects (e.g. process definition where form instance is process form) must be
available on the target system, i.e. the appropriate application with their form types
must be available.

Test cases Export of all test cases of selected application (see section 6.12). The referenced
objects of a test case (process definition, tasks, agents, etc.) are not exported here and
must be available on target system!

Classifiers When selecting the Classifiers group, you can choose one or more process clas-
sifiers for export.

The server writes the XML file to its temporary directory. After an export file has been
completely written, the browser will ask you if you want to download the file.

221

9.2. IMPORT/EXPORT

Import

Importing a XML file is done in three steps.

1. First you upload the XML file to the server.

2. The browser displays information about the XML file’s content.

3. The content of the XML file will be imported and you will see information about the
imported elements in the browser.

The import will be aborted and an error message will be displayed, if an error occurs. Im-
ported objects are already stored in @enterprise!

If export-files of earlier versions of @enterprise (e.g. 7.0) should be imported, the user
will be informed about the older export-file and has to select an application for the default
objects. This selection is necessary for assigning application-objects (e.g. processes) to the
right application. This selection will be ignored in some cases, e.g. if the email-settings are
imported.

Hint: If an export of default application exists, the default objects of @enterprise will
not be changed by the import! These default objects are created at @enterprise setup, e.g.
roles (all, sys, home), form types, object classes, etc.

Import/Exports Dependencies

If you want to copy data from one server to another server, it is necessary to perform the
imports in the right order. The exports can be done in any order. Runtime data (process
instances, DMS content) and stored reports, as well as access rights usually require master
data to exist on the import system. If the data does not exist, the objects will not be imported.
If you perform imports in the following order, everything should work fine:

1. Users (without rights)

2. Organizational units

3. Organizational hierarchies

4. Applications, processes, form types, value lists

5. Users (incl. rights), ACLs

6. Process instances, DMS folder, stored reports, timer, LDAP settings, mail settings,
dashboard elements

9.2.2 Archive processes

This function deletes process instances in the @enterprise database. If an archiving class
is installed (see the configuration group "Classes"), the archive method of this class is
called with each process instance. This can be used to store some information about

222

9.2. IMPORT/EXPORT

the process instance in an external storage. If archiving should be prevented, configure
com.groiss.wf.NoArchiver as archiving class!
For archiving process instances perform the following steps:

1. Select an application or one specific process type.

2. Specify the finish date. All process instances of the given type which have been
finished before this date are archived.

3. If you want to delete also running process instances, check the according checkbox.

4. Archive the processes with the button "Archive".

Figure 9.7: Archive process instances

9.2.3 Export application

This function offers the possibility to put an @enterprise application into a ZIP archive
(incl. optional application export) and install it with function Install application) again on
an other @enterprise system (see section 9.2.4). It is aimed primarily for customers who
create an application with the @enterprise administration user interface without writing
Java code. By activating the button Export following steps are performed:

• All files of the classes folder within the defined application directory are collected and
packaged in a JAR file. The name of the JAR file is the id of the selected application.
The definition of the application directory is described in section 6.1.1. The set of
possible files within the classes folder is described in the @enterprise application
development guide in section 5.1 Organization of Files.

• The previous mentioned JAR file is stored in folder lib within the ZIP archive.

• Additionally the file appl.prop is created on top-level within the ZIP archive. This file
is enriched automatically with parameters that are needed for a correct application im-
port (see @enterprise application development guide, section 5.2 The Configuration
File for details).

• If the checkbox Perform XML export for application has been activated, a xml export
is done and the file stored in the JAR file according to the described file structure in
@enterprise application development guide, section 5.1 Organization of Files.

223

9.2. IMPORT/EXPORT

• The ZIP archive is stored in folder dist of the definition application directory. By acti-
vating the checkbox Download the zip file the file could be downloaded with Browsers
functionality.

• The checkbox Lock indicates, if the exported application can be adapted on target sys-
tem. If activated, this means that no application elements can be created/adapted/deleted
with some exceptions:

– Adaption of application directory

– Creation/Adaption of permissions on tab Access under following conditions:

* Access for roles which are stored in an application with a higher startup
position

* Permissions of roles on objects which are stored in an application with a
higher startup position

– Creation/Adaption of decision support objects for a process definition

– Assignment of functions in tab Functions of a process definition, if function is
stored in an application with a higher startup position

– Creation/Adaption of assignments in GUI configuration objects, if role is stored
in an application with a higher startup position

– (De)activation of timer or change the period of a timer

– Adaption of mailbox credentials

– Adaption of URLs in Webservice Client objects

– Creation of new language resources in resource editor

The information, if an application is locked, is stored in the manifest of the created
JAR file with following attribute: Locked: true

Hint: In case of an application upgrade or a XML import, the lock of an application
is nullified for these operations!

Figure 9.8: Export application

224

9.2. IMPORT/EXPORT

9.2.4 Install/Update application

This function allows to install a new application and to update it. For both options an
archive file (*.zip or *.jar file) is needed which should be created ideally with administration
function Export application (see section 9.2.3).

Hint: If the archive creation is done manually, the file should be created with UTF-8
encoding to ensure e.g. unpacking files/folders with umlauts in their names correctly!

Install

There are 2 ways to install an application:

• Upload: If an archive file exists on file system, the application can be installed with
this option. Select the corresponding file from file system, enter the destination di-
rectory for the new application into the field "Destination Directory" where the ap-
plication should be installed on file system and activate the "Install" button. This
will transfer the zipped application to the server, extract the content, and perform
the installation. Afterwards you are requested to restart the @enterprise server (via
information icon in toolbar).

• Load from URL: Enter an URL to an archive file on a foreign system. The next
installation steps are the same as for option Upload

l

Figure 9.9: Install/Update application

Update

The way to update an application is quite the same as for a new installation (see description
above), i.e. create an archive file first and select it/enter URL for the update procedure.
After activating the button Update, the selected file will be stored in the patches-folder of
the already installed application on file system and the administrator will be requested to
restart the @enterprise server. After the restart the upgrade procedure of @enterprise is
performed automatically and in case of the updated application all (application) files on file
system are replaced by the files of the archive, excepting the file appl.prop. Afterwards the
@enterprise server can be started in the ordinary way.

