
ENTERPRISE

@enterprise 11.0

Application Development Guide

March 2024

Groiss Informatics GmbH

Groiss Informatics GmbH

Strutzmannstraße 10/4
9020 Klagenfurt
Austria

Tel: +43 463 504694 - 0
Fax: +43 463 504594 - 10
Email: support@groiss.com

Document Version 11.0.37317

Copyright © 2001 - 2024 Groiss Informatics GmbH.
All rights reserved.

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Groiss Informatics GmbH does not warrant that
this document is error-free.

No part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of Groiss Informatics GmbH.

@enterprise is a trademark of Groiss Informatics GmbH, other names may be trademarks of their
respective companies.

Contents

1 Overview 4

2 Servlet Methods 5
2.1 The Dispatcher Servlet . 6
2.2 Mapping of URLs to files or methods . 6
2.3 Page . 9
2.4 HTMLPage . 10
2.5 XHTMLPage . 12
2.6 Velocity Page . 13
2.7 File Upload . 14
2.8 Authorization . 15
2.9 Demo Package . 21

3 Persistence Layer 24
3.1 Database Connection Pool . 24
3.2 Persistent Objects . 24
3.3 Lazy filling . 28
3.4 Optimistic Locking . 28
3.5 PersistentEventHandler . 29
3.6 Additional aspects . 29

3.6.1 PermissionMapping . 29
3.6.2 DeferredChanges . 30
3.6.3 HasPermissionList . 30
3.6.4 HasLog . 30
3.6.5 PersistentAspect . 30

4 Utilities and Data Structures 31
4.1 Data Structures . 31

4.1.1 KeyValuePair . 31
4.1.2 Pair . 31
4.1.3 MultiMap . 31
4.1.4 KeyedList . 31
4.1.5 CountedSemaphore . 32
4.1.6 Caching . 32

4.2 StringUtil and FileUtil . 32

3

CONTENTS

4.3 Date/Time Handling . 33
4.3.1 CalUtil . 33
4.3.2 Holidays . 33
4.3.3 Application dependent calendar-events 34

4.4 ThreadContext . 34
4.5 Logging . 35
4.6 Timer . 36
4.7 BeanManager . 36

4.7.1 Callback registration . 36
4.7.2 Beans . 37

4.8 Resource Files . 39
4.9 Error Handling . 39

5 Structure of Applications in @enterprise 41
5.1 Organization of Files . 41
5.2 The Configuration File . 42
5.3 The Application Class . 45
5.4 Documentation of Applications . 46

5.4.1 Using context sensitive help in applications 46
5.5 Internationalization of Applications . 48
5.6 Startup and Shutdown . 49
5.7 Installation . 50
5.8 Upgrading . 50
5.9 Making the web application secure . 50

5.9.1 Defining the access mode . 50
5.9.2 Checking rights . 51
5.9.3 Common security pitfalls . 51

6 Organizational Data 53
6.1 Users, their Roles and Rights . 53
6.2 Database operations . 54
6.3 Password Policies . 54
6.4 Adding tab Additional Info . 55

7 HTML Components 57

8 Document Management 59
8.1 Objects of the DMS . 59
8.2 Life Cycle of a DMSObject . 61
8.3 Storage and Versioning . 61
8.4 The @enterprise DMS API . 62

8.4.1 Create DMS objects . 63
8.4.2 Managing Relations . 64
8.4.3 Manipulate DMS Objects . 65
8.4.4 Navigate within the DMS . 65
8.4.5 Permissions in DMS . 66
8.4.6 Utility Methods . 66

4

CONTENTS

8.5 Using the DMS API . 67
8.5.1 Utilities for DMS related HTML Interface 67
8.5.2 Adding a Document to a Process 68
8.5.3 Adapting Folder and Table View 70
8.5.4 Further Examples . 73

8.6 Office Templates . 75
8.6.1 Requirements . 75
8.6.2 Placeholder elements . 75
8.6.3 Creating documents from templates 77
8.6.4 Example . 77

9 Forms 80
9.1 General . 80
9.2 The Form Event Handler . 81
9.3 The Form Table Handler . 83
9.4 XForms . 84
9.5 The XForms API . 88

9.5.1 Using the form event handler . 88
9.5.2 View a form . 88
9.5.3 Implement the submit action . 89
9.5.4 XForms buttons in the form . 90
9.5.5 Client side event handling . 90
9.5.6 Subform handling . 91
9.5.7 Evaluate the bindings . 91

9.6 XHTML forms . 91
9.6.1 XHTML forms with Sub-tables 92
9.6.2 The attribute epblock in XHTML-Forms 93

10 The Workflow Engine 94
10.1 Process definition and execution . 94

10.1.1 Structure of run-time data . 98
10.2 The @enterprise workflow API . 99

10.2.1 Create a process instance . 100
10.2.2 Find process instances . 100
10.2.3 Get information about a process instance 101
10.2.4 Manipulation of process instances 101
10.2.5 Getting the context . 102
10.2.6 Methods for process instances . 102

11 Using the Workflow API 103
11.1 Application Methods Called by the Engine 103

11.1.1 Usage of script-language GROOVY 104
11.1.2 XPath-Conditions . 106
11.1.3 Adding methods to the system step editor 108

11.2 Interactive Functions . 109
11.3 Application Adapter . 110
11.4 Utilities for building an HTML interface 110

5

CONTENTS

11.4.1 Show the form . 110
11.4.2 Show a form table . 111
11.4.3 Link to forms and documents . 112
11.4.4 Object Selection . 112

11.5 Task-Functions in forms . 113
11.6 Batch Processing . 114

11.6.1 Batch jobs and concurrency . 122
11.7 Event Mechanism . 123

11.7.1 WDL event elements . 123
11.7.2 The Event API . 124
11.7.3 Event Processing . 125
11.7.4 Cluster . 126
11.7.5 Administration . 126

11.8 Examples . 126
11.8.1 Start a Process . 126
11.8.2 Find running Processes . 129

12 Configuring the Worklist Client 131
12.1 Introduction . 131
12.2 The Elements of the Configuration File . 131

12.2.1 Own layout of main page in smartclient 134
12.2.2 Tree Nodes . 134
12.2.3 Non tree nodes (<nodes>) . 150
12.2.4 Internationalization . 152
12.2.5 Adding HTML Code Between the Links 152
12.2.6 Configure user parameters . 152
12.2.7 Change style and logos/icons . 153

12.3 Customizing the Worklist . 153
12.4 Displaying Additional Data . 155

13 Communication with other Systems 158
13.1 E-Mail . 158

13.1.1 Sending E-Mails . 158
13.1.2 Receiving E-Mails . 159
13.1.3 Tab Emails . 160

13.2 Remote Method Invocation . 162
13.3 Wf-XML 2.0 . 163

13.3.1 ASAP Overview . 163
13.3.2 Wf-XML Overview . 164
13.3.3 Administration . 171
13.3.4 Wf-XML Web client . 173

13.4 LDAP . 174
13.4.1 Basic Aspects of the Synchronization Mechanism 176
13.4.2 Default Schema Mapping . 176
13.4.3 Customizing the Synchronization 180

13.5 Accessing external databases . 182
13.5.1 External database setup . 182

6

CONTENTS

13.5.2 Basic assumptions and underlying principles 182
13.5.3 Getting an XStore . 182
13.5.4 Transactional operations of an XStore 183
13.5.5 Data manipulation operation . 183
13.5.6 Data access operations . 183
13.5.7 DataRow interface . 184

14 Web services 185
14.1 Components . 185

14.1.1 WS-Framework . 185
14.1.2 EP-Context . 185
14.1.3 Partner Links . 186

14.2 Providing web services . 186
14.2.1 Contract-first with Axis2 . 186

14.3 Demos . 186

15 XWDL 187
15.1 Introduction . 187
15.2 Usage . 187

15.2.1 HTML-Client . 187
15.3 API . 188
15.4 The basic DTD . 188
15.5 An Example . 188

15.5.1 WDL . 189
15.5.2 XDWL . 190

15.6 The extension model . 193
15.6.1 The extension DTD . 193
15.6.2 An Example . 195

15.7 Extension API . 198

16 BPMN 200
16.1 Introduction . 200
16.2 Common elements . 200

16.2.1 Basic layout . 200
16.2.2 Principal definitions . 200
16.2.3 Form types . 201
16.2.4 Signals . 201
16.2.5 Messages . 201
16.2.6 Interfaces and Operations . 202
16.2.7 Resource Definitions . 202
16.2.8 Expressions . 202
16.2.9 Omissions and Aspects for further enhancement 203

16.3 Mapping of @enterprise constructs . 203
16.3.1 Process definition and form declarations 203
16.3.2 Annotations . 204
16.3.3 Flows . 204
16.3.4 Common step structure . 204

7

CONTENTS

16.3.5 Activities . 204
16.3.6 Control structures . 207
16.3.7 Events . 209
16.3.8 Web services . 211

17 Usage of DOJO and JavaScripts 212
17.1 The @enterprise JavaScript library . 212
17.2 Using DOJO in @enterprise . 214

17.2.1 Add DOJO to a page/form . 214
17.2.2 Usage of customized DOJO controls 215
17.2.3 Implementing own widgets . 218
17.2.4 Smartclient notification API . 227

17.3 Styling . 228
17.3.1 Referencing icons . 231
17.3.2 Styling examples . 232

18 Mobile GUI Client 233
18.1 Worklist Example . 233
18.2 DOJO Client . 235

18.2.1 Mobile Grid Renderer Action . 235
18.2.2 View . 237
18.2.3 ScrollableView . 238
18.2.4 _ShowViewAction . 238
18.2.5 waitingOverlay-util . 238
18.2.6 ToolBarButton . 239
18.2.7 ListItem . 239
18.2.8 Dialog . 239
18.2.9 msg-util . 239
18.2.10 mobile-util . 240
18.2.11 dms-show-util . 240
18.2.12 ObjectSelect . 241
18.2.13 Column . 241

18.3 Mobile Forms . 241
18.4 LESS for mobile GUI Configurations . 241
18.5 Showing Mobile Views . 242

19 Decision Support 243
19.1 Decision Trees . 243

19.1.1 Splitting . 243
19.1.2 Attributes . 244
19.1.3 Pruning . 244

19.2 Integration in @enterprise . 245
19.2.1 ClassificationService . 245
19.2.2 Classifier . 246
19.2.3 Attributes, Instances and Data Sets 246
19.2.4 Connect Classifiers and Processes 247
19.2.5 Custom enhancements . 248

8

CONTENTS

20 Using the Reporting API 250
20.1 Hidden Configuration . 250
20.2 XML Configuration . 250

20.2.1 Schema . 250
20.2.2 Query . 253

20.3 API . 255
20.3.1 com.groiss.reporting.data.TimeModel 255
20.3.2 com.groiss.reporting.data.ReportingExportable 255
20.3.3 com.groiss.reporting.data.ReportingData 256
20.3.4 com.groiss.reporting.data.NumericValue 257
20.3.5 ReportingExporter . 257
20.3.6 ClientSideExporter . 258

20.4 Implementing your own Search Mask . 258

21 RESTful API 265
21.1 Authorization with Keycloak . 265

A Database Schema Overview 266
A.1 Introduction to the Database Schema . 266
A.2 Organizational Schema . 267
A.3 Schema for Process Definitions . 269
A.4 Schema for Run-Time Data . 272

A.4.1 Essential Process Run-Time Data 272
A.4.2 Further Process Run-Time Data Schema 273

A.5 Schema of Permission system . 274
A.6 Schema for Document Management . 276

A.6.1 Main tables in DMS . 276
A.6.2 Additional Tables for Document Management 277

A.7 Miscellaneous . 278
A.7.1 User related tables . 278
A.7.2 Reporting . 280
A.7.3 Schema for messaging (e-mail) 280
A.7.4 Schema for Timers . 281
A.7.5 Schema for GUI configurations 281
A.7.6 System State . 281
A.7.7 Calendar Schema . 282
A.7.8 Schema for Webservices . 283
A.7.9 Schema for WfXML . 283
A.7.10 Schema for Plan Management . 284
A.7.11 Tables for Process Debugging . 285
A.7.12 Tables used for decision support 285

A.8 Obsolete schema elements . 285

9

1 Overview

This guide explains the creation of workflow applications with @enterprise that also offers a
set of demos combined in the file demos.zip within the doc/examples folder of @enterprise
base folder (either base in a standalone installation or WEB-INF in an application server
installation). Within this compressed file an MS Word file called Demos.docx is available
which gives an overview about the demo programs.

10

2 Servlet Methods

This chapter contains the description how to write methods for Web applications - receiving
input from the browser and writing out to it. Moreover the authorization mechanism is
discussed and some utilities for building HTML components are presented.
@enterprise is a Web-based system with an integrated Web-server. The interface between
the Web server and the rest of the system is a set of servlets.
For the application programmer a convenient interface is provided to write "servlet methods".
These methods must have one of the two following signatures:

public void methodX (HttpServletRequest req, HttpServletResponse res)
throws Exception;

public Page methodY (HttpServletRequest req) throws Exception;

HttpServletRequest and HttpServletResponse are interfaces from the package
javax.servlet.http (see the Documentation of J2EE [1]). The return value Page repre-
sents a page sent to the browser and is described below.
The methods are called from the dispatcher servlet of @enterprise via reflection. The URL
schema is as follows:

http://<host>:<port>/<context-root>/servlet.method/appclass.appmethod?params

appclass is the fully qualified name of the class containing the method appmethod.
appmethod is a method having one of the two above signatures.

What is the reason for two interfaces to write servlet methods? The first interface is the
more general, because it allows to write directly onto the output stream of the response. It is
the same as writing a doGet or doPost method of a servlet. However, the second method
signature has some advantages:

• It is explicit, that a return value (the page sent to the browser) is necessary.

• The page is sent to the browser, after the method has been completed, and a commit
has been performed. This prevents sending half pages when an error occurs.

• Page is an interface which can have several implementations with extended function-
ality, read below about HTMLPage, ActionPage, and XHTMLPage.

The limitation of this approach is that you cannot set Header-Fields of the HTTP-Response,
for example Cookies. The following section contains a more detailed description of the
@enterprise Dispatcher.

11

2.1. THE DISPATCHER SERVLET

2.1 The Dispatcher Servlet

The Dispatcher servlet handles all requests starting with "/<context-root>/servlet.method/".
<context-root> is the context where you have installed @enterprise when using an ap-
plication server, in standalone mode it is the constant wf. The Dispatcher performs the
following steps:

1. Load the session of this request.

2. If there is no session and the method is not public, call the sendLoginRequest method
of the authorization class.

3. Call the method specified in the URL by loading the class and calling the method
using reflection.

4. If the method terminates normal (without exception) the user transaction associated
with this thread is committed and the page together with a HTTP header is sent to the
browser.

If the method terminates with an exception, a rollback is performed on the user
transaction and an error page is sent to the browser.

The distinction of public, nonpublic and administration methods works via the annotation
com.groiss.servlet.Access (see section Defining the access mode for more informa-
tion).
It can be attached to a package, class or method. The Access.mode is either public (everybody
has access), or user (logged in users have access), or admin (= part of the administration).
When using public methods the internationalization is done with the settings of the @enter-
prise user guest.

2.2 Mapping of URLs to files or methods

In this section we explain how an HTTP request is interpreted by @enterprise.
But let us first briefly step over the components of an URL:

<protocol>://<host>:<port>/<path>?<query>

e.g.:

http://www.groiss.com:80/wf/servlet.method/a.b.c?oid=24323&time=3254777

The protocol (http) states the set of rules which govern the communication between client and
server place. The host is the name or ip-address of the machine (www.groiss.com). The port
(80) is a specific transport endpoint within the machine. Together these three components
specify a service, which is an @enterprise installation in our case.
The path (/wf/servlet.method/a.b.c) refers to a resource within the service. By in-
terpreting this path, the service searches for resources internal to the service. Typical
resources are static files and dynamic content generated by program code. The parameters
(oid=24323&time=3254777) can be used by the service to customize the resource.

12

2.2. MAPPING OF URLS TO FILES OR METHODS

Using and referencing URLs

We do not deal with the protocol, host and port components of a URL, since we should
never reference to them within the same @enterprise installation. Further, in @enterprise
as well as in application servers, all URL paths start with the context root. In a standalone
installation this is always "/wf". When @enterprise runs within an application server the
context root is specified during deployment.
When specifying URLs, adhere to the following rule:
Do not use an absolute URL when you are referring to resources within the same engine
(deployment context). In other words:

• do not include the protocol (http://)

• do not include the host name

• do not include the port

• do not include the context root

• do not include the slash following the context root

in your URLs.
By obeying this rule, we gain deployment transparency within the server. The browsers are
responsible for constructing the absolute URL from the relative ones. In case of doubt, use
the status line of the browser to determine the constructed path.