225

9.2. IMPORT/EXPORT

9.2.5 File import

The new file import component allows the specification of the structure of the import source
and the target objects:

• Import Definition: An import definition file (import.xml) is necessary to use this
function. This file must be stored in classes-folder of @enterprise or within an
application-folder (see Application Development Guide - section Organization of
files). Following an example of an import definition:

<?xml version="1.0" encoding="iso-8859-15" standalone="yes"?>
<importDeclarations>

<import name="resources">
<targetClass>com.groiss.calendar.pers.Resource</targetClass>
<columns>
<column name="name"/>
<column name="description"/>
</columns>
<keyField>name</keyField>
<delimiter>;</delimiter>
</import>

</importDeclarations>

The keywords of the Import definition are described in section Keywords of Import
Definition.

• File: Choose a source to upload a file:

– Upload: If this function is selected, you have the possibility to enter a path.

– Local: Selecting this option allows to upload files, which are stored in @enterprise-
folder (=root).

– Class path: This function allows to upload files, which are in classpath only.

– According to definition: The file, which is entered in the Import Definition (im-
port.xml), is used.

• Mode: This dropdown-list offers following three upload-modes:

– Parse file only: The file will be parsed only and no object are created in @en-
terprise.

– Skip database operations: The file will be parsed and compared with existing
objects (without database operations).

– Import: The file will be uploaded and objects will be created in @enterprise
(with database operations).

• Load: Activating this function loads the selected file.

226

9.2. IMPORT/EXPORT

Figure 9.10: File import

Keywords of Import Definition

• <import>: The import description which has the format <import name=”name”>.
Following attributes can be defined for this keyword:

– ignoreHeader: If true, the first row is ignored.

– useOrgData: If true, the OrgData-methods of @enterprise are used instead of
Store-methods.

• <targetClass>: Symbolizes the import type (= target class).

• <targetCondition>: Restriction of targetClass elements. Only these elements are
compared with the imported ones, not existing elements will be deleted.

• <keyField>: Field of target class, which contains the key (necessary for import).

• <importHandler>: If no keyField was set, a import handler must be entered which
implements the interface com.groiss.fileimport.ImportHandler.

• <constants>: Contains a set of constants (<constant name=”name” value=”val”/>),
which are added to the set of values of each row.

• <extensionClass>: Name of the class for additional data of master data objects
(users, OUs)

• <delimiter>: Delimiter for fields, e.g. ;

• <escapeMode>: Exception handling, if a character occurs which has to be escaped.
Backslash or Duplicate, e.g. special character is quoted: dÁrtangnon or d”artangnon

• <commentchar>: Rows are ignored which start with this character.

• <charset>: All valid Java charsets (default: StringUtil.getCharset());

• <file>: Path to file.

• <columns>: Contains a set of rows which will be imported:
<column name=”name” startcol=”1” endcol=”10” length=”100” [format=”dateformat”]
[mapping=”mappingName”] />

227

9.3. CLUSTER

• <dateformats>: A set of dateformats can be entered:
<dateformat name=”name” timezone=”timezone” locale=”locale”/>
Example:

<dateformats>
<dateformat name="date">ddMMyyyy</dateformat>
</dateformats>

• <mappings>: Definition of mappings in format <mappings name=”name”> <map-
ping*><keys><key>M</key></keys><value>1</value></mapping> </mappings>.
Example:

<mappings>
<mapping name="lang">
<keys><key>EN</key></keys>
<value>en_US</value>
</mapping>
</mappings>

File import with timer

In @enterprise is possible to define time-controlled file import. For this purpose it is neces-
sary to define a timer. The class name of the timer is com.groiss.fileimport.ImportTimer and
as a parameter you should enter a combination of the application ID and the id of the import
(<application_id>:<import_id>). Import-ID corresponds to the following information in
import.xml: <import name = "import-id"> ... <import>.
For example:

myappid:importid

Further information about timers and how to define one can be found in chapter 9.1.8.

9.3 Cluster

9.3.1 Cluster Monitor

A cluster is a set of @enterprise engines which share a common database schema and
which are configured identically. The aim of this configuration is to provide enhanced
availability and scalability. Further informations on clusters can be found in the Installation
manual.

Informations about the cluster architecture of @enterprise can be found in the installation
guide. The attributes of a cluster and node respectively are described there also.

228

9.4. DMS

9.3.2 Servers

This meta data object is still offered for the reason of downward compatibility to prior
versions of @enterprise. There it has been relevant for the distribution mechanism.
Since version 6.1 @enterprise has a new so called cluster architecture and therefore the
distribution mechanism is not used any longer. However, one server object is still required.
It represents the current installation of an @enterprise–server. If this server is deleted acci-
dentally it has to be inserted again with the attributes which are defined in the configuration
file of @enterprise.

Hint: The port-settings on this mask are used for e.g. email notifications or if @enter-
prise is running in a load-balanced cluster enviornment. The port-settings for the operation
of @enterprise must be set in Configuration of @enterprise.

9.4 DMS

9.4.1 Full-text search

The status of the full-text search may be administrated in the system configuration. There
you can activate or deactivate the full-text search and if you are activating it, you may ini-
tialize it afterwards. Initialization must be done if you want to use full-text search for all
documents and forms which were last amended while the full-text search was not active.
The full-text search will be available for all forms and documents created or changed after
the specified date (or for all if no date is specified).

Furthermore this function allows to update the stored information of changed name at-
tributes of formtypes (table avw_formfieldvals). The discrepancy arises when the name
attribute or name pattern of a formtype has been changed via administration.

9.4.2 Keywords

By clicking this link a HTML–page will be opened, where you can administrate a list of
keywords. The entered keywords can be assigned to individual documents in the DMS (see
User Manual). These keywords can be used in the document-search.

9.4.3 Search in Recycle Bins

With help of this function an administrator is able to search for all deleted DMS objects
located in recycle bins of the users. For this purpose an @enterprise Reporting search
mask is offered where following conditions can be defined:

• Name: The name of the document.

• Deleted from and Deleted to: Search for DMS objects which have been deleted within
a certain period of time.

• Recycle Bin of: The entries found should be located in these users recycle bins.

229

9.5. REORGANIZE

• Origin: Definition of the origin storage location of the DMS–object (DMS–folder,
process instance).

• Form type: The entries found should be of this form type.

The button/function Executes starts the search. The report result contains following columns:

• Name: The name of the document; by activating the link the content of the document
will be displayed (folders are not clickable).

• Origin: Tis column contains the information of the origin storage location of the
DMS–object (DMS–folder, process instance).

• Recycle Bin of: The name of the user who is owner of the recycle bin.

• Deleted at: The column displays the date when DMS–object has been deleted/moved
to recycle bin.

• Form type: This column lists the name of the document type.