Mapping of the URL path to a resource within @enterprise

When the part of the path after the context root is /servlet.method, then the Dispatcher
servlet is responsible for dealing with the URL. This is described in the section The Dis-
patcher Servlet.
Any string different from /servlet.method is handled by the FileServlet, which is respon-
sible for locating the file specified in the URL path and for proper internationalization of
those files.
Since there may be files which are independent of the language, the FileServlet distinguished
two cases:

a) language independent files

For addressing language independent files, the string /alllangs follows the context root.
The files are searched in the classpath including the alllangs prefix.

Example: The classpath consists of two components:

• a directory /home/firstappl/classes

• followed by a jar file lib/secondappl.jar

When resolving the URL

http://myhost:8000/wf/alllangs/dir/text.html

13

2.2. MAPPING OF URLS TO FILES OR METHODS

the FileServlet first tries to locate the file by accessing alllangs/dir/text.html starting
from the directory /home/firstappl/classes. If successful, the file is returned. If the
file could not be found in the first component of the class path, then the next component is
searched, and so on. In the example the FileServlet tries to locate the file by searching for
alllangs/dir/text.html within the jar file lib/secondappl.jar.

Hint: Since @enterprise version 8.0 images are stored in the lang instead of the alllangs
folder.

b) language dependent files

When a string different from "/alllangs" follows the context root, the FileServlet interprets
the file as language dependent, for which the FileServlet supports two mechanisms:

1. The file has already been translated for the different locales, and the translations have
been stored in separate directories.

2. There is just one file (a template containing special labels) which is translated on-the-fly
when the file is loaded.

Because a locale can contain language, country and variant, the search path is implicitly
extended by
1. lang/<language>_<country>_<variant>/
2. lang/<language>_<country>/
3. lang/<language>/
4. lang/default

in this order.
If the file can not be found, an untranslated template is searched by extending the path with
5. alllangs/
If the file is found in steps 1, 2, 3 or 4 it is sent to the browser unchanged, if it is found during
step 5 it is translated on-the-fly (see following subsection).
Note that each of the steps means to search within all the components of the classpath.

Example: The classpath consists of two components:

• a directory /home/firstappl/classes

• followed by a jar file lib/secondappl.jar

When resolving the URL

http://myhost:8000/wf/dir/text.html

and the locale is en_US, the file is searched in the following locations (since the locale has
no variant, the search starts at step 2):

14

2.3. PAGE

2. /home/firstappl/classes/lang/en/US/dir/text.html
lib/secondappl.jar!lang/en/US/dir/text.html

3. /home/firstappl/classes/lang/en/dir/text.html
lib/secondappl.jar!lang/en/dir/text.html

4. /home/firstappl/classes/lang/default/dir/text.html
lib/secondappl.jar!lang/default/dir/text.html

5. /home/firstappl/classes/alllangs/dir/text.html
lib/secondappl.jar!alllangs/dir/text.html

Because the files are searched in all the components of the classpath, it is highly advisable to
use different prefixes for the files of different applications.

2.3 Page

The interface com.groiss.gui.Page describes a page sent to the browser with the following
defined methods:

public String show();
public String getContentType();
public List<Pair<String, Object>> getHeaders();

The method show returns a String representation of the page and is normally called by the
Dispatcher.
The method getContentType() returns the mime-type of the page, for example "text/html".
The method getHeaders() returns the list of http-response-headers to be set on the
javax.servlet.http.HttpServletResponse.

The interface is implemented by the following classes:

HTMLPage: Used for HTML pages where a fixed template is loaded and the dynamic parts
are substituted from a Java method. See section HTMLPage for details.

ActionPage: The action page is used for HTML pages containing JavaScript code only, for
example a command for closing the browser window.

XHTMLPage: The XHTMLPage is used for XHTML and XForm pages. XHTML is a
reformulation of HTML in XML. The advantage of using XML is that substitutions
of XML structures are possible, see section XHTMLPage. An example how an
XHTMLPage is used in XForms is shown in section 9.2.

VelocityPage: Implementation which can handle Velocity-templates. See section Velocity
Page for details.

JSONPage: This implementation is used to send JSON data to the client, e.g.

JSONPage p = new JSONPage(new JSONObject(new HashMap(){{ put("a","b");}}));

15

2.4. HTMLPAGE

Of course, application programmers can define their own implementations of the Page
interface. In this case please ensure that the following imports are available within the
HEAD-tags:

<link rel="stylesheet" type="text/css"
href="../servlet.method/com.groiss.gui.css.StyleConf.loadCSS" />

<script src="../scripts/dojo/dojo.js" djConfig="parseOnLoad: true">
</script>

2.4 HTMLPage

When showing HTML pages with dynamically generated content, it is useful to separate the
fixed HTML code and the parts generated by the program.
Different approaches exist here. The most popular are Active Server Pages (ASP) from
Microsoft and Java Server Pages, part of the Java 2 Enterprise Edition (J2EE). In both
frameworks you have to write the code into the HTML pages. Whereas this mechanism is
nice for prototyping it has some drawbacks:

• Long HTML/code pages are developed, where the design of the page is hard to see
and maintain.

• The placement of utility methods, constants or static variables is unclear.

• Development in an IDE.

• Internationalization of code and HTML text.

In @enterprise a different approach is used. The HTML pages contain placeholders that
are replaced with actual data at run-time. Replacements are done with the class HTMLPage
which provides the following constructors and methods:

Constructors:

• public HTMLPage()

No parameters: An empty page is generated, set the content of the page with
setPage(String).

• public HTMLPage(String resource)

The parameter is the name of a resource, normally a file in the class path.

• public HTMLPage(String resource, Resource res)

The parameter resource is the name of a resource, normally a file in the class path.
The parameter res is an explicit resource bundle.

Methods:

• setPage(String s): Allows to set the content of the page.

• substitute(String field, Object value): The placeholder field is substituted
by the given value.

16

2.4. HTMLPAGE

• substEncoded(String field, String value): Analog to substitute, but the value
will be HTML encoded.

• showPage(): Returns the page as string.

• getContentType(): Returns the content type and if not set, the value "text/html" is
returned.

• setContentType(String type): Allows to set the content type of the page.

• getHeaders(): Returns the HTTP headers of the page.

• addHeader(String header, Object value): Allows to set a header field in the
response before writing the page.

The class HTMLPage is normally used in the following steps:

1. Use the constructor to load the mask,

2. make multiple calls of substitute to replace the placeholders,

3. return the page to the Dispatcher.

Example: The method showNLSDate can be rewritten using HTMLPage.
HTML-mask:

File classes/demo/masks/date.html

<html><body>
Date in %format% format in %language%:

%date%
</body>
</html>

Placeholders start and end with a "%" character. The Java-method now looks like:

File classes/com/groiss/demo/HttpDemo.java

public Page showNLSDate2(HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
String format = req.getParameter("format");
Locale l = new Locale(language,language);
HTMLPage p = new HTMLPage("demo/masks/date.html");
SimpleDateFormat df = new SimpleDateFormat(

("long".equals(format) ?
"EEEE, MMMM dd, yyyy" : "EEE, MMM dd, yyyy"), l);

p.substitute("format", format);
p.substitute("language", language);
p.substitute("date", df.format(new Date()));
return p;

}

17

2.5. XHTMLPAGE

2.5 XHTMLPage

XHTML is a reformulation of HTML in XML, it has been defined and published by the
W3C (World Wide Web Consortium), see their Web page [2] for details.

Analogous to the HTMLPage an additional class XHTMLPage has been defined based on
XHTML with extended functionality:

• Every XML element with an "id" can be substituted. Therefore, whole parts of the
page can be substituted, for example a table element. Making an element invisible is
performed by substituting with null.

• It is possible to change elements by setting attributes, for example the background
color or the value in an input field.

• It is possible to make the substitutions more than once or not at all. In the page
there is a default value (element). A substitution is done when necessary. Multiple
substitutions can be performed, because the result of the substitution is again an XML
tree.

However, the usage of the XML components has some drawbacks. Only XML elements can
be substituted or changed: It is not possible to substitute a part of a URL (for example to fill
in an object’s oid). Note, that the templates must be syntactically correct XML. For example,
a "<" (less) character in JavaScript must be written as <

Hint: Since @enterprise 8.0 it is not possible to write HTML code directly on a page, but
sometimes it is necessary that HTML code should be interpreted. For this purpose the class
ProcessingInstruction can be used like in following example:

XHTML-mask snippet:

<table class="simple" width="100%">
<tr><td width="120px">Name: </td><td></td></tr>
<tr><td valign="top">Description: </td><td></td></tr>

</table>

Java method snippet:

XHTMLPage page = new XHTMLPage("mask/MyXHTMLPage.xhtml");
page.get("name").setContent("MyText");
ArrayList l = new ArrayList();
l.add(new org.jdom2.ProcessingInstruction(Result.PI_DISABLE_OUTPUT_ESCAPING,""));
l.add("This text should be displayed in bold letters");
l.add(new org.jdom2.ProcessingInstruction(Result.PI_ENABLE_OUTPUT_ESCAPING,""));
page.get("descr").setContent(l);

18

2.6. VELOCITY PAGE

2.6 Velocity Page

Velocity is a Java-based template engine. It permits web page designers to reference methods
defined in Java code. Web designers can work in parallel with Java programmers to develop
web sites according to the Model-View-Controller (MVC) model, meaning that web page
designers can focus solely on creating a well-designed site, and programmers can focus
solely on writing top-notch code. For more details take a look on page
http://velocity.apache.org/engine/devel/user-guide.html

For this purpose @enterprise provides the class com.groiss.gui.VelocityPage (see @enter-
prise APIDoc for details).

Example: Using and setting variables in a velocity page.
First an HTML page (template) should be created (it is also possible to use ordinary text-
files):

...
<h4>Current Threaduser of reserved variable and set by JAVA</h4>
Threaduser: $user / $username_by_java

<p/>

<h4>List all users</h4>
#foreach($u in $users)

$u

#end

<p/>

<h4>Simple IF-selection for variable str</h4>
#if($str != 'str')

$str
#end

<p/>

<h4>Read request parameter</h4>
$request.getParameter('vpparam')

<p/>

<h4>Read configuration parameter</h4>
$Configuration.get().getProperty('avw.license')
...

Afterward a JAVA method must be written to fill template variables:

public Page getVelocityPage(HttpServletRequest req) throws Exception {
VelocityPage vp = new VelocityPage("masks/velocitypage.html");
//set current thread user
vp.set("username_by_java", ThreadContext.getThreadPrincipal());
//list all users

19

2.7. FILE UPLOAD

vp.set("users",Store.getInstance().list(User.class));
//set variable
vp.set("str","MyString");
return vp;

}

Finally call the JAVA method by entering following URL:

http://<host>:<port>/<context-root>/servlet.method/
myClass.getVelocityPage?vpparm=myreqparam

2.7 File Upload

On the client side, the client’s browser must support form-based upload (most modern
browsers do).

File classes/alllangs/demo/fileform.html

<!DOCTYPE html>
<html>
<head>
<link href="../servlet.method/com.groiss.gui.css.StyleConf.loadCSS"
rel="stylesheet" type="text/css"></link>

<script type="text/javascript" src="../scripts/dojo/dojo.js"
data-dojo-config="parseOnLoad: true,async:true"></script>

<script>
require(
["dojo/ready","dojo/parser","ep/widget/FileInput"],
function(ready) {}

);
</script>
</head>
<body class="claro">
<form enctype="multipart/form-data" method="post"
action="../servlet.method/com.groiss.demo.HttpDemo.viewFile">

<div data-dojo-type="ep/widget/FileInput" name="mptest"></div>

<input type=submit class="ep_button">
</form>
</body>
</html>

The DOJO widget "FileInput" brings up a button for a file select box on the browser together
with a text field that takes the file name once selected.
When the user clicks the "Submit" button, the client browser locates the local file and sends
it using HTTP POST, encoded using the MIME-type multipart/form-data. When it reaches
your servlet, your servlet must process the POST data in order to extract the encoded file.
You can learn all about this format in RFC 1867, [3].

20

2.8. AUTHORIZATION

There is no method in the Servlet API to do this. The @enterprise API provides the class
com.groiss.servlet.MultipartRequest to handle multipart/form-data requests.

The file(s) are stored in temporary files in the file system of the server. The following method
shows how to access to these files:

File demo/com/groiss/demo/HttpDemo.java

public void viewFile(HttpServletRequest req, HttpServletResponse res)
throws Exception {

MultipartRequest r = MultipartRequest.createInstance(req);
File tmpfile = r.getFile("mptest");
String str = FileUtil.getContent(tmpfile);
int i = 1;
PrintWriter w = res.getWriter();
w.println("<html><body>remote name: " + r.getRemoteFileName("mptest") + "<pre>");
for (StringTokenizer st = new StringTokenizer(str, "\r\n"); st.hasMoreTokens();) {
w.println(Integer.toString(i++) + st.nextToken());

}
w.println("</pre></body></html>");

}

The method writes the content of the file to the browser together with a line number.
The class MultipartRequest is a wrapper around the HttpServletRequest and provides
some other useful methods (see @enterprise APIDoc for more details) like the following
most important:

public abstract void addParameter(String name, String value);
public abstract void removeParameter(String name);
public abstract Cookie getCookie(String id);

addParameter adds a parameter name-value pair to the request; this can be used when
calling servlet methods from other servlet methods.
removeParameter removes a parameter.
getCookie allows direct access to a cookie without iterating over the cookie array.

Note, that you have to call the createInstance method of MultipartRequest before you
call any method of the ServletRequest that reads the parameters or content of the request.

2.8 Authorization

@enterprise allows the implementation of customer defined authorization schemes. The
authorization class must implement the following interface:

public interface HttpAuth {
public void sendLoginRequest(HttpServletRequest req,

HttpServletResponse res) throws Exception;
public Principal checkUser(String user, String passwd,

String clientAddr) throws Exception;
default public void logoutRedirect(HttpServletRequest req,

HttpServletResponse res) throws Exception;
}

21

2.8. AUTHORIZATION

Figure 2.1 shows the interaction during the authorization phase.

22

2.8. AUTHORIZATION

Figure 2.1: Authorization

As described in section The Dispatcher Servlet, the Dispatcher calls the sendLoginRequest
method of the authorization class. This class either sends a login page to the browser or
performs another action for finding out the user of the client. After it found out the user it
should call the method authorizeBrowser of AuthUtil which sends the session cookie to
the browser.
The following examples show two implementations of the interface. The first one -
BasicPasswdAuth - uses the basic Authorization of the HTTP protocol:

File com/groiss/demo/BasicPasswdAuth.java

public class BasicPasswdAuth implements HttpAuth {

private static final Logger logger = LoggerFactory
.getLogger(BasicPasswdAuth.class);

public void sendLoginRequest(HttpServletRequest req, HttpServletResponse res)
throws Exception {

String auth= req.getHeader("Authorization");
if (auth != null && auth.startsWith("Basic ")) {

auth = auth.substring(6);
auth = new String(Base64.decode(auth));
String userId = auth.substring(0,auth.indexOf(':'));
String passwd = auth.substring(auth.indexOf(':')+1);
try {

User u = (User)checkUser(userId,passwd,req.getRemoteAddr());
AuthUtil.authorizeBrowser(req, res, u, req.getRequestURI() +"?"+

req.getQueryString());
return;

} catch (Exception e) {
logger.error(null,e);

23

2.8. AUTHORIZATION

}
}
res.setStatus(401);
res.addHeader("WWW-Authenticate", "Basic realm=\"@enterprise\"");
res.getWriter().println();

}

public Principal checkUser(String userId, String passwd, String clientAddr)
throws Exception {

return AuthUtil.checkUser(userId,passwd, clientAddr);
}

}

The method sendLoginRequest sends the status 401 (Not Authorized) to the client, which
will open a login window and sends the login information to the server (base64 encoded
user name and password). This information is used for checking the user and generating the
session cookie.

The second example uses the login mask from the default com.groiss.org.PasswdAuth
class, but rewrites the user checking mechanism. The method checkWinPassword connects
to a host with an FTP server and tries to login there. If it succeeds, the user is also authorized
in @enterprise.

File com/groiss/demo/WinPasswdAuth.java

public class WinPasswdAuth extends PasswdAuth {
static String winhost = Configuration.get().getProperty("windows.server");

@Override
public Principal checkUser(String userId, String passwd, String clientAddr)

throws Exception{
User user;
// don't connect to the database when sysadm
if (AuthUtil.equalUserIds(userId, "sysadm")) {

return AuthUtil.checkUser(userId,passwd, clientAddr);
} else {

user = OrgData.getInstance().getById(User.class, userId);
if (user == null) {

throw new ApplicationException(122);
}
checkWinPassword(userId, passwd);

}
return user;

}

/** Try to make a ftp connection to auth host
*/
private void checkWinPassword(String userId, String passwd) throws Exception {

try {
URL url = new URL("ftp://"+userId+":"+passwd+"@"+winhost+"/");

24

2.8. AUTHORIZATION

URLConnection urlc = url.openConnection();
try (InputStream is = urlc.getInputStream()) {

//no need to read from stream - no exception indicate
//that credentials are correct

}
} catch (Exception e) {

throw new ApplicationException(
"Authentification on host "+winhost+" failed for user "+userId);

}
}

An alternative is the function AuthUtil.authorizeBrowser(req,res,user) which does
not send a redirect to the browser. It creates a session and returns it to the caller. A null
return value indicates success, a non-null value is a page that should be written back to
the browser of the caller. It is the caller which is responsible for initiating the appropriate
method after the authorizeBrowser call, e.g. like in the following sketch to use within a
sendLoginRequest method:

String answer = AuthUtil.authorizeBrowser(req, res, u);
if (answer != null) { // might produce an error message

res.getWriter().println(answer);
return;

} else {
String p = req.getServletPath()+req.getPathInfo();
RequestDispatcher dispatcher = req.getRequestDispatcher(p);
dispatcher.forward(req,res);

}

@enterprise provides an API for UserSession specific assignments of roles, c.f. methods in
OrgData interface:

• public void addRoleToSession(Role r, OrgUnit ou);

• public void removeRoleFromSession(Role r, OrgUnit ou);

• public boolean hasRoleInSession(Role r, OrgUnit ou);

• public void removeAllRolesFromSession();

The additional roles are taken into account by these methods and by the permission checking
system. The roles assigned to a user in the usual way are not altered in any way. To use this
feature during login, the authorization class must implement the interface
com.groiss.org.LoginListener as shown in following example. In this example the user
agent is read from request and depending on it the appropriate role is assigned in method
afterLogin. In a production environment instead of a user agent other criteria are more
reasonable to determine which role should be assigned (e.g. the IP address). Furthermore 2
methods are part of the example to check, if role is part of user session or to remove it (or all
roles) from user session.

public class TestAuth extends PasswdAuth implements LoginListener {

private final static Logger logger = LoggerFactory.getLogger(TestAuth.class);

25

2.8. AUTHORIZATION

private final OrgData od;
private final Role firefox;
private final Role ie;
private final OrgUnit ou;
private final Role sys;

public TestAuth() {
od = OrgData.getInstance();
firefox = od.getById(Role.class, "firefox");
ie = od.getById(Role.class, "ie");
sys = od.getById(Role.class, "sys");
ou = od.getById(OrgUnit.class, "GI");

}

@Override
public Principal checkUser(String userId, String passwd, String clientAddr)

throws Exception {
return AuthUtil.checkUser(userId, passwd, clientAddr);

}

@Override
public void afterLogin(IUserSession us){

logger.info("############## afterLogin ##############");
HttpServletRequest req = ThreadContext.getThreadRequest();
String userAgent = StringUtil.noNull(req.getHeader("User-Agent"));
logger.info("User agent: " + userAgent);
if(userAgent.contains("Firefox")){

od.addRoleToSession(firefox, null);
} else if(userAgent.contains("Trident")) { //IE11

od.addRoleToSession(ie, ou);
} else {

od.addRoleToSession(sys, null);
}

}

@Override
public void afterLogout(IUserSession us){

logger.info("############## afterLogout ##############");
logger.info("Login-Date: " + us.getLoginDate());
logger.info("Logout-Date: " + us.getLogoutDate());
logger.info("Session ID: " + us.getSessionId());
logger.info("IP: " + us.getIP());
logger.info("Is role " + firefox + " in session? " +

od.hasRoleInSession(firefox, null));
logger.info("Is role " + ie + " in session? " +

od.hasRoleInSession(ie, ou));
logger.info("Is role " + sys + " in session? " +

od.hasRoleInSession(sys, null));
}

26

2.9. DEMO PACKAGE

/* Servlet method to check, if role is still part of session */
public void checkRoleInSession(HttpServletRequest req,

HttpServletResponse res) throws Exception {
PrintWriter pw = res.getWriter();
String roleid = StringUtil.noNull(req.getParameter("role"));
Role r = od.getById(Role.class, roleid);
if(r != null) {

pw.println("Is role " + r + " in session? ");
if(r.getType() == Role.GLOBAL && od.hasRoleInSession(r, null)) {

pw.println("YES
");
} else if(r.getType() == Role.LOCAL && od.hasRoleInSession(r, ou)) {

pw.println("YES
");
} else {

pw.println("NO
");
}

}
}

/* Servlet method to remove roles from session */
public void removeRoleFromSession(HttpServletRequest req,

HttpServletResponse res) throws Exception {
PrintWriter pw = res.getWriter();
String roleid = StringUtil.noNull(req.getParameter("role"));
if("allroles".equals(roleid)) {

od.removeAllRolesFromSession();
pw.println("Removed all roles from session");

} else {
Role r = od.getById(Role.class, roleid);
if(r != null) {

pw.println("Is role " + r + " in session? ");
if(r.getType() == Role.GLOBAL && od.hasRoleInSession(r, null)) {

pw.println("YES
");
od.removeRoleFromSession(r, null);
pw.println("Removed role " + r + " from session");

} else if(r.getType() == Role.LOCAL && od.hasRoleInSession(r, ou)) {
pw.println("YES
");
od.removeRoleFromSession(r, ou);
pw.println("Removed role " + r + " from session");

} else {
pw.println("NO
");

}
}

}

}

2.9 Demo Package

The @enterprise installation contains a demonstration file demos.zip that contains some
examples for writing servlet methods. Install the demos by using the "Install/Upgrade appli-

27

2.9. DEMO PACKAGE

cation" link in the @enterprise system administration (see System Administration Guide for
more details). After successful installation, you can view the index page of the demos within
the demo GUI configuration. Simply navigate to the Demo links/List of Demos section.

The first of the four examples of the Java class HttpDemo simply writes out the current date
to the browser:

File classes/com/groiss/demo/HttpDemo.java

public void showDate(HttpServletRequest req, HttpServletResponse res)
throws IOException {

res.getWriter().println("<html><body>"+ new Date()+"<body></html>");
}

The second example uses a form to give some values to the servlet method. The form looks
as follows:

File classes/alllangs/demo/dateform.html

<!DOCTYPE html>
<html>
<head>
<link href="../servlet.method/com.groiss.gui.css.StyleConf.loadCSS"
rel="stylesheet" type="text/css"></link>

<script src="../scripts/dojo/dojo.js"></script>
</head>
<body class="claro">
<form action="../servlet.method/com.groiss.demo.HttpDemo.showNLSDate1">
Language:
<select name=language>

<option value=de>German
<option value=en>English
<option value=es>Spanish
<option value=fr>French

</select>

Format
long: <input type=radio name=format value=long>
short: <input type=radio name=format vlaue=short>

<input type=submit class="ep_button">
</form>
</body>
</html>

The form contains two form fields. The language field to select one of four languages, the
format field to select either a long or short date format. The form action is the method
showNLSDate1 of the class HttpDemo:

File classes/com/groiss/demo/HttpDemo.java

28

2.9. DEMO PACKAGE

public void showNLSDate1(HttpServletRequest req, HttpServletResponse res)
throws Exception {

String language = req.getParameter("language");
String format = req.getParameter("format");
Locale l = new Locale(language,language);
SimpleDateFormat df = new SimpleDateFormat(

("long".equals(format) ? "EEEE, MMMM dd, yyyy" : "EEE, MMM dd, yyyy"),l);
res.getWriter().println("<html><body>Date in "+ format + " format in "+ language +

":
" + df.format(new Date())+"</body></html>");
}

The values from the form fields are retrieved with the method getParameter() of the
request object. The result is written to the writer of the response object.

29

3 Persistence Layer

The persistence layer of @enterprise has been defined to hide the complexities of reading and
updating objects in a relational database. The underlying mechanism uses the Java Database
Connection, the standard interface between Java and Relational Database Management
Systems.
The classes and interfaces described in this chapter belong to the package com.groiss.store.

3.1 Database Connection Pool

The management of the database connections is done by the class DBConnPool. On startup
the system initializes a pool of connections to the relational database. The number of
connections and some other settings are specified in the system configuration.
Normally you don’t have to deal explicitly with database connections. When an API call
needs a database connection, it reserves one for the thread. As long as the transaction lasts,
this connection is used.
If you want to get a database connection to perform JDBC operations directly, you get one
with the method call DBConnPool.getConnection. Multiple calls of this method in the
same transaction will return the same connection.
Some words about transactions: Every servlet method in @enterprise is executed in a
transaction context. Before the method is called a transaction is started and after the method
has completed, the transaction is committed - on error a rollback is performed. When
methods perform database operations, operations in the same thread use the same transaction
and the same database connection.

3.2 Persistent Objects

For making Java objects persistent we have defined the interface Persistent and the
corresponding abstract class PersistentObject implementing the interface. A member of
a class implementing this interface has a corresponding tuple in a database table. The fields
of the class have a corresponding column value in the database tuple. For reading objects
from and writing to the database the service Store is used. This is an interface, with the call
Store.getInstance you get an instance of it.
Let’s first take a closer look at the Persistent interface:

30

3.2. PERSISTENT OBJECTS

public interface Persistent extends KeyValuePair<String, String>, Serializable {
public long getOid();
public void setOid();
public void setOid(long oid);

public String getTableName();

public List<Field> dbFields();

public void beforeInsert();
public void afterInsert();
public void beforeUpdate();
public void afterUpdate();
public void beforeDelete();
public void afterDelete();
public void afterRead();

public void setFilled(boolean f);
public boolean isFilled();

public String getKey();
public String getValue();

public String getLocalObjectName();
public String getLocalClassName();

public String toListString();

public void isValid();

public String[][] getKeys();
}

Every object has a unique object id (oid), the getter getOid retrieves this oid. The setter
setOid should be used by the persistence mechanism only.
The object is filled, when the field values are set to the corresponding values in the database.
Each object knows its store and the store can be set. This is not necessary, if your program
uses one database.
The method getTableName returns the name of the database table. This is the only method
not implemented by PersistentObject, therefore you have to implement it in your class.
The method dbFields returns a list of Field objects, containing the class’ fields which have
corresponding fields in the database. The default implementation returns all fields which are
neither static, volatile, transient, nor annotated with com.groiss.store.NonPersistent.
The columns of the database table must have the same names as the fields of the Java class
and the types must be compatible. The column oid is used for the object identifier. Its type is
decimal(20) and it should be defined as primary key.
Compatible types are shown in the following table:

31

3.2. PERSISTENT OBJECTS

SQL Type Java Type
char String
varchar String
decimal(x) int,long
decimal(x,y) float,double
longvarchar String, char[]
longvarbinary byte[]
date Date
time Date
timestamp Date
decimal(20) Persistent

The entry in the last row shows that you can define fields which refer to other persistent
objects. The type of the field must be a class or interface implementing (or extending) the
Persistent interface. If the objects for this field are not all from the same class, you must add
a database field for the name of the objects class. This field is named like the Java class field
with "_class" appended.
The store uses the following rule to decide whether a "_class" field is present: If the type is
an interface or is an abstract class or is directly annotated with HasSubclasses, a "_class"
field is expected.
The methods beforeInsert, afterInsert, beforeUpdate, afterUpdate, beforeDelete,
afterDelete and afterRead are called when the respective database operations are per-
formed. They allow to add custom code to these operations.
The store interface provides, among others, the following methods for manipulation of
persistent objects:

• void insert(Persistent o): inserts the object into the database, assigns a unique
oid, creates no log entries, does not consider permissions in any way,

• void update(Persistent o): stores the (changed) object in the database, creates
no log entries, does not consider permissions in any way,

• void delete(Persistent o): deletes the object from the database, creates no log
entries, does not consider permissions in any way,

• Persistent get(Class c, long oid): reads an object from the database, where
the oid is known.

• Persistent get(Class c, String cond): The cond String is an SQL expression,
the method returns the object matching the query where the cond argument is used as
where clause.

• Persistent fill(Persistent o): fills the object with the values from the database,
the oid must be already set.

• List<P> list(Class c): return all members of the class stored in the database;
does not consider permissions in any way.

• List<P> list(Class c, String cond): cond is again a where clause, the method
returns all matching objects; does not consider permissions in any way.

32

3.2. PERSISTENT OBJECTS

• List<P> list(Class c, String cond, String order): like above, the second
argument contains one or more order attributes (separated by commas); does not
consider permissions in any way.

• List<P> list(Class c, String cond, String order, Object... bindVars):
The additional parameter bindVars contains bind variables, each question mark in the
condition string is substituted by a value from parameter; does not consider permissions
in any way

Example: For a reservation system we define the class Item, which contains some informa-
tion about reservable items:

public class Item extends PersistentObject {
private String name;
private String description;
private int maxuse;

public String getTableName() { return "res_item"; }

The class contains some fields for storing details about the item and the method getTableName,
which returns the name of the database table.
The table must be generated using an SQL statement like this (in Oracle syntax):

create table demo_address (
oid decimal(20) primary key,
name varchar(100),
description varchar(100),
maxuse decimal(10)

);

A second class, ItemRelation, describes the user-reserves-item relation:

public class ItemRelation extends PersistentObject {
private Item item;
private User userid;
private Date fromDate;
private Date toDate;

public ItemRelation() {}

public ItemRelation(Item res, User user, Date from, Date to) {
this.item = res;
this.userid = user;
this.fromDate = from;
this.toDate = to;

}

public Item getItem() { return item; }

public User getUser() { return userid; }

public Date getFromDate() { return fromDate; }

33

3.3. LAZY FILLING

public Date getToDate() { return toDate; }

public String getTableName() { return "res_itemrel";}
}

The database table for this class:

create table res_itemrel (
oid decimal(20) primary key,
item decimal(20),
userid decimal(20),
userid_class varchar(100),
fromDate date,
toDate date

);

Note that the fields item and userid hold the oids of an item object and a user object
respectively. Because the field userid is of type com.groiss.org.User and this is an
interface, we need the additional table column userid_class.

3.3 Lazy filling

When reading an object from the database, using one of the get or list methods of the store,
the fields of the objects are filled with the values from the database. For fields containing
persistent objects, the objects are created with the given oid, but the other fields have default
values and the method isFilled will return false.
If, for example, we read an object of the class ItemRelation from the database, the method
getItem applied to this object would return an object containing the oid but other fields will
have their default values (0 or null). Calling fill on this object will set the values.
This behavior is important if you have nested object hierarchies. If you navigate through
the objects you have to fill them after calling getter methods. However, it belongs to the
developer to insert the fill methods into the getters, like in the following example:

public String toString() {
try {

Store.getInstance().fill(this);
} catch(ApplicationException e) {

throw new ApplicationRtException(e);
}
return name;

}

The toString method returns the name and ensures that the object is filled.

3.4 Optimistic Locking

If two threads want to change an object at the same time, one thread will overwrite the change
the other thread made. To prevent these "lost updates", we implemented the optimistic

34

3.5. PERSISTENTEVENTHANDLER

locking mechanism: With each object a transactionid is stored, every update increases this
transactionid and checks if it has the correct transactionid. If it does not have the correct id,
an update occurred since it read the object from the database. In this case an error is thrown.
For using optimistic locking with your objects you must do two things: First, your class must
implement the interface OptimisticLocking, secondly your database table must contain
the decimal field transactionid.

3.5 PersistentEventHandler

This interface provides a hook for some action when an object is inserted, updated or
deleted. The methods beforeInsert, beforeUpdate and beforeDelete are called before
the database operation is performed but after the corresponding methods of Persistent
are called. The methods afterInsert, afterUpdate and afterDelete are called after
database operation. The method isValid is called after beforeInsert and beforeUpdate.
Register your event handler using StoreUtil.addEventHandler.