• Deleted with: Information, if the element has been deleted directly or indirectly. In-
direct means that a folder has been deleted and the element is part of this folder. In
this case the element cannot be restored only: either the function Cut must be used or
the appropriate folder must be restored.

In addition to the provided Reporting toolbar functions Restore and Cut are available.
Restore allows to restore selected DMS-objects to origin storage place, i.e. the DMS-
objects are moved from recycle bin to origin storage place. If the origin storage place is not
available anymore, an appropriate error will be displayed. In this case you have to use the
toolbar function Cut.
The function Cut allows to restore the selected DMS-objects from recycle bin to an arbi-
trary storage place. For this purpose select the DMS-objects in the table, activate toolbar
function Cut, move to an arbitrary DMS-folder and activate the toolbar function Insert.
For both functions the administrator must have the appropriate permissions, i.e. if the ad-
ministration has no appropriate rights, e.g. to manipulate the content of a DMS folder, he
will be informed when the function is executed!

9.5 Reorganize

9.5.1 Change role assignments

Change the role assignments of a set of users from one organizational unit to another.
Select in the field "from old Department" the organizational unit, from which you want to
move or copy role assignments to another organizational unit (see Fig. 9.11).
After clicking "Next" you can select which role assignment should be moved, copied or
remain unchanged.

230

9.6. COMMUNICATION

Figure 9.11: Role assignments (1)

Figure 9.12: Role assignments (2)

9.5.2 Analyze process instances

A list of process instances is shown, which have no valid agent. This case (no valid agent)
can happen, when an organizational unit is deactivated, or role assignments are deleted.
Example: An existing process will be finished, but has no valid following agent. The
process instance occurs in the table with problem status Finish not completed. Now you
can click on the process instance id to open the detail-view and assign an agent who is able
to finish the task. For this purpose you have to activate the link of the last active agent to
assign the task to a new agent. The 3 question marks (???) in the process-history symbolizes
that the instance has no following agent; should not changed in this case, otherwise a new
process instance will be created.

9.5.3 OU history

Here you can capture the history of changes to organizational units manually. This might
be interesting if you want to know which organizational unit emanated from another during
the process of changing your organizational structure.

9.6 Communication

9.6.1 Mailboxes

The system can handle incoming emails. Several mailboxes can be defined together with
an action to perform for emails. Access to the mailboxes is performed with the IMAP4

231

9.6. COMMUNICATION

protocol.

Figure 9.13: Tab: General (Mailbox)

Tab: General

You can edit the following attributes (required fields are bold):

• Id: An unique id.

• Application: An application which the mailbox belongs to. The mailbox is listed in
the mailbox-table of the appropriate application.

• Server: Mail server (in the form hostname or hostname:port).

• User: User name for the mailbox.

• Password: password for accessing the mailbox. Must stay empty if an authorizer is
used.

• Authorizer: Email Authorizer. More information about Authorizers can be found in
Installation and Configuration manual in section OAuth 2.0 authentication.

232

9.6. COMMUNICATION

• Email address: the email address of the mailbox - is also used by the email tab of
processes (tab definition is described in section 6.5.4).

• Folder: Accessed folder.

• Protocol: This parameter specifies the protocol, which is used to get your mails from
your mail server. The possible options are IMAP and POP3.

• Type of communication: The level of security is set by this parameter. There are 3
possible options:

– Unencrypted: Unencrypted communication means, that the data is transmitted
in plain text.

– Encrypted: In this case the data is SSL encrypted, but the certificate of the mail
server will not be validated.

– Trusted (with certificate): To communicate secure, the mail server has to au-
thenticate itself to @enterprise. This is done by checking the certificate of the
mail server. To add trusted server you have to import the certificate into the
@enterprise keystore (chapter 9.1.14).

• Check with timer: The MailTimer reads the mailbox and performs the specified ac-
tion. If a mail should be sent via mailbox, this parameter the parameters SMTP host
and Type of SMTP communication need to be properly configured. Otherwise those
will be ignored and the configuration parameters form Administration/Configuration/Communication
are going to be used!

• SMTP host: Server for outgoing emails (in the form hostname or hostname:port).

• Type of SMTP communication: The level of security is set by this parameter. There
are 4 possible options:

– Unencrypted: Unencrypted communication means, that the data is transmitted
in plain text.

– STARTTLS: The communication is encrypted using Transport Layer Security
(TLS).

– Encrypted: In this case the data is SSL encrypted, but the certificate of the mail
server will not be validated.

– Trusted (with certificate): Please see the same option by Type of communication.

• Description: Free text.

• Download mails: Performs the defined action on the contents of the mailbox. All
emails of a mailbox are handled and if no error occurs for a message, the defined
action is performed. For emails, which cannot be handled because of an error, an
error message is thrown after processing all emails. Additionally detailed information
of the erroneous emails is written to server log.

The tab View mailbox lists the contents of the mailbox.

233

9.6. COMMUNICATION

Tab: Action

This tab contains the area Common and action details with following settings:

• Restrict to these senders: This field allows to define email addresses or patterns
(separated by a new line). If defined, the mailbox action will be executed for these
email senders only. If nothing is defined, the mailbox action will be executed always
(depending on defined junk filter under Configuration/Communication. In all other
cases the email is removed from the server without action.
Examples:

– *frequentis* - If email address contains string "frequentis", action will be exe-
cuted

– *frequentis.com - If email address contains string "frequentis.com" at the end,
action will be executed

– max.muster@* - If email address contains string "max.muster@" at the begin-
ning, action will be executed

– max.muster@frequentis.com - If email address contains exactly the string
"max.muster@frequentis.com", action will be executed

• Action: One of following standard actions can be defined here which is executed, if
an email has been received:

– Start a process: If this action is selected, the entered Process will be started in
given Organizational Unit, if no assignment via Subject pattern (see Installation-
and Configuration Guide - section Communication) could be performed. If a
Receipt text is entered, this text is send to the sender of the email automatically
in case of an incoming email (only for new started processes).

– Customized action: Specify a Java class which implements the interface
com.groiss.mail.MailHandler2. The checkbox Assign automatically to pro-
cess defines, if the email should be assigned automatically to the process ac-
cording to Subject pattern (see Installation- and Configuration Guide - section
Communication) before the defined action is performed.

– None

9.6.2 Mail-Queue

Sometimes mail servers go down, this used to cause an error message to be prompted to the
user and the notification to be lost. With mail queueing the messages remain in the queue
until they are sent successfully.
An entry consists of following columns:

• Email: The mail object to send.