3.6 Additional aspects

Permission checks are necessary to ensure, if an agent is allowed to apply an operation to an
object. The insert, update, delete and list operations of Store do not consider permissions in
any way.
The OrgData facade, obtainable via OrgData.getInstance provides appropriate methods
for this:
OrgData.insert(Persistent p),
OrgData.update(Persistent p) and
OrgData.delete(Persistent p)
check, if the current user is permitted to execute the operation on the object. If the check
fails, an Exception is thrown. The method OrgData.listWithRightCheck can be used to
retrieve a list of objects, the current user is allowed to see according to his permissions (see
chapter Organizational Data for more details).

3.6.1 PermissionMapping

By using the PermissionMapping it is possible to change the behaviour of the permis-
sion system. For this purpose you have to write a own class which extends the class
com.groiss.accesscontrol.PermissionMapping and add the new permission rule e.g.
at startup of an application to the permission system. An example how this can be handled is
available in our demo package:

• com.groiss.demo.SupplierPermissionMapping: Defines a permission rule for the
supplier form.

• com.groiss.demo.DemoApplication: In startup method of the ApplicationAdapter
the permission rule is added to the permission system with following call of OrgData
interface:
OrgData.getInstance().addRule(SupplierPermissionMapping.class);

35

3.6. ADDITIONAL ASPECTS

3.6.2 DeferredChanges

Some master data instances can have changes that are "deferred" till a later point in time.
For this purpose the marker interface HasDeferredChange is available which designates
that an instance may have outstanding changes. This interface is checked during update and
delete operation via the Store.

3.6.3 HasPermissionList

Some objects can have PermissionLists attached to them. Objects implementing
HasPermissionList have an acl field of type PermissionList. On insert, update and
delete of such objects, the Store applies appropriate actions on the permission list. A
OrgUnit can be set as as default for purposes of right checks. The abstract
com.groiss.org.CheckedPersistent class provides implementations for those meth-
ods and is a convenience class combining com.groiss.org.HasPermissionList and
OptimisticLocking.

3.6.4 HasLog

The insert, update, delete and operations of Store do not consider semantic versioning in
any way. The corresponding OrgData methods are responsible for semantic versioning, if
the object implements the com.groiss.org.HasLog interface. The semantic versions have
the type com.groiss.org.LogEntry and are stored in the avw_log table.

3.6.5 PersistentAspect

Allows to change certain aspects of the behavior of the Store and OrgData operations on
Persistent objects. The values can be set on a global (thread/transaction level) or on an object
level. Deviations from standard behavior are reset at the end of the transaction.

Hint: Detailed information about the mentioned interfaces are available in @enterprise
APIDoc.

36

4 Utilities and Data Structures

@enterprise provides some utility classes for working with files, strings or date objects as
well as some data structures.

4.1 Data Structures

The data structures belong to the package com.groiss.ds.

4.1.1 KeyValuePair

The interface KeyValuePair is implemented by some classes like
com.groiss.store.PersistentObject which have a unique key (object id) and a value -
the object itself or a string representation. We use it, for example, for representing objects in
select lists.

4.1.2 Pair

The Pair is a simple class containing two objects. The class also implements the interface
KeyValuePair, where the first object is returned with getKey, the second with getValue.

4.1.3 MultiMap

MultiMap is like a java.util.HashMap, but can map a key to more than one value.

4.1.4 KeyedList

This class implements an ordered map. A list of keys is mapped to a list of values. The values
can be accessed by the key or the position in the list. A small example should demonstrate
the usage:

List l1 = Arrays.asList(new String[]{"a","b","c"});
List l2 = Arrays.asList(new String[]{"v1","v2","v3"});
KeyedList kl = new KeyedList(l1,l2);
// get the second value v2
Object x = kl.get(1);
// or get v2 by its key
Object y = kl.get("b");

37

4.2. STRINGUTIL AND FILEUTIL

4.1.5 CountedSemaphore

A counted Semaphore is used for controlling the number of threads entering a critical section.
When constructing the semaphore object you specify two bounds:
The first value defines how many threads can enter the critical section concurrently, the
second value defines how many threads will wait for the resource until an exception is thrown
(QueueFullException).

The clients call two methods: the method P for entering the critical section and the method V
for leaving it. The waiting threads are handled in FIFO order.
Example:

// create a semaphore for two concurrent threads and three waiting threads.
static CountedSemaphore s = new CountedSemaphore(2,3);

public void foo() throws Exception {
s.P();
try {

// make some complicated computations
} finally {

s.V(); // call V in finally guarantees that it is called
}

}

4.1.6 Caching

It is often quite advantageous to access persistent data with a high referencing rate and
a relatively low modification rate via some caching mechanism. @enterprise provides a
convenient caching API for such purposes. Caches of arbitrary objects can be constructed
via the com.groiss.cache.CacheFactory. Cluster wide caches should be constructed via
calling Caches.getClusteredCache.
While cache loading and cache access operations must be explicitly provided by the user, the
com.groiss.cache.CacheFactory provides a range of options to parametrize the more
technically involved cache aspects like size limits, expiration lifetime or context and cluster
awareness.
The Cache instances returned by the factory can be used like ordinary java.util.Map
objects to a large extent.
A comprehensive usage example can be found in @enterprise demo package in class
com.groiss.demo.Supplier.
If you want to see how the example works, load gui configuration demo.xml, open table
Supplier Custom persistent, old table within subtree Master data in block Demo links and
activate the toolbar function Test supplier cache (create a supplier object before!).

4.2 StringUtil and FileUtil

The class StringUtil provides some convenient methods for Strings and the class FileUtil
for files. See the API for details.

38

4.3. DATE/TIME HANDLING

4.3 Date/Time Handling

4.3.1 CalUtil

Whenever the system reads and writes a date, the class com.groiss.cal.CalUtil is used.
The format for conversions is defined in the system administration. Two formats exist: one
for date only, one for date and time. The method parse converts a String to a Date object,
trying both formats. The method showDate shows the date, showDateTime the date and
time of the given Date object.

The class CalUtil allows you to get instances of SimpleDateFormat. These instances are
cached per Thread, are localized and adapted to ThreadContext-timezone (excepting some de-
fault patterns, e.g. ISO, RFC, etc.). For further information about patterns see http://www.icu-
project.org/apiref/icu4j/com/ibm/icu/text/SimpleDateFormat.html

4.3.2 Holidays

In the system administration a class specifying the holidays can be defined. It must implement
the following interface:

public interface com.groiss.cal.Holidays {
public String isHoliday(GregorianCalendar d);

}

The method isHoliday returns null when the day represented by the Calendar object is a
holiday, otherwise it returns the name of the holiday, for example "Easter Sunday".
The implementing class is used in the com.groiss.cal.CalUtil methods addWorkdays,
isHoliday, and workdaysBetween. Additionally, it is used in calendar for entering dates,
for example when setting a deadline.
The distribution contains the class com.groiss.cal.impl.AustrianHolidays with the
following implementation of isHoliday:

public String isHoliday(GregorianCalendar d) {
int day = d.get(d.DAY_OF_YEAR);
int year = d.get(d.YEAR);
switch (d.isLeapYear(year) ? day - 1 : day) {

case 121: return "Staatsfeiertag";
case 227: return "Maria Himmelfahrt";
case 299: return "Nationalfeiertag";
case 305: return "Allerheiligen";
case 306: return "Allerseelen";
case 342: return "Maria Empfï¿ 1

2ngnis";
case 359: return "Christtag";
case 360: return "Stephanitag";

}
int easter = CalUtil.easterDay(year);
if (day == easter) return "Ostersonntag";
else if (day == easter + 1) return "Ostermontag";
else if (day == easter + 39) return "Ch. Himmelfahrt";
else if (day == easter + 49) return "Pfingsten";
else if (day == easter + 50) return "Pfingsmontag";

39

4.4. THREADCONTEXT

else if (day == easter + 60) return "Fronleichnam";
else if (day == 1) return "Neujahr";
else if (day == 6) return "Hl. 3 Kï¿ 1

2nige";
return null;

}

The floating holidays depend on the date of Easter, the method easterDay in CalUtil
can be used here. We use the formula from Gauss, note that the result does not match the
Greek-orthodox Easter.
For Germany use the implementation com.groiss.cal.impl.GermanHolidays.

4.3.3 Application dependent calendar-events

The @enterprise calendar-component can be extended to fetch events from custom sources.
To specify your own calendar source, please use the @enterprise configuration parameter
located under Calendar→ Calendar sources. This property contains a comma separated
list of classes implementing the com.groiss.cal.CalInfo-interface. Please note that it’s
recommended to extend com.groiss.cal.CalInfoAdapter.
The following default implementations are shipped with @enterprise:

• com.groiss.calendar.CalendarAppl: returns custom events inserted by a user

• com.groiss.calendar.wf.DueTasks: returns all tasks which have to be finished at
the given date

• com.groiss.calendar.wf.FinishedTasks: returns all finished workflow tasks

If you want to register your CalInfo-implementations programmatically, use
com.groiss.cal.CalRegistry.

4.4 ThreadContext

The com.groiss.util.ThreadContext class contains some ThreadLocal variables, which
are set by the Dispatcher servlet and can be retrieved from any method:

• getThreadPrincipal returns the user of this thread. The method returns a
java.security.Principal object, which can be casted to a com.groiss.org.User
object.

• getThreadLocale returns the locale of the thread: This is either the locale of the
user, or if the thread is not assigned to a user, the default locale defined in the system
configuration.

• getSessionId returns the id of the user session.

• isPrivileged returns true if the session is privileged. Privileged sessions are allowed
to open additional database connections, if all connections are used. A thread belonging
to the user sysadm is privileged.

• getThreadRequest returns the HttpServletRequest object from the thread.

40

4.5. LOGGING

• The methods setAttribute, getAttribute, removeAttribute, and
getAttributeKeys can be used to add arbitrary attributes to the ThreadContext
object.

• The method getSessionType returns the type of the session, either HTTP, RMI1, or
internal.

• Client Certificates: The ThreadContext holds the client certificates, if the communica-
tion is encrypted and requires client authentication. The certificates of the client are
set automatically and can be read from the attributes with the key
java.security.cert.X509Certificate (returns an array of X509Certificates).

The following method from HttpDemo can be called to check the environment:

File classes/com/groiss/demo/HttpDemo.java

public void showThreadContext(HttpServletRequest req, HttpServletResponse res)
throws Exception {

PrintWriter w = res.getWriter();
w.println("<html><pre>"+

"\nUser: " + ThreadContext.getThreadPrincipal() +
"\nLocale: " + ThreadContext.getThreadLocale() +
"\nSession: " + ThreadContext.getSessionId() +
"\nPrivileged: " + ThreadContext.isPrivileged() +
"\nRequest: " + ThreadContext.getThreadRequest() +
"</pre></html>");

}

4.5 Logging

@enterprise uses the slf4j logging framework by default and writes the logging output to a
log file.
The format of each output line is as follows:

• log level

• thread name

• date and time

• ip address

• your message

The configuration options are described in the @enterprise Installation- and Configuration
guide.

Output example:

INFO [JHttp-48] 2013-08-07 08:30:58.375 10.205.112.10 - GET /wf/html/avw.css

1RMI Sessions are deprecated.

41

4.6. TIMER

Example in Java:

private static final Logger logger = org.slf4j.LoggerFactory
.getLogger(MyClass.class);

logger.info("This is a log info");

Hint: More information about the org.slf4j.Logger interface is available in the SLF4J
API documentation.

4.6 Timer

One of the services @enterprise provides is the timer service. You can schedule your tasks
and specify the interval, thread, etc.
Your timer task must implement the com.groiss.timer.TimerTask interface. It contains
the methods run and abort. The run method is called when the timer task should be
executed, abort is never called and for future use.

4.7 BeanManager

The com.groiss.component.BeanManager is a component that controls transactional be-
havior. It can be used to commit or rollback transactions and offers the possibility to execute
code at various points in the transaction life cycle.

For simple cases, the registration of callbacks is supported like described in the follow-
ing section. More complex requirements can be met via Beans which will be elaborated
afterwards.

4.7.1 Callback registration

This can be achieved via the registration of callbacks with a simple functional interface
com.groiss.functional.VoidCallable with a call method which can throw an excep-
tion.
The callbacks can be registered via the following static methods of BeanManager:

• beforeCompletion: will be called before commit. Exceptions lead to a rollback of
the transaction.

• afterCommit: will be called after commit of the transaction, Exceptions will be
ignored.

• afterRollback: will be called after rollback of the transaction, Exceptions will be
ignored.

• executeDeferred: will be called after commit in the EventDispatcher Thread. Each
callback is executed in its own transaction. Exceptions lead to rollback of this separate
transaction.

42

4.7. BEANMANAGER

An arbitrary number of callbacks can be registered, they will be executed in the order of
registration.
Example for such a call :

BeanManager.afterCommit(() -> {
myLogger.trace("Called after successful commit.");

});

4.7.2 Beans

In @enterprise it is possible to implement Beans which are handled by
com.groiss.component.BeanManager.
The Bean must implement the interface javax.ejb.SessionSynchronization.
Following 3 steps are necessary for the integration and usage in @enterprise:

1. Write your own Bean: Following DemoBean has a method to store DMS docu-
ments in a temporary folder. At the end of transaction (could be initiated by the call
BeanManager.commit) the methods beforeCompletion and afterCompletion are
called. In our DemoBean we delete all files created in temporary folder after successful
transaction.

public class DemoBean implements SessionSynchronization{

private String TMP_FOLDER_PATH = Settings.getLocalDir() + "/files";
private final Logger logger =

LoggerFactory.getLogger(DemoBean.class);

/**
* Method to store document in temporary folder
* @param doc the DMS document to store
* @throws Exception
*/

public void storeDocument(DMSDocForm doc) throws Exception {
File folder = new File(TMP_FOLDER_PATH);
if(!folder.exists()) {

folder.mkdir();
}

String filename = doc.getName() + "." + doc.getExtension();
logger.info("DemoBean.storeDocument: {}", filename);

File f = new File(TMP_FOLDER_PATH, filename);
if(!f.createNewFile()) {

throw new ApplicationException("File " +
filename + " could not be created!");

}
FileOutputStream out = new FileOutputStream(f);
out.write(doc.getContent());
out.close();

}

43

4.7. BEANMANAGER

@Override
public void beforeCompletion()

throws EJBException, RemoteException { /* empty */ }

@Override
public void afterBegin()

throws EJBException, RemoteException { /* empty */ }

/**
* Delete all files which were created in temporary folder
*/

@Override
public void afterCompletion(boolean arg0)

throws EJBException,RemoteException {
logger.info("DemoBean.afterCompletion");
File folder = new File(TMP_FOLDER_PATH);
File [] files = folder.listFiles();
for(int i = 0; i < files.length; i++) {

files[i].delete();
}

}
}

2. Register the Bean: This could be done e.g. at application startup (see section
Application Adapter for more details) by using following call:

BeanManager.addBean("DemoBean", DemoBean.class);

3. Use the Bean: Our DemoBean has the method storeDocument which allows to
store a DMS document on file system. Before we could call this method we have to
get the Bean with the BeanManager like in following way. A possibility to finish a
transaction is the usage of BeanManager.commit:

DemoBean db = (DemoBean)BeanManager.getBean("DemoBean");

//code to get DMS document(s)
...
db.storeDocument(doc); //store document on file system
...

try {
//code to handle file(s)
...
BeanManager.commit(); //calls beforeCompletion() + afterCompletion()

} catch (Exception ex) {
BeanManager.rollback();

}

44

4.8. RESOURCE FILES

More details about the com.groiss.component.BeanManager could be found in the @en-
terprise API!

4.8 Resource Files

@enterprise uses the mechanism of JAVA "ResourceBundles" for translating language-
dependent texts. See the Java documentation of java.util.ResourceBundle for details
on how this works. @enterprise uses two ResourceBundles:

<ephome>/classes/com/dec/avw/resource/Errors for error messages and
<ephome>/classes/com/dec/avw/resource/Strings for label, messages

and other texts.

The default versions contain the texts in English, the German versions, with the suffix "_de"
contain the German texts. Other languages are French ("_fr") and Italian ("_it").

You can define resource files for country dependent locales, for example a file Strings_de_AT
and overwrite selectively the labels you want to change.

For this purpose it is recommended to use the function New language of the @enterprise
resource editor (see the System Administration Guide, chapter Workflow modeling, section
Resource Editor).

If the desired language option is not available, you have to define it in section Configura-
tion/Localization with parameter List of locales. This new column appears in resource editor
spreadsheet and is editable. When saving the spreadsheet a new file Strings_XX.properties
on file system will be created (file is located in classes/com/dec/avw/resource).

Finally assign the appropriate language to the users. If no appropriate translation is found in
the overwritten language file, the default translation is used.