• Created at: The creation date of a mail queue entry which is used by the MailQueue-
Timer to check on the max. time for attempts to send. This max. time can be set with
parameter Max. time for mail queue item under Configuration/Communication.

234

9.6. COMMUNICATION

• Last attempt: If an error occurs during processing entry, the timestamp of the oc-
curence will be stored. If no error occured, the entry will be removed from mail
queue.

• State: The state message of mail queue entry is displayed. If a new entry has been
created, the state New is set. If an error occurs, the appropriate error message is set as
state. If no error occured, the entry will be removed from mail queue.

• Referenced object: If available, a referenced object is displayed which is could be an
@enterprise Persistent. Generally a object of form type Email is displayed. The link
opens the DMS folder in a new popup where object is stored.

The entries are handled generally by the MailQueueTimer, but can be processed with the
toolbar function Send now. Following toolbar functions are available:

• Show mail details: If an entry is selected and this function activated, the details of
the mail are shown.

• Send now: By selecting an entry and activating this function the mail of the queue
entry is tried to send. If sending fails, the user will be informed and the appropriate
state message will be written.

• Delete: The selected entries will be removed from mail queue with this function.

• Delete incl. referenced object: The selected entries will be removed from mail
queue and the referenced object will be deleted with this function. If the referenced
object is a process instance (or activity instance), the main process instance will be
determined and aborted/archived!

• Refresh: This function refreshes the table.

Mail queue entries are created in various ways, e.g. via the user interface by using the com-
pose window of the mail tab of an process instance. Furthermore the API com.groiss.messaging.MessageTemplate
provides methods to send mails. More details can be found in the Application Development
Guide.

9.6.3 Mail journal

The mail journal is a protocol about all outgoing emails using a message template with ac-
tive checkbox Log message in journal (see section 6.11.1). The mail journal is divided into
2 sections: the search mask and the result table.

The search mask allows to restrict the result. All fields are AND-related, excepting the
fields Process Id and Document name: these 2 fields are OR-related, i.e. either entries with
process context or entries with document context are listed. If no condition is entered and
the button Start search is activated, all entries of the mail journal will be listed in result table.

The result table contains following columns:

• Subject: The subject of the message which has been sent.

235

9.6. COMMUNICATION

• Sender: The sender of the message; generally the standard @enterprise mail sender
or a alternative sender defined in the message template.

• Recipients, CC and BCC: A comma-separated list of recipients which received a
message.

• Sent: The time when message has been sent.

• Context: The column contains the referenced object of sent message. In case of
processes a link to the process detail is displayed, in case of a DMS object the name
of the affected object with a link to the appropriate DMS folder is displayed.

The toolbar function Delete items in journal allows to delete all entries created until the
selected/entered date.

9.6.4 Authorizers

More information about Authorizers can be found in Installation and Configuration manual
in section OAuth 2.0 authentication.

9.6.5 LDAP

Here you can define LDAP (Lightweigth Directory Access Protocol) server entries. They
can be used to synchronize @enterprise organizational data with existing directory ser-
vices. We provide a predefined LDAP schema and a corresponding mapping mechanism.
Customer specific synchronization semantics can be implemented as well. Details for such
mappings can be found in the programming manual.

Tab: General

You can edit the following attributes (required fields are bold):

• Name: Name of the Server

• Server: Hostname of the LDAP Server

• Port: Port of the LDAP Server. Usual ports are 389 (for unencrypted communication
and STARTTLS) and 636 (for encrypted communication).

• Type of communication: One of the following communication types can be defined
here:

– Unencrypted: LDAP connection without encryption - this is the standard com-
munication type.

– Encrypted: The LDAP connection will be SSL–encrypted.

– STARTTLS: This is an extension to plain text communication protocols, which
offers a way to upgrade a plain text connection to an encrypted connection in-
stead of using a separate port for encrypted communication.

236

9.6. COMMUNICATION

Figure 9.14: Tab: LDAP

• Trust level: To assure a secure transmission, the LDAP server has to authenticate
itself against @enterprise. This is achieved by checking the LDAP server certificate.
For communication types Encrypted and STARTTLS one of following trust levels
must be selected:

237

9.6. COMMUNICATION

– System default: The standard trust mechanisms of Java is being used, this is
appropriate when the certificate of the directory server is an official one. Rec-
ommended for production use.

– Blind: No real check of server certificate, no check of hostname. While blind
trust may be fine for development environments or initial tests, it is strongly
discouraged to use it in a production environment.

– Certificate in truststore: The @enterprise truststore is being used: if the cer-
tificate of the LDAP server has been explicitely imported to the key store (trust
store) of @enterprise, it is being trusted, even if it is a self signed one.

• Direction: Direction of synchronization: either

– To LDAP or

– To @enterprise

• Search root: LDAP Root, e.g. dc=my,dc=org

• User: LDAP–Account, e.g. cn=admin,dc=my,dc=org

• Password: Password for the Account.

• Filter: LDAP Filter: allows to select just specific LDAP entries e.g.: (objectClass=*)

• LDAP Pagesize: with this parameter the results could be read in a paged way. Needed
when the LDAP server imposes some limits on the number of returned entries.

• Class name: by specifying a class which implements com.groiss.ldap.DirectorySyncer,
one can realize proprietary schema mappings. @enterprise offers a basic implemen-
tation for importing Active Directory users. For this purpose the class name
com.groiss.ldap.BasicUserDirectorySyncer must be entered (see section Active Di-
rectory Sync below for more details).

• Parameter: Additional parameter for Active Directory Sync - see the correspondingly
named section below for more details.

• Description: free text.

• Check with timer: if checked, the LDAPDirSyncTask-Timer executes the synchro-
nization automatically.

• Organizational units: if checked, Organizational Units are synchronized.

• Organization hierarchies: if checked, Organization Hierarchies are synchronized.

• Rights: if checked, Rights are synchronized.

• Roles: if checked, Roles are synchronized.

• Users: if checked, users are synchronized.

The synchronization can also be carried out by clicking the Synchronize Now button.

238

9.6. COMMUNICATION

Active Directory Sync

As mentioned above, @enterprise offers an implementation for Active Directory synchro-
nization to import users. For this purpose the class
com.groiss.ldap.BasicUserDirectorySyncer must be entered at field Class name and the def-
inition of field mappings as lines of the form LDAP-attribute name=Java field name is nec-
essary in field Parameter, e.g.:

sn=surname
givenName=firstName
samAccountName=id
title=title
description=description
mail=email
telephoneNumber=telNr
userAccountControl=active

Before a synchronization can be performed (by a timer or manually), a prototype user must
be defined in @enterprise. This prototype user should be inactive. The ID of the proto-
type must be the name of the LDAP server object followed by the string _prototype, e.g.
EP_User_prototype. The user rights, role assignments, user properties and the language of
this user will be attached to each newly imported user. More information about the defini-
tion of a user can be found in chapter 4.3.
According to the entered search root all filtered LDAP objects are synchronized in the fol-
lowing way:

• If the user with the ID is not available in @enterprise and is inactive in Active Di-
rectory, it will not be imported.

• If the user with the ID is not available in @enterprise but exists in Active Directory,
a new user in @enterprise will be created. The values from the fields in the Ac-
tive Directory entry are used according to the field mapping and also the rights, role
assignments, user properties and the language of the prototype user are being used.

• If a user in @enterprise exists which has not been imported from Active Directory,
this user will be ignored.

• If a user in @enterprise exists which has been imported from Active Directory, the
values according to field mapping would be taken. Only if discrepancies exists, the
user in @enterprise will be updated.

• If an active user in @enterprise exists which has been imported from Active Direc-
tory, but is not available in the Active Directory anymore, the user in @enterprise
will be deactivated.

The active field of the imported user will be set according to the userAccountControl at-
tribute from the Active Directory. If the LDAP server is not an Active Directory, then the
userAccountControl attribute will usually not be available. In this case, the imported user
will be activated (since it exists in the LDAP tree).

239

9.6. COMMUNICATION

For non Active Directory installations, any boolean LDAP attribute could be used to map the
active field of the imported object. If no mapping for the active field is given, no activation
is performed during import.

Tab: Connect and list

By choosing this tab, one gets a listing of the contents of the LDAP Server according to the
defined search root and filter.

9.6.6 External Stores

Here you can define connections to external SQL Databases. Each configuration must have
an unique ID and must be configured with the correct settings for the JDBC framework.
The JDBC driver class, JDBC URL, username and password for the remote database must
be specified. Please make sure that the corresponding database driver (JAR file) is in the
class path.
Correctly defined data connections can be used directly from the @enterprise Query-Tool
(see 9.1.15). Defined connections can be exported using the administration function Export
in XML (further details are described in 9.2). In the programming manual, you can find
further information about accessing the external databases via the API.

Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique ID of the database connection.

• JDBC Treiber Klasse: Class name of the JDBC driver. You can use the icon next
to the field to check whether the name is correct and whether the driver is in the
class path. Using the JDBC Help page (the question mark icon next to the field)
you can import the class name and JDBC URL for all database systems supported in
@enterpriseẎou are not confined to DBMS which are supported as the main data
store for @enterprise. Arbitrary JDBC-capable DBMS can be used here. For format
of the connection information for such constellations, pleas consult the manuals of
the target systems.

You can find further information in the Installation and Configuration manual, in
chapter Extract and Install.

• JDBC URL: A database connection URL appropriate for your DBMS. You can also
set the field via the JDBC help page. Imported values have to be adjusted, additional
information can also be found in the Installation and Configuration manual, in the
Extract and Install chapter.

• Database Userid: User ID in the external database.

• Database password: User password in the external database.

• Query timeout: The query timeout option specifies the operation timeout interval in
seconds.

240

9.7. DECISION SUPPORT

• Description: Free text or the description of the database connection.

• Check connection: Activate this button to see whether the entered configuration is
correct and whether the connection to the external database is working. Please note
that the entry must be saved first!

9.6.7 WfXML

Wf-XML is a protocol for process engines that makes it easy to link engines together for
interoperability. Wf-XML 2.0 is an updated version of this protocol, built on top of the
Asynchronous Service Access Protocol (ASAP), which is in turn built on Simple Object
Access Protocol (SOAP).
@enterprise contains an implementation of the standard. @enterprise can receive Wf-
XML messages to start a process, get the current state of a process and change a process’
state; and the system can also send all types of messages.

Detailed Information about this topic can be found in the Application Development Guide
of @enterprise.

9.6.8 Local services

The link Local services provides a table of all found web services in @enterprise. It is
possible to add a new web service, delete and (un)deploy it. The creation of web service
clients/server is possible per application where the appropriate functions are available.

Detailed information about this topic can be found in the Application Development Guide
of @enterprise.

9.7 Decision support

This section offers functions to assist the administrator keeping an eye on the machine
learning part of the system.

9.7.1 Cache Information

It is possible to view information about the stored forms used for classifying. Also it is only
possible to select whole process instances.

Figure 9.15: Cache Information

241

9.7. DECISION SUPPORT

The toolbar actions allow the administrator to run the particular classifiers, remove the se-
lected forms from the cache or fetch the forms related to the selected process instance.
When the forms are already loaded to cache, they get fetched again and replace their old
versions by selecting the appropriate table entry and execute the toolbar function Fetch.
It is worth mentioning that running the classifiers always imply fetching the necessary forms
when they are not already in cache and removing them from cache afterwards.

9.7.2 Evaluation information

As it is interesting how the classifiers are performing, the evaluation can be shown in the
administration interface. This includes for example the sensitivity (true positive rate) and
the precision. It can be seen from the toolbar actions that it is possible to run the classi-
fier related to the selected items. When a process definition gets selected, all classifiers
belonging to it will be executed.

Figure 9.16: Evaluation information

Toolbar functions

The toolbar functions are the same as mentioned in the process definition administration
(see chapter 6.5.13), but extended by two additional ones:

• Decision tree
This action is only available for tree classifiers as they can be shown in a meaningful
way.

• Evaluation
Using this action, some properties about the evaluation of the classifier can be seen.
These include some metrics about each label (sensitivity, precision, . . .), a confu-
sion matrix (shows classified values in contrast to actual ones) and the percentage of
correctly classified instances.

• Evaluations
Shows all evaluations made for the chosen classifier.

9.7.3 PMML administration

Using this function it is possible to import and export PMML models. Predictive models
including some additional data can be stored in them. PMML models get stored in the XML
format. A predefined structure has to be followed.

242

9.7. DECISION SUPPORT

Figure 9.17: PMML Administration

Toolbar functions

There are various toolbar functions available for the given classifier assignments.

• Download ARFF
All instances represented by the given classifier assignment will be stored in the
Attribute-Relation File Format (ARFF). This could be used to train a model using
external tools.