For application specific translations please read section Internationalization of Applications.

4.9 Error Handling

If your servlet code throws an Exception or Error, an error page will be displayed. This page
contains the following message:

• The message from the exception itself, if the exception is an instance of
com.groiss.util.TopLevelException.

• The standard message "An internal error occurred. Please contact the system adminis-
trator!" is shown otherwise.

45

4.9. ERROR HANDLING

The com.groiss.util.ApplicationException implements the
com.groiss.util.TopLevelException and extends the
java.lang.RuntimeException.

All @enterprise errors have an error number as key, the key for the standard message is
"unknown". You can change the text by defining a resource file for the Errors bundle for
your Locale (see section Resource Files).

If you want to change the error page as a whole, you can implement an own error formatter
by using following interface:

public interface ErrorFormatter {
public Page format(Throwable e);
public JSONObject formatJSON(Throwable e);

}

Afterwards set your error formatter class in the @enterprise configuration in section Classes.

The default implementation is com.groiss.gui.DefaultErrorFormatter.

The class com.groiss.util.ApplicationException has the method setErrorFormatter
that allows you to set your own formatter class for a single exception.

46

5 Structure of Applications in
@enterprise

The integration of applications is one of the main tasks of workflow systems. In this
chapter we show how @enterprise applications should be structured to make installation and
maintenance easy.
Our design goals were:

• Simple installation/un-installation of applications

• Support for upgrade of applications

• Independence of applications and @enterprise versions

• Support of startup and shutdown functions

5.1 Organization of Files

The resources of applications can be placed under the @enterprise directory, the appls
directory is provided for this purpose (in standalone mode under local and var; in context
of an application server under WEB-INF). In any case, a different directory should be used for
each application within appls. Typically, an application contains:

• jar files for application classes and additional libraries,

• static HTML pages, probably language dependent,

• HTML masks, loaded from the code,

• configuration file(s), styles

• other: export files, documentation, database scripts.

The structure of applications is partially predefined, for example the configuration file is
searched in the root directory of the application, jar files must be placed in the lib directory.
In the following table we show the structure of an application. The bold parts are required,
non bold parts are conventions only. “applid” denotes the id of the application.

47

5.2. THE CONFIGURATION FILE

appl.prop configuration file
classes/ Java classes and all resources loaded from classpath
classes/applid_guiid.xml gui configuration with id guiid
classes/applid/properties.xml property-file for application- and user-parameter
classes/applid/import.xml import-definition for file importer (see System Administration

Guide - section File Import)
classes/applid/reporting.xml Reporting definition containing needed information about

the pool of data which can be used in reports (see XML
Configuration)

classes/applid/styles.less The @enterprise styleloader loads the file (depending on
startup sequence of the application) and appends it to the
main less-file

classes/applid/styles_mobile.less Analog to styles.less, but for mobile GUI. This file is optional,
if styles for mobile GUI should not be stored in styles.less

classes/applid/strings.xls Resource file for internationalization
classes/applid/masks/ HTML masks
classes/applid/forms/ Forms (templates for formtypes)
classes/applid/exports/ Export files; needed for import via admin-shell (see System

Administration Guide - chapter Administration Shell)
classes/lang/default/applid/ defaults for language dependent files, including images
classes/lang/<language>/applid/ language specific files
classes/alllangs/applid/ language independent files (HTML, ..)
classes/alllangs/scripts/applid/ JavaScript files and DOJO widgets
java/ Java source files
lib/ Needed libraries (jar files) can be placed here
lib/applid_forms.jar @enterprise puts the form interfaces in this jar file
doc/ Folder for documentation (e.g. user guide, etc.)

HTML masks used in servlet functions are loaded from the classpath and are located either
in the lib or the classes directory. In the classloader the jar-files are sorted alphabetically
for each path.
When you specify the application path in the corresponding field of the application entry
in the system configuration, the classes directory and the jar files in the lib directory are
added to the classpath. The classes directory is in the classpath before the jar files, so you
can shadow classes in the jar files.
We recommend to build a jar file containing application classes and HTML masks and
putting this jar file in the lib directory of your application. Thus, future application upgrades
can be done by simply exchanging one single file. The classes directory is useful during
application development, because you don’t need to build and replace a jar file every time
you compile your code.

5.2 The Configuration File

The configuration file appl.prop contains key-value pairs in the syntax of a Java prop-
erty file. In a standalone installation of @enterprise this file should be located under

48

5.2. THE CONFIGURATION FILE

<ep_base>/<var>/appls/<applid> and in an application server under
<ep_base>/WEB-INF/appls/<applid>.
The configuration file contains two kinds of parameters: First, @enterprise reads some
parameters when an application is installed. The second group of parameters is only used
within the application. The first group of parameters contains:

avw.application.id: The id of the application,

avw.application.name: A name for the application,

avw.application.docu: Location of application documentation (see section Documentation
of Applications for details).

avw.application.docu.html: Location of application’s html documentation (see section
Documentation of Applications for details).

avw.export.file: The name of the export file (e.g. export.xml).

On startup, @enterprise reads the configuration file and keeps it in memory. With the configu-
ration API the parameters can be read and set. A com.groiss.component.Configuration
object holds the parameter values of an application. To get this object call:

Configuration conf = Configuration.get("appl-id");

The parameter values are then retrieved and set with the following calls:

conf.getProperty(name);

conf.setProperty(name, value);

If parameter values have been changed in file appl.prop without using the GUI, the func-
tion Reload Configuration (can be found under Administration→ Admin-Tasks→ Server
→ Server Control) allows to load the changes and transfer the changed values into the
com.groiss.component.Configuration object. After loading the method reconfigure()
is called for each service (and each application where application class implements the
interface com.groiss.component.Service). The name of the changed properties can be
retrieved by using the method ThreadContext.getAttribute("changedParams") which returns
a list of strings.

The second group of parameters can be pre-defined in a XML-file called properties.xml.
This file contains the properties, which are displayed in Configuration or (User-)Settings
of @enterprise. The values of Configuration are stored in appl.prop, the user-settings in
database-table avw_userprops.
For creating and editing the file properties.xml the property-editor of @enterprise can be
used, which is available in tab Properties of the application-object (see System Administration
Guide - section Applications).

Example for properties.xml:

49

5.2. THE CONFIGURATION FILE

<?xml version="1.0" encoding="UTF-8"?>
<application>

parametergroup name="ITSM" helpctx="itsm/configuration" visible="true">
<property label="@@@mail.sender@@" type="String" name="mail.sender"

needsrestart="false" defaultvalue="">
<tooltip>

<div>The mail sender address in the FROM field of an email.</div>
</tooltip>

</property>
</parametergroup>
<userprops>

<property label="@@@signature@@" name="sig" allowOnClient="true"
needsrestart="false" type="String">

<components type="textarea" />
</property>

</userprops>
<resource strings="itsm.Strings" />

</application>

After the xml tag the property-file starts and ends with an application-tag. Between this tags
you can define

• parametergroup (displayed as section in Administration→ Configuration)

• userprops (displayed as group in User profile→ Settings)

• resources (applications do not support error ressources)

A parametergroup should contain a name-attribute which represents the link in the navigation-
tree of Configuration. Within the parametergroup and userprops the property-tags can
be set, which indicates the property.
The keywords name and type must be defined, label is optional (only for representation in
GUI).
Defaults can be specified either via a defaultvalue attribute within the property-tag, or (for
multi-line defaults) by a nested default-tag.
The attrbiute needrestart defines, if the server has to be restarted or not when property is set
via GUI.
The attribute allowOnClient defines, if the parameter is accessible on client too (see section
Implementing own widgets for more details). The components-tag allows to define other
HTML-elements like password-fields, select-lists, text-areas, links, etc.

Hint: The Duration type uses the java.time.Duration and can be inserted in the follow-
ing formats:

• dD hH mM s .f S (e.g. 2d 1h 2m 3.5s)

• as number (will be interpreted as seconds)

• as ISO-8601 string

Following example shows, how to define different HTML-elements with the components-tag
(snippet of a parametergroup):

50

5.3. THE APPLICATION CLASS

<property label="Textfield name="example.textfield">
<components type="textfield" size="40" />

</property>
<property label="Password" name="example.password">

<components type="password" />
</property>
<property label="Textarea" name="example.textarea">

<components type="textarea" />
</property>
<property label="Dropdown-List"

name="example.dropdownlist" type="Integer"
defaultvalue="0">
<restriction>

<enumeration value="0" name="v1" />
<enumeration value="1" name="v2" />
<enumeration value="2" name="v3" />

</restriction>
</property>
<property lable="Select-List" name="example.selectlist">

<components type="selectlist" multiselect="true" />
<restriction>

<enumeration value="1" name="sunday" />
<enumeration value="2" name="monday" />
<enumeration value="3" name="tuesday" />
<enumeration value="4" name="wednesday" />
<enumeration value="5" name="thursday" />
<enumeration value="6" name="friday" />
<enumeration value="7" name="saturday" />

</restriction>
</property>
<property label="Class Checker" name="example.classchecker">

<components>
<a href="javascript:ep.admin.checkClass('example.classchecker',

'aimg','instanceof java.lang.Object')">

</components>

</property>

@enterprise uses also a default property-file (stored in conf -folder of ep-impl.jar), where
you can see the definition of all @enterprise properties (values stored in ep.conf), but:
DO NOT CHANGE THIS FILE!

5.3 The Application Class

The application class contains methods for startup, shutdown, and other control operations
of the application. The interface com.groiss.component.Service (a sub-interface of
com.groiss.component.Lifecycle) contains the following methods:

public void startup();

51

5.4. DOCUMENTATION OF APPLICATIONS

public void shutdown();

public boolean isRunning();

public void reconfigure() {}

The first two methods are called on startup respective shutdown of the server.
The method isRunning can be called to find out whether the application is running or not
(whatever this means in the context of the application).
The method reconfigure can explicitly be used to reconfigure the service.

We recommend to implement this interface, if an own Service implementation is needed - do
not extend com.groiss.component.ServiceAdapter!

The class com.groiss.wf.DefaultApplicationAdapter provides a default implementa-
tion of the com.groiss.wf.ApplicationAdapter interface, which contains some methods
to tailor the behavior of an application. You can define such a class and register it in the
application administration (field application class).

5.4 Documentation of Applications

You can add documentation pages to your application by specifying a property with the
key avw.application.docu and/or avw.application.docu.html in the application’s
appl.prop file. @enterprise will search for the documentation in the classpath, so you must
add it to the folder lang/<language> either within classes directory or to the application
jar file in the lib directory. Here comes an example for the properties:

avw.application.docu=demodoc/demo.pdf
avw.application.docu.html=demodoc/html/index.html

When a user clicks on Help and Content, the system searches for @enterprise and appli-
cation documentation. If at least one application documentation is found, a selection page
will be shown, where the user can choose either the system documentation or an application
documentation. The application documentation links to the location specified in the above
mentioned properties. There you can provide HTML help pages or links to pdf-files or
whatever you prefer.

5.4.1 Using context sensitive help in applications

@enterprise offers the possibility to add a pdf or html version of application’s help (parameter
avw.application.docu and avw.application.docu.html). This can be used as context
sensitive help on application masks which is opened when key F1 is pressed. For this purpose
the PDF file or HTML help-pages must contain anchors to get the correct relation between
mask and help page. When PDF is opened, the anchor is found via the parameter nameddest;
the anchor in HTML-pages is determined by the id-attribute.

52

5.4. DOCUMENTATION OF APPLICATIONS

For defining anchors in PDFs multiple ways are offered, e.g. by using the Adobe Acrobat
tool, MS Word bookmarks or special plugins, Latex with hypertarget, etc. The following
steps describe a simple and facile possibility to define anchors in PDFs by using MS Word
and LibreOffice:

• Create a document in MS Word.

• Define the anchors by using MS Word bookmarks; ensure that the bookmarks do not
contain special characters according to PDF restrictions.

• Save the MS Word document and open it with LibreOffice Writer tool.

• Change to toolbar and open the dropdown list File; click on entry Print as PDF.

• In dialog PDF options change to tab Links and activate checkbox Export bookmarks
as named destination.

• Activate button Export to create a PDF version of the document.

The following example shows the anchor definition for HTML help pages:

<h1 id="problems">Problem Management<h1>
...
<h2 id="startProblem">Start problem</h2>
For starting a problem the agent ...

<h1 id="config">Configuration</h1>
...

After the PDF file or HTML help pages are defined, the next step is to set the context on
HTML masks, in widgets or in GUI-XML in @enterprise. The context consists of the
application-id and the anchor defined in help-page.

On HTML mask, in an html tag you have to set the correct context in an attribute
data-ep-helpcontext as shown in following example:

<html data-ep-helpcontext="sysadm/cacheadministration">

Please note that following the dojo.js must be imported on HTML mask where context
sensitive help should be used (see section The @enterprise JavaScript library for details):

<script src="../scripts/dojo/dojo.js"></script>

In case of DOJO widgets (see section Implementing own widgets) the attribute helpContext
can be used to set the context. The following example should demonstrate how the context
can be set:

...
var dlg = new Dialog({

title:"@@@startProb@@",
content:thePane,
helpContext:"itsm/startProblem",
showOk: true

});
...

53

5.5. INTERNATIONALIZATION OF APPLICATIONS

If a help context for own defined tables or worklists is needed, you have to add the attribute
helpContext in your GUI-configuration file (see section Configuring the Worklist Client).
Examples:

<table id="mytable1">
<name>My table 1</name>
<classname>com.dec.avw.appl.my_table_1</classname>
<helpContext>itsm/mytable1</helpContext>

</table>

For the configuration parameter page created with data of properties.xml (see section The Con-
figuration File) an attribute called helpctx must be added with the context appl-id/anchor, if
context sensitive help should work for this page, e.g.:

<parametergroup name="ITSM" helpctx="itsm/config">
...
</parametergroup>

In addition to this possibilities the user manual of @enterprise can be overwritten. This
could be necessary, if the context help of @enterprise dialogs/masks should not point
to the @enterprise user manual. For this purpose following parameters in @enterprise
configuration section Other parameters are available:

• ep.user.docu: Path to PDF version of user manual. If an own user manual
should be used for the @enterprise default dialogs, use a path analog to parame-
ter avw.application.docu defined in file appl.prop of your application (see section
The Configuration File for details).

• ep.user.docu.html: Path to HTML version of user manual. If an own user manual
should be used for the @enterprise default dialogs, use a path analog to parameter
avw.application.docu.html defined in file appl.prop of your application (see
section The Configuration File for details).

• ep.user.docu.shadowall: If value is set to true, the fallback to default user manual
will be disabled, i.e. the paths are used which are entered in ep.user.docu and
ep.user.docu.html. If this parameter is false, the @enterprise user manual will be
used as default, e.g. if in case of context sensitive help the help page in an own defined
user manual could not be found.

Please note, if an own user manual should be used, the anchor-ids in your HTML help pages
must contain the same anchor-ids as in the @enterprise user manual HTML files!
Example: The dialog of task function Set priority has the helpcontext ’user/setpriority’. In
this case your help page must contain a HTML-tag with id setpriority.

5.5 Internationalization of Applications

@enterprise offers the possibility to add your own resource bundles to your applications. For
internationalizing your application following steps are necessary:

54

5.6. STARTUP AND SHUTDOWN

1. Definition: A resource bundle for the strings (and error) messages of the application
must be defined (see section Resource Files).

2. Configuration: The resource bundle must be added to the application (see System
Administration Guide - section Applications).

3. Usage: There are different ways to use the resource bundle:

• Resources loaded by @enterprise: Use the placeholders "@@@" e.g. in
forms or gui-configuration (see section Internationalization for using placeholders
in GUI-configuration). All strings (= keys) starting with "@@@" and ending
with "@@" are interpreted as translation labels. If the string "@@@" is needed
in HTML/JavaScript files (= should not be internationalized), you have to write
following string: @@@@

Example for forms:
<input type="button" value="@@@close@@">
in locale en_US: <input type=button value="Close">
in locale de_AT: <input type=button value="Schließen">

• Resources loaded by FileServlet (images, scripts, HTML pages):
This resources are loaded from alllangs directory in classpath or from language
specific directory (see section Mapping of URLs to files or methods). Use the
placeholders "@@@" as described above.

• Java Code: In JAVA code use com.groiss.wf.ApplicationAdapter to get
the com.groiss.component.Resource object (see section Application Adapter
for more details). If the keys of a HTML-page should be translated, load the
HTMLPage object like in following example (see section HTMLPage for more
details):

Application myAppl = OrgData.getInstance()
.getById(Application.class,"applid");

ApplicationAdapter applclass = ApplicationAdapter.of(myAppl);
Resource res = applclass.getResource();
String key = res.getString("key"); //translation key without @@@
HTMLPage p = new HTMLPage("masks/mypage.html", res);
...