• Upload PMML
This function is only available when the used classifier is able to import a model given
as in PMML. To do so it has to implement the interface PMMLImportable. It allows
the administrator to upload a model which could be built by another tool.

• Download PMML
This action allows the user to download the trained model in PMML. Exporting and
downloading the model is only possible when the related classifier implements the
interface PMMLExportable.

243

10 Configuration

This chapter describes the configuration of @enterprise–server. Further information about

• License

• HTTP server

• Database

• Directories

• Logging

• Classes

• Localization

• Communication

• Cluster

• Workflow

• DMS

• Search

• Tuning

• Security

• Password policy

• Calendar

• Process cockpit

• Decision Support

• Other parameters

• Change administrator password

• Style configurator

are available in the Installation Guide - Chapter Configuration.

244

11 Dashboard

In the system administration of @enterprise it is possible to create a dashboard, which an
be aligned for the needs of the system administrator or user. After activating the link Dash-
board under Admin-Tasks initially an empty site appears with following toolbar functions:

11.1 New

By activating the button New a new dialog will be shown, where you can add new windows
to the dashboard. Several possibilities are provided:

• URL: Enter an URL of a HTML–site, which you would like to see in a window on
your dashboard and confirm your inputs with Return.

• Reports: By activating this link all stored reports will be shown in a table. Select an
entry and activate button Ok to add the query to dashboard.

• Calendar: By activating this link a calendar will be shown in a window on your
dashboard.

• Worklist overview: By activating this link an overview about the number of worklist
entries will be shown in a window on your dashboard.

• Appointments: By activating this link the appointments of the present day will be
shown in a window on your dashboard.

• News: By activating this link news will be shown in a window on your dashboard.
Therefor a folder with the name News under Common must be created in the DMS,
where messages can be lodged (e.g. a note).

Note: Each window in a dashboard can be moved (like in Windows) to any place inside
the dashboard and/or be changed in its size.

11.2 Open

By activating the button Open an existing dashboard profile can be loaded. First the profile
must be stored with the function Save. There are 2 kinds of dashboards: the personal and

245

11.3. SAVE

other dashboard(s). The personal dashboard list contains all dashboards, which are stored
by the current user. Other dashboards has been stored by other users which have set the
share-right for the current user (via tab Access).

11.3 Save

By activating the button Save the current dashboard will be saved. A new dialog will be
opened with following attributes:

• Name: The unique name of the dashboard must be entered here.

• Save as: This checkbox allows to store the current dashboard under a new name. If
a user changes the dashboard by activating the buttons New and Save, it will be his
personal dashboard and the Default–Dashboard remains unchanged. The user has the
possibility to open an existing (default) dashboard profile by using the function Open.
The identification is made by the URL parameter id.

• Description: Free text

• Default: Select between

– Dashboard <dashboard-id> for <user>: Dashboard settings are stored for cur-
rent user as default.

– Dashboard <dashboard-id> for all users: Dashboard settings are stored for all
users as default. If a user has no own dashboard, this dashboard will be dis-
played.

• Columns: This attribute allows the definition of columns which means how many
dashboard windows can be placed in one row. The default setting is 2 rows.

• Owner: This field is read-only and shows the owner of this dashboard.

• Dashboard-Id: This field is also read-only and shows, if the dashboard is/was cre-
ated in worklist (user) or in administration (admin) of @enterprise. With this mask
dashboard with id admin can be created only.

It is also possible to define share-rights by using the tab Access. In this case other users are
permitted to open this dashboard (see function Open).

11.3.1 Delete

This button deletes the current dashboard settings (dashboard profile). After deleting a
dashboard, the default dashboard is displayed, if none is available then a blank page.

246

12 Administration Shell

This chapter describes the administration shell which allows to administrate @enterprise
via a command line. It can be used to:

• Assemble administration actions as a script and execute it on several servers

• Synchronize changes between development system and production system

• Send a script to a system operator

• Document actions

12.1 Architecture and invocation

The administration shell has a client and a server component. The server component is in-
tegrated into the @enterprise server. The client component is packaged in a separate jar
file adminshell.jar in the bin directory of @enterprise. The client connects to the @enter-
prise server via plain HTTP or secure HTTPS. This can be configured on the configuration
mask Communication. The administration shell must be activated via the hidden parameter
ep.adminshell.enable. More details can be found in the Installation- and Configuration-
Guide. Please note that the operating user needs the right execute on all objects for the
connection to the server! Furthermore the user needs the corresponding rights for perform
the server commands.

The admin-shell client can be invoked with the following call:

java -jar adminshell.jar url user [password]
[-log logfile | -append logfile] [-passwdfile file] [-execute scriptfile]

Parameters:

• url: The URL of the server, e.g. http://localhost:8380/wf/. If no context-root is
entered, wf will be used by default.

• user: The username of the operating user

• password: The password of the user (if existing). If you do not specify a password,
you must use the option -passwdfile or you will be asked for the password at the login.

247

12.2. COMMANDS

Options:

• -log logfile: The logfile defines a file where the admin-shell logs the interactions (on
the client).

• -append logfile: Same as -log except that the logfile is appended to.

• -passwdfile file: The file contains the plain password for the given user in the first
line without any preceding and trailing characters.

• -execute scriptfile: Executes the script in scriptfile.

12.2 Commands

Two groups of commands can be executed:

1. Client commands are executed on the client and define some behavior of the script
client.

2. Server commands are executed on the server and contain the functions of the admin-
istration.

12.2.1 Client commands

Following client commands are available:

• exit: Exits the client.

• help or ?: Print a command summary

• log <file>: Log commands to the given file

• log off: Commands are not logged anymore

• append <file>: Log commands to the given file. If the file already exists, commands
are appended.

• execute <file>: Executes the given script file

Commands not in this list are sent to the server.

12.2.2 Server commands

The commands on the server are interpreted as Groovy expressions. Groovy is a script
language based on Java. Comments have the same syntax as in Java (inline- and block-
comments). Server commands are terminated by a line containing only the character . (dot)
and will be logged in serverlog at loglevel 1 and higher.

The following variables are in the initial context (varname and instance of):

• admin: com.groiss.server.Admin

248

12.3. EXAMPLES

• store: com.groiss.store.Store

• engine: com.groiss.wf.WfEngine

• dms: com.groiss.dms.DMS

• orgdata: com.groiss.org.OrgData

• config: com.groiss.component.Configuration (the System Configuration)

• user: com.groiss.org.User (the current user)

• session: javax.servlet.http.HTTPSession (the HTTPSession)

They can be used as starting points for the execution of methods (see API for details). Every
command is executed in its own transaction. After executing, a commit, if an error occurs,
a rollback is performed.

If you want to use (own) variables for the script, you can define them with the command:

set(varname,value);

Retrieve the value of the variables with:

get(varname);

Own declared variables have the advantage to survive transactions, because they are written
into the session.

12.3 Examples

12.3.1 Setting a configuration parameter

config.setProperty("database.connections",5);
config.store();
.

Alternative formulation with a variable:

set("connections",5);
.
config.setProperty("database.connections",get("connections"));
config.store();
.

12.3.2 Restart the server

admin.restartServer(); //restarts the server - no login necessary for current user
.

249

12.3. EXAMPLES

12.3.3 Add a role to or remove one from a user

u = orgdata.getById(com.groiss.org.User.class,’my_user’); //replace by existing user
role = orgdata.getById(com.groiss.org.Role.class,’sys’); //get SYS role
checkuserrole = store.get(com.groiss.org.UserRole.class,"role = ? AND userid = ?",

role.getOid(), u.getOid()); //with prepared statements - new Object[] {args}
//If User has no sys-role, add it
if(checkuserrole == null) {
userrole = orgdata.createUserRole();
userrole.setRole(role);
userrole.setUser(u);
userrole.setActive(true);
orgdata.insert(userrole);

}
//If User has sys-role, remove it
else {
orgdata.delete(checkuserrole);

}
.

12.3.4 Set the interval of a timer

t = orgdata.getById(com.groiss.timer.TimerEntry.class,’Suspension’);
t.setPattern("360");
store.update(t);
.

12.3.5 Worklist handling

Check worklist of application default and finish expired tasks:

appl = orgdata.getById(com.groiss.org.Application.class, "default");
worklist = engine.getWorklist(appl,true);
for(com.groiss.wf.ActivityInstance ai:worklist) {
duedate = ai.getDuedate();
//if ai’s duedate is expired, finish task
if(duedate != null && duedate.getTime() < new java.util.Date().getTime()) {
try {
engine.finish(ai);

}
catch(ex) {/*Do nothing, but continue with finishing other ai’s*/};
}

}
.

250

12.3. EXAMPLES

12.3.6 Session handling

Check session and invalidate it, if lastAccessed is not in tolerance time. Log session infor-
mation in server-log on level 2:

attrbnames = session.getAttributeNames();
invalidate = false;
log = " \n";
log = log + "Session-Parameter:\n";
for(String attrname:attrbnames) {
attrvalue = session.getAttribute(attrname);
if(attrname.equalsIgnoreCase("lastAccessed")) {
if(attrvalue instanceof java.util.Date) {
onehour = 60*60*1000; //tolerance time
//invalid, if not in tolerance time
if((attrvalue.getTime()+onehour) >= new java.util.Date().getTime() ||

(attrvalue.getTime()-onehour) <= new java.util.Date().getTime()) {
invalidate = true;

}
}
}
log = log + "Attribute-Name: " + attrname + "/Attribute-Value: " + attrvalue + "\n";

}
log = log + " ";
com.groiss.util.Settings.log(log,2); //write all session parameter to Server-Log on Level 2
if(invalidate == true) {
session.invalidate();

}
.

251

13 Restricted administration

@enterprise offers beside the full-version of administration also a restricted one where
users and org-units are administrable only. For this purpose the role User administrator is
available which contains following rights:

• Administration

• Execute objects for org-units (hierarchically in role-ou)

• Execute objects for role Home

• Create objects for org-units and users (hierarchically in role-ou)

• Edit objects for org-units and users (hierarchically in role-ou)

• Edit objects for organizational hierarchies (dept trees)

• Delete objects for org-units and users (hierarchically in role-ou)

This bunch of rights allows to administrate users and org-units

• in the org-unit where home-role of current logged-in user is assigned and

• in all org-units which are placed in organizational hierarchy beneath the current org-
unit (= sub org-units).

These org-units must be part of organizational hierarchy default!
If the user has assigned home- and useradmin-role in the same org-unit, the restricted ad-
ministration will be displayed after login, i.e. the gui-configuration with id useradmin will
be loaded (no other administration rights must be assigned, e.g. sys-role!).

13.1 User

The administration of users is analog as described in section 4.3, but with some restric-
tions/differences:

• When creating a user via toolbar function New a simplified mask is displayed first.
After entering the necessary fields and activating the button Create, a user object will
be created with role assignment home in the org-unit of the current logged-in user.

252

13.2. ORGANIZATIONAL UNITS

Figure 13.1: Restricted administration

• In role assignment the adaption of org-units is possible only, i.e. only sub org-units
are selectable. If the role assignment home is deleted, the administrator of restricted
administration is not able to edit or delete this user object anymore!

• The definition of substitutes or other permissions is not possible.

13.2 Organizational units

The administration of org-units is analog as described in section 4.4, but with restric-
tions/differences:

• When creating an org-unit via toolbar function New a simplified mask is displayed
first. After entering the necessary fields and activating the button Create, a org-unit
object will be created. The new org-unit will be inserted in organizational hierarchy
beneath the org-unit of the current logged-in user.

• The tab Superordinate organizational unit allows to change the org-unit, i.e. the po-
sition in organizational hierarchy can be changed here. Only following org-units are
selectable:

– the org-unit where home-role of current logged-in user is assigned

– all org-units which are placed in organizational hierarchy beneath the current
org-unit (= sub org-units).

253

13.2. ORGANIZATIONAL UNITS

Figure 13.2: Restricted administration - tab Superordinate organizational unit

254

	1 System architecture
	1.1 The World Wide Web
	1.2 The system components

	2 The HTML interface
	2.1 Tables
	2.1.1 Column picker, sorting and filter
	2.1.2 Standard functions

	2.2 Object details
	2.2.1 Tab: General
	2.2.2 Tab: History
	2.2.3 Tab: Access
	2.2.4 Tab: Referenced by
	2.2.5 Further functions

	3 Ids, names and internationalization
	3.1 Ids and names
	3.2 Internationalization of meta data objects and object classes

	4 Definition of the organizational structure
	4.1 Roles
	4.1.1 Tab: General
	4.1.2 Tab: Permissions
	4.1.3 Tab: User
	4.1.4 System-defined roles