If standard @enterprise resources should be used, the key must contain a leading ep:,
e.g. @@@ep:role@@
It is also possible to use resources of other applications. In this case the application-id
is the prefix instead of ep:, e.g. @@@applid:abortandarchive@@

5.6 Startup and Shutdown

During the startup of an application the system performs the following steps:

• Add the jar files to the lib directory and the classes directory to the classpath.

• Load the configuration file.

• Execute the startup method of the application class.

55

5.7. INSTALLATION

5.7 Installation

The installation of an application is done in two steps:

1. Copy the files to the destination directory.

2. Create an application object, specify the id, name and installation directory of the
application.

When inserting the application object, the classpath is altered, the application loaded and the
application is started.
The second and recommended possibility to add an application is to pack the application
into a zip file and load it onto the server. This is done via the "Install/Upgrade Application"
function in the administration (see System Administration Guide for more details).

5.8 Upgrading

Detailed information on how to apply an upgrade to an application can be found in the
Installation and Configuration Guide of @enterprise.

5.9 Making the web application secure

The architecture of the Dispatcher servlet makes it possible that every method with signtature
m(HttpSerlvetRequest req) and
m(HttpSerlvetRequest req, HttpSerlvetResponse req)
can be accessed directly via a browser. Therefore the application programmer must secure
EACH of these methods in the following way:
First, it must be decided for what group of users the method should be accessible.
Second, it must be checked whether the rights of the user are sufficient for performing the
requested operation.

5.9.1 Defining the access mode

The access to a method can be classified as follows:

• Public: Accessible without authorization

• User: Accessible for authorized users only

• Admin: Accessible for administration users only - in a dedicated administration session

In your code, the classification can be done in two ways:
(a) A class that implements the interface com.groiss.servlet.Public has public access.
(b) The Annotation class com.groiss.servlet.Access has an enum type with the above
three values defined.

Methods, classes and packages can be annotated. In the following example the class
HTMLFunctions is restricted to administration users:

56

5.9. MAKING THE WEB APPLICATION SECURE

import com.groiss.servlet.Access;

@Access(Access.mode.Admin)
public class HTMLFunctions {
...

}

Note that the most specific classification is used, i.e. method annotation overwrites class anno-
tation overwrites package annotation. However, overwriting annotations is not recommended.

Methods with annotation Admin are accessible only in an admin session. In the configuration
an extra port can be defined for admin sessions for making it possible to restrict access to
administration functions using a firewall. A session becomes an admin session, if the user
opens the administration - an extra login is necessary.
The class com.groiss.servlet.ServletUtils provides some methods to check for an admin
session:

• isAdminSession(HttpServletRequest req)

• checkAdminSession(HttpServletRequest req)

The method checkAdminSession() throws an exception, if the current session is no admin
session.

5.9.2 Checking rights

The com.groiss.org.OrgData interface offers methods to perform checks, if current user
has the permission to perform the intended operation:

• public boolean hasRight(User u, Right r, Object o)

• public void checkRight(Right r, Persistent o)

The method checkRight() throws an ApplicationException, if the current thread user does
not have the right r for object o (exception number is 521 if o is null, else 520). The
object argument may be null in both methods, if "global" rights are checked (e.g. check for
configuration right).

5.9.3 Common security pitfalls

This section describes some common security problems of web applications and how to
avoid them.

SQL Injection

This vulnerability happens when user input is embedded in SQL statements. In @enterprise
SQL injection can be avoided by using prepared statements like in the following example:

57

5.9. MAKING THE WEB APPLICATION SECURE

WRONG:
Store.getInstance().list(User.class, "id='" + req.getParameter("user")+"'");

RIGHT:
Store.getInstance().list(User.class,"id=?",null,req.getParameter("user"));

In the wrong statement the following value of the user parameter can be used to get the full
list of users: ' or '1'='1

Cross-site scripting

Cross-site scripting (XSS) enables attackers to inject client-side scripts into Web pages
viewed by other users. A cross-site scripting vulnerability may be used by attackers to bypass
access controls such as the same origin policy. In @enterprise XSS could be avoided by
always encoding user input if it is replaced in HTML pages like in the following example:

<input name="formtarget" value="%target%">

WRONG:
page.substitute("target",req.getParameter("formTarget"));

RIGHT:
page.substEncoded("target",req.getParameter("formTarget"));

Note that the XHTMLPage implementation is not vulnerable against this attack. Substitutions
always encode special characters.

Access to local resources

The file servlet is the default servlet in the @enterprise web application and gives unrestricted
access to resources in the classpath that have the following prefixes: alllangs or lang.
Other resources in the classpath or file system are not exposed to the client.
Don’t use file names or resource paths as parameters in requests, as these parameters can be
manipulated and give access to secure information.

58

6 Organizational Data

The package com.groiss.org contains the API for the organizational data in @enterprise.
See the @enterprise Administration Guide for a description of the objects for representing
organizational data.
The interfaces Application, OrgUnit, Role, Right, and User have been defined to
access information abort the organization.
The interface OrgData is a service-interface for retrieving objects and make changes in the
organizational database.
If you have the id of one of the objects of the organizational data, you get the object with the
method getById.

6.1 Users, their Roles and Rights

The interface User represents a person known to the system. The toString methods returns
the title, first name and surname, separated with spaces.
The toListString method returns the same in another order: the surname, the first name
and then the title. It is more suitable for showing lists of users sorted by surname.

Use the methods getRoles and hasRole for finding out whether a user has a role.

Example: The following example shows the roles a selected user has in the - optionally -
selected department.

File classes/com/groiss/demo/OrgDataDemo.java

public class OrgDataDemo {
public Page showUserSelection(HttpServletRequest req) {

HTMLPage p = new HTMLPage();
p.setPage("<html><head>\r\n" +

"<link href=\"../servlet.method/com.groiss.gui.css.StyleConf.loadCSS\"
rel=\"stylesheet\" type=\"text/css\"></link>\r\n" +

"<script src=\"../scripts/dojo/dojo.js\"></script>\r\n" +
"</head><body class=\"claro\">\r\n" +
"<form action=\"com.groiss.demo.OrgDataDemo.showUserRoles\">" +
"%user% %org% <input type=\"submit\" class=\"ep_button\">\r\n" +
"</form></body></html>");

Store store = Store.getInstance();

59

6.2. DATABASE OPERATIONS

p.substitute("user", new DropdownList("user",
store.list(User.class, null, null)).show());

p.substitute("org", new DropdownList("dept",
store.list(OrgUnit.class, null, null), true).show());

return p;
}

public Page showUserRoles(HttpServletRequest req) {
HTMLPage p = new HTMLPage();
p.setPage("<html>%roles%</html>");
User u = HTMLUtils.getObject(req, "user");
OrgUnit ou = HTMLUtils.getObject(req, "dept");
OrgData od = OrgData.getInstance();
p.substitute("roles", od.getRoles(u, ou));
return p;

}
}

The first method shows a HTML page with two select lists for selecting a user and an
organizational unit. The second method reads the corresponding User and OrgUnit objects
and shows the roles of the user (optionally in the org.-unit).

The home department - the department where the user has the home role can be retrieved
with the method getHomeOrg.

For checking whether a user has a right, use the methods hasRight(User, Right, Object)
or checkRight(Right r, Persistent o) of interface OrgData.

6.2 Database operations

The OrgData methods insert, update, delete perform the corresponding actions of the
com.groiss.store.Store service with the following additional functions:

• checking permissions: The methods insert, update, and delete call the correspond-
ing mayXX methods before performing the operation. As user argument the thread user
is used.

• making log entries: If the class implements the interface com.groiss.org.HasLog a
log entry is written to the database.

You can get the log entries for an object with the method getLogEntries of OrgData.

6.3 Password Policies

To write a special password checker, you have to implement the interface
com.groiss.passwd.Checker and enter it in the password policy configuration in admin-
istration under Configuration→ Password policy→ Checker class.

60

6.4. ADDING TAB ADDITIONAL INFO

public interface Checker {
public List<String> getReasons();
public boolean isCompliant(String password);

}

The method isCompliant checks the password, if it is compliant to the specific policy. The
method getReasons returns a list of Strings representing the reasons, why the password is
not compliant.

6.4 Adding tab Additional Info

In @enterprise it is possible to attach forms to master data objects, for example users,
org-units, process definitions. For maintaining these objects there is an API and a user
interface. It is necessary to define the relation in one of your GUI configurations files: Add
a node objectExtension to the <nodes> section of the file (see section Non tree nodes
(<nodes>)), for example:

<config>
<tree>
...

</tree>
<nodes>
.....
<objectExtension id="your_id">

<name>a_label</name>
<classname>com.dec.avw.appl.myxform_1</classname>
<form>myxform.xhtml</form>
<attachedTo>com.groiss.org.User</attachedTo>
<editable>true</editable>
<position>1</position>

</objectExtension>
.....

</nodes>
</config>

The configuration file must be referenced in a GUI configuration object. On startup, @enter-
prise reads these files and registers the object-extension nodes. In the above example you will
now get an additional tab in the user detail mask, where you can edit the attached form. Enter
the classname and - if class is not a form class, but any com.groiss.store.Persistent -
the location where form (template) is available on file system. In the example above the form
is located in forms directory of @enterprise. The attribute editable defines, if the content of
Additional info tab can be saved with save buttons or if the content is just read-only. The
attribute position can be used to define the position of the Additional info tab in the tab-list
(must be a positive integer).

Hint: If any com.groiss.store.Persistent is defined as classname (excepting a form
class), only XForms are allowed as template (= parameter form)! In case of a form class, it is
possible to use xhtml forms and XForms as template.

61

6.4. ADDING TAB ADDITIONAL INFO

The OrgData interface has the method getObjectExtension for accessing the attached
object:

OrgData ord = OrgData.getInstance();
User u = od.getById(User.class, "testuser_id");
DMSForm f = (DMSForm)od.getObjectExtension(u,

"com.dec.avw.appl.myxform_1",true);
//further handling with DMSForm
....

The method getObjectExtension has following parameters:

• Persistent obj: The object, where the extension is added (e.g. User)

• String formclass: The form-class of the additional form

• boolean create: create the extension, if it does not exist

• Return value: the com.groiss.store.Persistent object (e.g. a form)

62

7 HTML Components

The following section describes the API to build HTML components with Java. We have
defined Java Classes for most HTML elements, like forms, input fields, etc. You find the
classes in the package com.groiss.gui.component.
The use of them is simple: call the constructor with the necessary arguments. The method
show returns a string representation of the component.
The internal representation of the elements is a JDOM tree representing the XML structure
of the element. The method getRoot returns this tree.
The following method contains three examples for using the components:

File com/groiss/demo/HTMLComponents.java

public class HTMLComponents {
static String[][] arr = { { "a11", "a12", "a13" }, { "a21", "a22", "a23" } };
static String[] headers = { "col1", "col2", "col3" };

/** Show a select list of users.
*/
public Page showMask(HttpServletRequest req) {

HTMLPage result = new HTMLPage();
List<User> l = OrgData.getInstance().listWithRightCheck(

ThreadContext.getThreadPrincipal(),
User.class, OrgData.Rights.VIEW, null,
false, null, "surname");

SelectList sl = new SelectList("user", l, 10);
DropdownList dl = new DropdownList("user", l);
TableContainer tc1 = new TableContainer(new DefaultTableModel(arr, headers));
tc1.setRowAttribute(1, "bgcolor", "red");

List<Pair<String, String>> style = new ArrayList<>();
style.add(new Pair<>("bgcolor", "grey"));

TableContainer tc2 = new TableContainer();
tc2.setAttribute("border", "1");
for (User u: l) {

List<Object> row = new ArrayList<>();
row.add(u.getSurname());
row.add(u.getFirstName());
if (u.isActive()) {

63

tc2.addRow(row);
} else {

tc2.addRow(row, style, null);
}

}

result.setPage("<html><head>\r\n" +
"<link href=\"../servlet.method/com.groiss.gui.css.StyleConf.loadCSS\" " +
"rel=\"stylesheet\" type=\"text/css\"></link>\r\n" +
"<script src=\"../scripts/dojo/dojo.js\"></script>\r\n" +
"</head>" +
"<body class=\"claro\">" +
"\n
" + sl.show() +
"\n
" + dl.show() +
"\n
" + tc1.show() +
"\n
" + tc2.show() +
"</body></html>");

return result;
}

}

First, a select list of length 10 with name user containing a list of users is constructed. This
works, because a com.groiss.org.User object implements the interface
com.groiss.ds.KeyValuePair: The value of the select list option is the toString method,
the key is the oid (as String). A DropdownList with the same content is the next element.

An HTML table is build using the com.groiss.gui.component.TableContainer class.
One constructor takes a TableModel object, we use the
javax.swing.table.DefaultTableModel to generate such a model.
Another table is build using the com.groiss.gui.component.TableContainer by adding
rows in a loop. When adding rows one can set additional attributes of the row and the row
columns.

64

8 Document Management

@enterprise offers powerful mechanisms for managing documents, either attached to pro-
cesses or located within a document tree. The key features of this component are:

• typed documents and folders: each document or folder belongs to a type which may
have its own set of meta data

• flexible storage of document content: storage of document content is independent
from storage of meta data and can be changed via interface implementation (standard
implementation: content will be stored in the database)

• storage of meta data: meta data are stored in the database (as known from process
forms)

• permission control: individual permissions or permission lists (if activated) may be
attached to documents and folders

• adaptability: own documents or folders may be integrated and the mechanisms for
storing the document content and archiving documents may be changed

In the following sections we will see which classes and interfaces exist in @enterprise
Document Management System (DMS) and how they are related and we will see some
examples using the DMS API.

The data structures belong to the package com.groiss.dms.

8.1 Objects of the DMS

The most important interface in the DMS is the interface DMSObject. The DMS can manage
all objects that implement this interface. DMSObject provides methods for retrieving and
setting information of an object in the DMS, like the name of an object or when it was lastly
changed. But because we have various types of objects in the DMS which differ in their
characteristics one interface would not be sufficient. Fig. 8.1 shows the schema of all the
various types of objects (all represented by their own specific interface) which can be used
within the Document Management System of @enterprise.
In a DMS usually thousands of objects will exist, which have to be organized in some way
so that users can handle their set of DMS objects. Therefore the interface

65

8.1. OBJECTS OF THE DMS

Figure 8.1: Schema of DMS

DMSFolder exists. The concept should be well known from file systems where each file
is located within a folder. DMSFolder defines such a folder. You can add DMS objects to
it, retrieve them later and you can remove them again. Because any object implementing
DMSObject can be added to a DMSFolder you can build hierarchic folder structures by
adding one folder to another folder.

Although DMSObject provides already a set of properties these are all system defined and
of limited use. So we need objects which can hold additional, user defined data. This can
be achieved using DMSForm that is an interface which provides access to structured data, i.e.
data with a specific key and value. Related to a DMSForm is the interface FormType which
provides more information about forms.

Beside structured data we also want to manage unstructured data like a text file or something
else. Therefore the DMS provides the interface DMSDocForm, which can handle structured
data (because it extends DMSForm) and unstructured data. Another different type of object in
the DMS is defined by the interface DMSLink that holds a reference to another DMSObject
of any type (except a DMSLink again).

At last we have the interface DMSNote which is a special kind of DMSForm in the way that it
has two predefined fields(a subject and a content) and it is used to annotate other DMSObject.
Therefore you can attach one or more DMSNote objects to any type of DMSObject (you can
think about it as a kind of an electronic Post-it ®).

66

8.2. LIFE CYCLE OF A DMSOBJECT

8.2 Life Cycle of a DMSObject

The life cycle of a DMSObject is quite simple and straight forward as you can see in Fig. 8.2.
When a DMSObject is created it already exists within the DMS but it is in an inconsistent
state (from the DMS point of view) because it is not added to a folder.
The DMS requires all DMS objects to be assigned to a folder (accept DMSNote, they can be
attached to a DMSObject). Only after adding the object to a folder the whole functionality of
the DMS is available to manage and edit this object. Moving it from one folder to another
folder is possible, but deleting the assignment is not.
As expected the life cycle of a DMSObject ends with its deletion. In the case of deletion
interface DMSArchiver is invoked which can be used to archive some relevant data. The
default implementation does nothing but the implementation of this interface can be replaced
by the system administration in configuration section DMS).

create
DMSObject

created assigned
add

move

delete

Figure 8.2: DMSObject Life Cycle

8.3 Storage and Versioning

For managing the data of the various DMS objects we need to store these data in a persistent
storage. The DMS handles the storage of structured and unstructured data in different ways.
Making the structured data persistent lies in the responsibility of the DMS objects themselves.
But for storing the unstructured data the DMS uses the interface IStore. This interface
provides a small set of simple methods for storing and retrieving these data.
The concrete implementation of this interface can be specified via the system administration
of the @enterprise sever (in section DMS). The default implementation stores these data in
the data base1.