	4.2 Rights
	4.2.1 Tab: General
	4.2.2 Tab: Permissions
	4.2.3 System-defined rights

	4.3 Users
	4.3.1 Tab: General
	4.3.2 Tab: Roles
	4.3.3 Tab: Substitutions
	4.3.4 Tab: Role substitutions
	4.3.5 Tab: Permissions
	4.3.6 Tab: All permission
	4.3.7 Tab: Settings
	4.3.8 Tab: All Settings
	4.3.9 Toolbar function GUI configurations
	4.3.10 Permission test
	4.3.11 Expired passwords
	4.3.12 Data protection functions

	4.4 Organizational units
	4.4.1 Tab: General
	4.4.2 Tab: Superordinate Org.-Units
	4.4.3 Tab: Roles

	4.5 Organization hierarchy
	4.5.1 Tab: General
	4.5.2 Tab: Organizational hierarchies
	4.5.3 Function Merge organizational hierarchies

	4.6 Organization classes
	4.6.1 Tab: General

	5 The @enterprise permission system
	5.1 Introduction
	5.1.1 Rights
	5.1.2 Object classes
	5.1.3 Permissions
	5.1.4 Permission list

	5.2 Definition of permissions
	5.2.1 Permissions of users
	5.2.2 Permissions of roles
	5.2.3 Administration of permission lists
	5.2.4 Permissions for an object
	5.2.5 Permissions for permissions
	5.2.6 Permissions for role assignments
	5.2.7 Administration of object classes

	5.3 Standard settings
	5.4 For what you need which rights?
	5.5 Example
	5.6 Permissions and substitutions

	6 Workflow modeling
	6.1 Applications
	6.1.1 Tab: General
	6.1.2 Tab: Properties
	6.1.3 Tab: Properties XML
	6.1.4 Report

	6.2 Tasks
	6.2.1 Tab: General
	6.2.2 Tab: Functions
	6.2.3 Supplement of forms

	6.3 Functions
	6.3.1 Tab: General
	6.3.2 Standard functions

	6.4 Forms
	6.4.1 Form-Editor
	6.4.2 View
	6.4.3 Create view
	6.4.4 Edit
	6.4.5 Report

	6.5 Processes
	6.5.1 Create new process with the process editor
	6.5.2 Edit a process with the process editor
	6.5.3 Load WDL / XWDL
	6.5.4 Tab: General
	6.5.5 Tab: Source
	6.5.6 Tab: Graph
	6.5.7 Tab: Components
	6.5.8 Tab: Visibility of forms
	6.5.9 Tab: Escalation
	6.5.10 Tab: Functions
	6.5.11 Tab: Folder settings
	6.5.12 Tab: Document permissions
	6.5.13 Tab: Decision Support
	6.5.14 Report
	6.5.15 Milestones
	6.5.16 Plan types

	6.6 Function groups
	6.7 GUI configurations
	6.7.1 Tab: GUI configuration
	6.7.2 Tab: GUI configuration XML
	6.7.3 Tab: Assignments
	6.7.4 Customizable actions

	6.8 Resource Editor
	6.8.1 Toolbar functions
	6.8.2 Converting csv-files

	6.9 Value lists
	6.10 Web Services
	6.10.1 Webservice clients
	6.10.2 Webservice server

	6.11 Message templates
	6.11.1 Tab: General
	6.11.2 Overview about events and modes of sending

	6.12 Test cases
	6.12.1 Toolbar
	6.12.2 Test steps
	6.12.3 Process history and Process details

	7 Process Definition
	7.1 WDL
	7.1.1 Lexical Conventions
	7.1.2 Process header
	7.1.3 Declaration part
	7.1.4 Basic Statements
	7.1.5 Control Structures
	7.1.6 Event Mechanism
	7.1.7 Web services

	7.2 The process editor
	7.2.1 The process editor window
	7.2.2 Using the process editor
	7.2.3 The Functions of the menu bar
	7.2.4 Process properties
	7.2.5 Tasks
	7.2.6 Escalations
	7.2.7 Process plans
	7.2.8 The function list
	7.2.9 The common attributes of a node
	7.2.10 Properties of an activity
	7.2.11 Conditions for Ifs, Choice, Loops
	7.2.12 Properties for system steps
	7.2.13 Properties for Batch steps
	7.2.14 Properties of a subprocess
	7.2.15 Properties of a parallel for
	7.2.16 Properties of AND-/OR-parallelism and end node of Parallel for
	7.2.17 Properties of an event
	7.2.18 Properties of a GOTO
	7.2.19 Properties of Web service nodes
	7.2.20 Condition editor

	8 The Search of @enterprise
	8.1 Process search
	8.2 Document search
	8.3 Report designer
	8.4 Reports

	9 Administration tasks
	9.1 Server
	9.1.1 Server Monitor
	9.1.2 Server Control
	9.1.3 Log files
	9.1.4 Database connections
	9.1.5 Object history
	9.1.6 User sessions
	9.1.7 Events
	9.1.8 Timers
	9.1.9 Pending changes
	9.1.10 Event registrations
	9.1.11 Batch jobs
	9.1.12 Wait steps
	9.1.13 Class path
	9.1.14 Manage certificates
	9.1.15 Query tool

	9.2 Import/Export
	9.2.1 Import/Export in XML Format
	9.2.2 Archive processes
	9.2.3 Export application
	9.2.4 Install/Update application
	9.2.5 File import

	9.3 Cluster
	9.3.1 Cluster Monitor
	9.3.2 Servers

	9.4 DMS
	9.4.1 Full-text search
	9.4.2 Keywords
	9.4.3 Search in Recycle Bins

	9.5 Reorganize
	9.5.1 Change role assignments
	9.5.2 Analyze process instances
	9.5.3 OU history

	9.6 Communication
	9.6.1 Mailboxes
	9.6.2 Mail-Queue
	9.6.3 Mail journal
	9.6.4 Authorizers
	9.6.5 LDAP
	9.6.6 External Stores
	9.6.7 WfXML
	9.6.8 Local services

	9.7 Decision support
	9.7.1 Cache Information
	9.7.2 Evaluation information
	9.7.3 PMML administration

	10 Configuration
	11 Dashboard
	11.1 New
	11.2 Open
	11.3 Save
	11.3.1 Delete

	12 Administration Shell
	12.1 Architecture and invocation
	12.2 Commands
	12.2.1 Client commands
	12.2.2 Server commands

	12.3 Examples
	12.3.1 Setting a configuration parameter
	12.3.2 Restart the server
	12.3.3 Add a role to or remove one from a user
	12.3.4 Set the interval of a timer
	12.3.5 Worklist handling
	12.3.6 Session handling

	13 Restricted administration
	13.1 User
	13.2 Organizational units