Although we mentioned that the structured data have to be handled by the DMS objects
themselves they store their data also in the database, but they do not use the IStore interface
for doing that.

In the DMS beside managing the actual data of DMS objects we have also the possibility
to make versions of DMS objects. These versions must be managed too which lies in the

1An exemplary implementation of a store which stores the data as files in a file system
can be found in the demo package of @enterprise (classes com.groiss.demo.dms.FileStore and
com.groiss.demo.dms.FileStoreBean).

67

8.4. THE @ENTERPRISE DMS API

Figure 8.3: Storage and Versions

responsibility of interface com.groiss.org.PersistentVersion that holds information
about the version itself (i.e. when it was created and by whom) and it manages the versioned
content of the various DMS objects. Here we have the same strategy as in managing the
actual data: versions of structured data are stored in the database, versions of unstructured
data are stored via IStore.
Whether a version is written, depends on the settings of the version strategy, globally in the
system configuration and per form type in the form type definition mask.

A special case is the versioning of process forms: if the form is changed, a version is created
for the "current" activity instance. This version is overwritten by subsequent changes in the
same activity instance. Form updates in the user interface set the context activity instance
automatically. If you make a form update using the API, it is necessary to set the context
with form.setActivityContext(ai) to the right activity instance.

8.4 The @enterprise DMS API

All the interfaces of the DMS API are located in the package com.groiss.dms. Apart
from the interfaces already mentioned in the above sections this package contains another
important interface called DMS. This interface offers a powerful set of methods for creating
and manipulating DMS objects and provides also some other useful utility methods for
programmers working with the DMS. You can retrieve an implementation of this interface
by calling DMS.getInstance.

The methods of interface DMS are arranged in the following groups:

68

8.4. THE @ENTERPRISE DMS API

• Create DMS related objects

• Manage the relations between these objects

• Manipulate the objects

• Navigate within the DMS

• Permissions on the objects

• other utility methods

Each group will be explained in the following section, but for a more detailed description of
the mentioned methods see the @enterprise API Documentation.

8.4.1 Create DMS objects

Each kind of DMS object has its own creation method in interface DMS. For most of them
you need the following data:

• the type of the object which should be created

• the name of the object

• a template if the new object should be a copy of this template

• the user who wants to create the object

• a permission list if wanted

The type can be retrieved with following method:

• FormType getFormType(String id, int version)

Or you can get all the types a user may create via method listCreateableFormTypes. If
you want to use a template you have to specify one which is of the same type as the passed
one.
When all arguments are available you can use one of these creation methods:

• DMSFolder createFolder(FormType ft, String name, DMSFolder template,
PermissionList acl)

• DMSDocForm createDocForm(FormType ft, String name, String extension,
DMSDocForm template, PermissionList acl)

• DMSForm createForm(FormType ft, DMSForm template, PermissionList acl)

• DMSNote createNote(String subject, String content, PermissionList acl)

As you can see we don’t have a creation method for DMSLink. This is because links are
created by method move which will be explained in section Managing Relations.

69

8.4. THE @ENTERPRISE DMS API

Best practice for creating subforms via API

The @enterprise API offers different ways to create (sub)forms and their relations. This
section demonstrates how to use the available API methods to

• avoid unnecessary log entries and

• ensure that adding of a subform is done in the right context in log history of the main
form.

For this purpose use following skeleton:

FormType subformFormtype = ...; //get subform formtype
DMSForm subform = subformFormtype.newInstance();
//set fields of subform
...
DMS.getInstance().addSubform(mainform, subform);
OrgData.getInstance().insert(subform);

If the subform is added in the context of some process instance, you have to set this context
on the subform with subform.setActivityContext(ai) to ensure correct versioning.

8.4.2 Managing Relations

There are three groups of relationship in DMS and for each group DMS offers a set of methods
for managing those relationships. The first group is for managing the relations between a
DMSFolder and its contents:

• DMSObject add(DMSFolder f, DMSObject o) throws Exception
adds the object to the folder

• void remove(DMSFolder f, DMSObject o)
removes the object from the folder

• void delete(DMSFolder f, DMSObject o)
removes the object from the folder and then deletes the object

• DMSObject move(DMSFolder src, DMSFolder dest,
DMSObject doc, short type)
depending on the value of parameter type you can achieve the following goals:

– DMS.MOVE: move the object from one folder to another

– DMS.COPY: add a copy of the object to another folder

– DMS.LINK: add a link to the object to another folder

The second group of methods is provided for managing the relationship between a DMSObject
and its attached notes:

• void attachNote(DMSObject target, DMSNote note)
attaches the note to the target

• void removeNote(DMSObject target, DMSNote note)
removes the note from the target and deletes the note

70

8.4. THE @ENTERPRISE DMS API

• List<DMSNote> listNotes(DMSObject target)
returns the list of notes which are attached to the target and for which the user has at
least view right

And last but not least we have methods for managing the relationship between a DMSObject
and its versions:

• PersistentVersion makeVersion(DMSObject obj, String description)
makes a version of the passed object

• void deleteVersion(PersistentVersion dv)
delete the passed version

• void DMSForm deleteVersions(DMSForm form)
delete all versions of the passed form

• List<PersistentVersion> listVersions(DMSObject obj)
returns a list of the versions of the passed object

8.4.3 Manipulate DMS Objects

Beside the manipulation methods offered already by DMSObject and their sub-interfaces,
interface DMS provides the following methods:

• DMSObject renameDocument(DMSFolder folder, DMSObject obj,
String newName, String newExtension)
renames the passed DMSObject

• DMSDocForm reloadDocument(DMSFolder folder, DMSDocForm document,
String newExtension, InputStream is)
replaces the content of the passed DMSDocForm with the content held by the passed
InputStream

• DMSForm changeType(DMSForm obj, FormType newType, DMSFolder folder)
changes the FormType of the passed DMSForm

• void update(DMSObject o)
updates the DMSObject

8.4.4 Navigate within the DMS

Because objects in DMS are hierarchically organized we need some methods to navigate in
this hierarchy. Therefore the following methods are available:

• DMSFolder getRootFolder(User user)
returns the root of the DMS tree of the specified user

• DMSFolder getFolder(DMSObject obj)
returns the folder the passed object belongs to

71

8.4. THE @ENTERPRISE DMS API

• List<DMSFolder> listSubfolders(DMSFolder startFolder)
returns a list of all the folders within the tree of which startFolder is the root (inclusive
the root itself)

• DMSForm getMainForm(DMSForm f)
returns the main from if there is one

• List<DMSForm> listSubforms(DMSForm f, int id)
returns the subforms with the passed id (if there are some)

• List<DMSForm> listSubforms(DMSForm f, int id, String cond,
String order, Object... vals
returns the subforms with the passed id which match the passed condition

• List<DMSForm> listForms(FormType ft, String cond,
String order, Object... vals)
returns a list of objects of the specified type which match the passed condition

• List<DMSObject> listContents(DMSFolder folder, FormType ft,
boolean recursive, String cond, String order, Object... vals)
returns a list of objects of the specified type which belong to the passed folder and
match the passed condition

8.4.5 Permissions in DMS

The interface com.grois.org.OrgData offers some methods to check if a specific user may
view or edit a DMSObject, but the checks in DMS context are a little bit different.
The differences are:

• DMS objects which are attached to a process are bound to the rights the user has for
this process (i.e. their own right relations are ignored)

• DMS notes which are attached to a DMSObject are bound to the rights of their
DMSObject, and it is also interpreted if they are private (visible only to their cre-
ator) or public (visible to all that may view the DMSObject)

8.4.6 Utility Methods

Last but not least interface DMS provides some utility methods, e.g.:

• DMSObject getDMSObject(String classname, long oid)
returns the DMS object with the passed oid which is an instance of the passed class

• void checkValidName(DMSObject target, String name, String extension)
throws an exception if the passed name or extension contain an invalid character. In-
valid characters are all characters which are considered as invalid by the Windows®
file system. By now these are the following characters: / \ : * ? " < > |

• void checkDuplicateNames(DMSFolder targetFolder,
DMSObject targetObject, String name, String extension)
throws an Exception if the target folder already contains an object with the passed
name and extension

72

8.5. USING THE DMS API

• boolean isDuplicateName(DMSFolder targetFolder,
DMSObject targetObject, String name, String extension)
returns true it the target folder already contains an object with the passed name and
extension

8.5 Using the DMS API

Knowing now all relevant interfaces and classes of the @enterprise DMS this chapter will
show you some examples for the usage of the DMS API, especially for cases which we
assume being most likely to be implemented by application programmers. But before
describing those examples we will get to know a few additional utility classes of the DMS.

8.5.1 Utilities for DMS related HTML Interface

Additionally to the classes and interfaces mentioned in the sections above the DMS provides
other classes and interfaces which should simplify the life of an API programmer building a
specific HTML interface to the DMS. These are:

• DMSTableHandler

• XHTMLFolderFormEventHandler

DMSTableHandler

This interface gives the application programmer the possibility to change the table view and
toolbar used to represent the contents of a folder in the HTML client. An implementation
of that interface may be set globally (i.e. for all folders) via System Configuration (section
DMS) or for each form type representing a folder via administration for form types.
The methods provided by this interface are:

• void init(HttpServletRequest req, DMSFolder folder, User u, int mode)
Gives you the possibility to initialize the implementation class.

• List<DMSObject> getList(List<DMSObject> objects)
Your chance to modify the list of the table entries and to collect additional data for
them.

• void modifyColumns(List<ColumnDescription> colDescs)
The descriptions (i.e. column header) for the table columns may be changed here.

• void modifyTableLine(DMSObject obj, Map<String, Object> line)
The table line representing on folder entry can also be modified.

• void modifyActions(List<Pair<String,Object>> actions)
This is your chance to modify the set of provided actions for the folder and its entries.

• String lineStyle(DMSObject obj, String style)
By implementing this method you change the style of the line for the specified folder
item by returning the name of the style class which should be used.

73

8.5. USING THE DMS API

Additional information about this interface and its methods can be found in the API docu-
mentation.
In section Adapting Folder and Table View we will see an example for an implementation of
DMSTableHandler.

XHTMLFolderFormEventHandler

This interface is an extension of interface XHTMLFormEventHandler which is only useful
for form types representing folders because it provides methods which will be called when
an item will be added or removed from a folder.

• void onAdd(T f, DMSObject o) throws Exception
This method will be called immediately before a new item will be added to a folder.

• void onRemove(T f, DMSObject o) throws Exception
This method will be called immediately before a item will be removed from its folder.

You can register an implementation of this interface as you would register any other type of
form event handler. It is also possible to register it for non-folder form types, in that case
methods onAdd and onRemove will never be called.

8.5.2 Adding a Document to a Process

Although adding a document to a process is a default functionality of the @enterprise worklist
it may sometimes be necessary to perform this action automatically within some program
code. Or imagine the case that some external user which may not see the @enterprise
worklist should be able to add documents to processes. The following example will show
how to create a HTML mask which allows you to select a process and add a document to this
process. Method showMask creates a simple HTML page in which a process can be selected
and a file can be specified. As form action method addDoc is defined, which takes the users
input (without checking the input for correctness) and makes a new document which is added
to the specified process.

File com/groiss/demo/dms/DMSDemo.java

public Page showAddDocMask(HttpServletRequest req) throws Exception {
List<ActivityInstance> ais =

WfEngine.getInstance().getWorklist(null,false);
DropdownList l = new DropdownList("process");
for (ActivityInstance ai : ais) {

ProcessInstance pi = ai.getProcessInstance();
l.addOption("" + pi.getOid(), pi.toString());

}
HTMLPage page = new HTMLPage();
page.setPage(

"<form method=\"post\" enctype=\"multipart/form-data\" "+
"action=\"com.groiss.demo.dms.DMSDemo.addDoc\">" +
"Process:" + l.show() +
"
File: <input type=\"file\" name=\"file\">" +
"
Name: <input type=\"text\" name=\"name\">" +

74

8.5. USING THE DMS API

"
<input type=\"submit\">" +
"</form>");

return page;
}

public Page addDoc(HttpServletRequest re) throws Exception {
//transform the req. because we need a MultipartRequest when handling files
MultipartRequest req = MultipartRequest.createInstance(re);
//get the current user
User user = (User)ThreadContext.getThreadPrincipal();
//get the selected process
WfEngine e = WfEngine.getInstance();
ProcessInstance process = e.getProcess(Long.parseLong(

req.getParameter("process")));

//get the specified name and divide it into the name and the extension
//(e.g. doc for Word files)
String tmpName = req.getParameter("name");
int idx = tmpName.lastIndexOf(".");
String name = tmpName.substring(0, idx);
String extension = tmpName.substring(idx+1);

//get the file
File file = req.getFile("file");

//create a new standard document and add it to the process
DMS dms = DMS.getInstance();
FormType ft = Store.getInstance().get(
FormType.class, FormType.STANDARD_DOCUMENT);

DMSDocForm newDoc = dms.createDocForm(ft, name, extension, null, null);
dms.add(process.getDMSFolder(), newDoc);

//check in the content of the file
dms.setContent(newDoc, new FileInputStream(file));

//return an answer
HTMLPage page = new HTMLPage();
page.setPage("<html>Upload done.</html>");
return page;

}

Creating the document and adding it to the process is done using the utility class DMS from
package com.groiss.dms which contains a set of DMS related utility methods (for more
details see @enterprise API documentation).

This example works also for adding a document to a folder. The only difference is that
you have to find the correct folder instead of the correct process. As you can see in the
class diagram com.dec.avw.core.StepInstance and FolderForm (the base class for all
folder implementations) implement the same interface DMSFolder, so all folder related API
methods may be applied to processes and folders.

75

8.5. USING THE DMS API

Adding other DMS objects to a folder or process works quite similar as in the example above.
You only have to choose the corresponding creation method in class DMS and collect the
necessary parameters. After that again call method add to add it to the process or folder.

8.5.3 Adapting Folder and Table View

In this example we will implement a table handler and an event handler for a folder to solve
the following tasks:

1. add an additional column determining if a bill has already been paid or not

2. at the bottom of the table we want to display the total amount of bills within the current
folder

3. change the folders behavior so that it allows only bills or bill folders in its content

4. define a function ’paid’ which marks a bill as paid

Adding a Column

If we want to add a column to the table of contents of a folder there are two different ways
for doing that:

1. If the additional column is a meta data field of the objects within the content you can
add this column via configuration of the folders table representation (either for one
specific folder or for all folders of a specific folder type). How this can be done is
explained in the User manual.

2. If the additional column is not a column of the contained objects or we don’t want
to configure it (or cannot because of format problems) we must implement a table
handler.

In our case here we could just only configure the additional column but this would not be
sufficient because it would display the values 0 for unpaid and 1 for paid (because the meta
data field paid is a checkbox with these values in the meta data form) which is not very
useful. Instead we want the text No for unpaid and Yes for paid.
So what we will do here is to implement a table handler by creating a class named
OrderFolderTableHandler which implements DMSTableHandler.

File com/groiss/demo/dms/OrderFolderTableHandler.java

private Resource applResource;

@Override
public void modifyColumns(List<ColumnDescription> colDescs){

for(ColumnDescription cd : colDescs){
if("form.checked".equals(cd.getId())){

//in this case no additional column must be added
return;

76

8.5. USING THE DMS API

}
}

//here we know that the column has not already been added
//via configuration so we do it now
colDescs.add(new ColumnDescription("form.checked",
new Image("../images/check.gif")));

}

@Override
public void modifyTableLine(DMSObject obj, Map<String, Object> line) {

String value = "";
if (obj instanceof DMSDocForm) {

if (((DMSDocForm)obj).getFormType().getId()
.equals("demo_deliverynote")) {
if((Boolean)((DMSForm)obj).getField("checked")){

value = getResource().getString("yes");
} else {

value = getResource().getString("no");
}

}
}
line.put("form.paid", value);

}

@Override
private Resource getResource(){

if(applResource == null){
applResource = ApplicationAdapter.of("demo").getResource();

}
return applResource;

}

We have to override method modifyColumns to add an additional column for the field paid
if not already done via configuration. This is only done here to show the programmatically
way of adding a column, normally the column should be added via configuration.
Then we must override method modifyTableLine which will add the value that should be
displayed in column "form.paid".
At last we have a private helper method which will return the correct resource for I18N
support of our demo application (see the configuration of application ’demo’).

When we have finished our implementation we must register our new table handler for our
new folder type via administration.

Changing Folder Behavior

In this section we will see how we can change the default behavior of a folder. In our example
we will ensure that only one delivery note is attached.

File com/groiss/demo/dms/OrderFolderEventHandler.java

77

8.5. USING THE DMS API

public void onAdd(DMSFolderForm f, DMSObject o) {
if (o instanceof DMSDocForm) {

FormType formType = ((DMSDocForm)o).getFormType();
if (formType.getId().equals("demo_orderconfirmation") &&

!DMS.getInstance().listContents(f, formType, true, null, null).isEmpty()) {
throw new ApplicationException("Only one order confirmation in process");

}
}

}

Function ’checkDelivery’

Now we have reached the last step in our example. We will write a function with which we
can check the delivery. To achieve this goal we have to:

1. write this function

2. make this function available to the user

The next code snippet will show the method for writing this function.

File com/groiss/demo/dms/DMSDemo.java

public Page checkDelivery(HttpServletRequest req) throws Exception {
//get the form
DMSForm deliverynote = HTMLUtils.getObject(req);
//set it to be checked
deliverynote.setField("checked", Boolean.TRUE);
OrgData.getInstance().update(deliverynote);
JSONObject jso = ClientUtil.getAsJSON(req, deliverynote);
return new ActionPage(ActionPage.EP_SCRIPTS, "ep.util.refreshParent("̈ +
StringUtil.escapeJavaStyleString(jso.toString(), true) + ")̈;");

}

Now we must make this function available to the user. This can again be done by overriding
method modifyActions in our table handler.

File com/groiss/demo/dms/OrderFolderTableHandler.java

public void modifyActions(List<Pair<String, Object>> actions){
for(Pair<String, Object> action : actions){

if("demo.checkDelivery".equals(action.first)) {
//in this case no additional action is needed
return;

}
}
//here we know that the action has not already been added
//via configuration so we do it now
actions.add(new Pair<String, Object>("space", "space"));
actions.add(new Pair<String, Object>("demo.checkDelivery",

"demo.checkDelivery"));
}

78

8.5. USING THE DMS API

The concrete method for that action must be defined in an XML file which must be loadable
via the class path. As an example here is our snippet of our demo file:

File demos/classes/demo.xml

...
<actions>

...
<action id="checkDelivery">

<name>@@@paid@@</name>
<href>com.groiss.demo.dms.DMSDemo.checkDelivery</href>
<apply>ONE</apply>
<target>HIDDEN</target>

</action>
</actions>
...

As you can see the name of our action has three leading and two trailing ’@’ signs. This is
used when the name of the function should be translated into different languages at runtime
(needed in a multi-language environment). The system will interpret this markup and will use
the application’s resource for translation (see the application’s configuration for the defined
resource).

8.5.4 Further Examples

In this section we show further examples which do not use the DMS Java API directly but
other ways of customizations.

Start at a specific subfolder

Normally the ’Documents’ tab of an activity instance initially shows the content of the root
folder of that instance. But there may be situations in which you want to display a folder
that fits better to the current context, e.g. in case of parallel branches where for each branch
a dedicated subfolder should be used. This can be easily achieved by implementing the
following method in your com.groiss.wf.ApplicationAdapter:

public void modifyDetailPanes(KeyedList<String,NavigationTreeNode> nodes,
StringBuilder title, ProcessInstance pi, ActivityInstance ai){
NavigationTreeNode node = nodes.get("documents");
if(node != null){

//calculate the folder which content shall be displayed initially
DMSFolder folder = calculate_the_desired_folder(pi, ai);
if(folder != null){

//add the information which folder should be displayed
node.setAttrib("navigateToFolder", StoreUtil.toJsonAsReference(folder));

}
}

}

The main clue here is the setting of attribute ’navigateToFolder’ which will then be interpreted
as the start folder by documents tab.

79

8.5. USING THE DMS API

Tab showing the folder’s content

In projects forms are often used to define master data which are maintained using a ’table’
node in the GUI configuration file. If those forms represent folders you may want to integrate
a view of the content of such a folder. To achieve this goal you need to specify the following
nodes in your GUI configuration:
In the tree section you need to define the navigation link that will show the list of your folders
as follows:

<table id="myfolders">
<name>My Folders</name>
<columns>

<column name="@@@ep:name@@" id="name" />
</columns>
<actions>

<action id="new" />
<action id="edit" />
<action id="delete" />

</actions>
<classname>com.groiss.forms.MyFolder_1</classname>
<defaultAction>edit</defaultAction>
<detail>com.groiss.storegui.TabbedWindow.showDialog</detail>
<model>com.groiss.storegui.FormTable</model>
<version>2</version>
<tabs>/,myconfig.myfoldercontent</tabs>

</table>

As you can see in element ’tabs’ we are referencing ’myconfig.myfoldercontent’ where
’myconfig’ represents the Id of your GUI configuration and ’myfoldercontent’ is an action in
the nodes section of your configuration:

<action id="myfoldercontent">
<name>Folder content</name>
<href>com.groiss.dms.html.DMSUtil.showDMSFolder?

showToolbar=true&disableUpNav=true&
hideCloseButton=true

</href>
</action>

The semantics of the parameters in ’href’ are as follows:

• showToolbar: if set to true the DMS toolbar will be visible in your page, otherwise it
will not

• disableUpNav: if set to true the user will not be able to navigate to a parent of the
current folder

• hideCloseButton: as the used URL is designed to be used in its own window it will
provide a ’Close’ button. This button is of no use in this context therefore it can be
hidden by setting this parameter to true

80

8.6. OFFICE TEMPLATES

8.6 Office Templates

@enterprise offers many mechanism to manage documents. Such an mechanism is the
definition of Office templates with placeholders in XPath syntax which will be replaced by
the @enterprise engine (see section XPath-Conditions for more details). Section Example
shows a whole example how Office templates could be used.

8.6.1 Requirements

The templates can be created with OpenOffice (LibreOffice) and must be stored in file
format *.odt. On the server where @enterprise is running an installation of OpenOffice 3
(LibreOffice) or higher must be available. Under @enterprise Configuration → DMS the
path to the OpenOffice directory should be set (see Installation- and Configuration Guide
for more details). The standard communication between @enterprise and OpenOffice is the
recommended Named Pipes communication. In some cases it could be necessary to use the
socket connection (e.g. with Windows 64 bit versions) instead of Named Pipes.

8.6.2 Placeholder elements

As mentioned before the placeholders in templates are XPath expressions. Placeholders are
indicated with ${}. Within the brackets one of the following elements can be used:

Property replacement

This is the simplest element which is an ordinary XPath expression (see section XPath-
Conditions). It is also possible to use any method to change the values. Following examples
should demonstrate the property replacement:

Formfield of given form (= context):
${$form/formfield}
Id of given process instance (= context):
${$pi/id}
Usage of method to get formatted process instance start date:
${com.groiss.cal.CalUtil.showDate(value($pi/started))}

Hint: If methods are called with parameters, the keyword value must be used for the
parameter!

Loops (Repeats)

Sometimes it is necessary to use one placeholder for many replacements. For this purpose
loops can be used which are indicated by the keyword REPEAT. The syntax is:

${REPEAT $loopvar in $xpathtocollection}content_to_repeat${END}

The variable $loopvar is the variable that is used within the loop and is one element of
the collection. The variable $xpathtocollection contains the (XPath to) collection which
should be iterated over. The loop must be closed with ${END}. Examples about the usage
of loops are shown in section Example.

81

8.6. OFFICE TEMPLATES

Hint: If unnecessary blank lines should be avoided, use SHIFT+RETURN instead of
ordinary RETURN before ${END}!

Conditions (IF)

In addition to loops conditions are also available for template replacement. A condition is
indicated by the keyword IF and has following syntax:

${IF $xpathtocondition}true_handling${ELSE}false_handling${END}

As known from loops conditions must be closed with ${END}. Examples about the usage of
conditions are shown in section Example.

Images

The template also allows the definition of placeholders for images. For this purpose the
method com.groiss.office.OdtUtil.insertImage() is needed. @enterprise offers 4 possibilities
to replace images:

• Image from context: The file is read in a JAVA method and must be set as context for
the replacement (see example in section Example). The placeholder has to be defined
in following way:

${com.groiss.office.OdtUtil.insertImage($myimg,$document)}

• Image from classpath: If an image of the @enterprise classpath should be replaced,
the keyword cp is needed and the appropriate classpath as shown in following example:

${com.groiss.office.OdtUtil.insertImage(
"cp://lang/default/images/img.jpg",$document)}

• Image from filesystem: It is also possible to get an image from filesystem for replace-
ment. For this purpose you need the keyword file and the appropriate path to the image
as in following example:

${com.groiss.office.OdtUtil.insertImage(
"file://C:/img.jpg",$document)}

• Image from DMS: Images also could be load from DMS for replacement. For this
purpose the keyword dms is needed and the appropriate DMS path to the image. The
keyword COMMON indicates that the public root folder is read. This keyword is
necessary, because the public root folder has a language depended name which is set
during setup of @enterprise. The keyword USER indicates the user folder of current
thread user.

${com.groiss.office.OdtUtil.insertImage("dms://COMMON/img.jpg",$document)}
${com.groiss.office.OdtUtil.insertImage("dms://USER/img.jpg",$document)}

The parameter $document is used by the engine only (no user interaction needed!) and must
be set as shown in the examples.

82

8.6. OFFICE TEMPLATES

Formatted form field text

Sometimes it is necessary to get the formatted value of a form field (e.g. the display string of
dropdown fields / fields referencing value lists). For this purpose the following method is
provided:

${com.groiss.office.OdtUtil.formatField($form/formdropdownfield)}

8.6.3 Creating documents from templates

The @enterprise API class com.groiss.office.DocCreator offers a simple way for cre-
ating documents. The methods of this class can be used in context of a (task) function or in
context of system steps/postconditions. For more details please read the APIDoc.

If more flexibility is needed, you have to use the class com.groiss.office.DocumentManager
which is responsible to replace placeholders and convert it to appropriate format. Following
two methods (with different parameters) are available and important for these actions:

• mixin: These methods replace the placeholders with values of given context. This
could be for example a form, the activity instance or a Map with different elements.

• convert: These methods convert the replaced template file (*.odt) to the target file
format (e.g. PDF).

More details about the different DocumentManager methods can be found in @enterprise
APIDoc.

8.6.4 Example

This example should demonstrate how Office templates can be used in @enterprise.
The first step is that we need a form called myform which contains following fields:

field1 - String
field2 - String
ufield - com.groiss.org.User
formtxtfield - String

This form also contains a subform with subformid=1 and a field called subformfield1. Create
instances of myform with subform entries in any DMS folder whereby in one instance the
value of field field1 has to be F1.

After creation of instances the template file (*.odt) should be created:

Property substitution:

Field1+2: ${$form/field1} ${$form/field2}
Date: ${$date}
String: ${$string}
Persistent field: ${$form/ufield/surname}

Activity Instance:

83

8.6. OFFICE TEMPLATES

Application: ${$ai/application/name}
Process: ${$ai/process/name}
ID: ${$ai/id}
Started: ${com.groiss.cal.CalUtil.showDateTime(value($ai/started))}

ThreadUser:

${$user/firstName} ${$user/surname}

Repeats:

Repeat (1): ${REPEAT $ff in $collection}${$ff/field1}, ${END}
Repeat (2): ${REPEAT $subform in $form/subform[@id='1']/form}

${$subform/subformfield1},${END}

Conditions:

Has subforms (1): ${IF count($form/subform[@id='1']/form)>0}yes${END}

${IF count($form/subform[@id='1']/form)<0}no${END}
Has subforms (2): ${IF count($form/subform[@id='1']/form)<0}false

${ELSE}true${END}

Images:

From context: ${com.groiss.office.OdtUtil.insertImage($img,$document)}
From classpath: ${com.groiss.office.OdtUtil.insertImage(

"cp://lang/default/images/new.gif",$document)}
From dms (public): ${com.groiss.office.OdtUtil.insertImage(

"dms://COMMON/officetemplate.jpg",$document)}
From dms (user): ${com.groiss.office.OdtUtil.insertImage(

"dms://USER/officetemplate.jpg",$document)}
From filesystem: ${com.groiss.office.OdtUtil.insertImage(

"file://C:/new.gif",$document)}

Hint: Please note that the XPath syntax should not contain spaces or line breaks!

For image replacement a document with name officetemplate.jpg must be added to public
root folder and user root folder of DMS.

After template creation put the template file into @enterprise classpath and call following
JAVA method to replace placeholders and create a PDF:

public void createPDF(HttpServletRequest req, HttpServletResponse resp)
throws Exception {
resp.setContentType("application/pdf");
String source = req.getParameter("file");
if(StringUtil.isEmpty(source)) {

source="template.odt";
}

84

8.6. OFFICE TEMPLATES

//collect values for replacement
Map<String,Object> context = new HashMap<String, Object>();
//set form context of given DMS form
context.put("form",

Store.getInstance().get(
"com.dec.avw.appl.myform_1","field1 = ?", "F1")

);
//set current date
context.put("date", CalUtil.showDate(new Date()));
//set any string
context.put("string", "Test");
//set a list of forms for repeats
context.put("collection",

Store.getInstance().list("com.dec.avw.appl.myform_1"));
//set image of given DMS document
FormType ft = Store.getInstance().get(

FormType.class, com.groiss.dms.FormType.STANDARD_DOCUMENT);
context.put("img",

Store.getInstance().list(ft.getClassName(),
"name=?", null, "officetemplate").get(0)

);
//get any active activity instance and set it
Application appl = Store.getInstance().get(

Application.class, Application.DEFAULT);
ActivityInstance ai = WfEngine.getInstance().getWorklist(

appl, true).get(0);
context.put("ai", ai);

//replace placeholders, convert to PDF and write it on screen
resp.getOutputStream().write(

DocumentManager.convert(
new ByteArrayInputStream(DocumentManager.mixin(
Settings.getClassLoader().getResourceAsStream(source),
context)

),"odt","pdf"));
}

85

9 Forms

9.1 General

When defining a form type, the following elements are created:

• a form type object in the database

• a database table

• a Java interface extending DMSForm as and an implementation class as Java representa-
tion of the form.

• an HTML file for the GUI representation

The name of the Java interface is the form id followed by "_" and the version of the form,
the package is com.groiss.forms.interfaces (the implementation classes have the same
name and are in the package com.groiss.forms).

When referencing forms in your Java code you have two possibilities:

• use the general interface com.groiss.dms.DMSForm and the methods getField and
setField for accessing the form fields.

• use the generated interfaces, with getter and setter methods for each field. The form
interfaces are packaged in a jar file named application-id_forms.jar, which is placed
into the lib directory of the application directory. The source is also included in the jar
file, providing the form type and field descriptions as Javadoc comments. If you use
the interfaces, add this jar file into the build path of your project. It is not necessary to
add this jar to the project deliverables - @enterprise has copies in the forms directory.

Hint: Please note that the application-id_forms.jar is generated and updated if the
configuration parameter ep.forms.generate.jar is set to generate (default value). If you
don’t want to generate and update this file, set the parameter value to don’t generate.
This setting is recommended for production use. If the jar file cannot be (over)written
in you installation, you can choose the value ignore error.

The interfaces

• com.groiss.org.OrgData,

86

9.2. THE FORM EVENT HANDLER

• com.groiss.store.Store,

• com.groiss.wf.WfEngine and

• com.groiss.dms.DMS

can be used for retrieving and storing forms.

We distinguish three types of forms:

• (process) forms: for storing structured data, can be used as process forms or in the
DMS

• document forms: allow additional storage of a document (text, image, etc.)

• folder forms: can be used as folder in DMS

For the GUI representation, there are also three flavors:

• HTML with embedded form elements (not recommended to use it anymore).

• XHTML for better navigation and replacement of elements and attributes (see section
XHTML forms for more details).

• XForms uses the XForms standard, where XForms elements are embedded into
XHTML. This is the standard in @enterprise (see section XForms for more details).
The form editor creates such files.

In the next sections we show the different APIs for forms, first the form event handler, then
the form table handler. The details of XForms and the API is shown thereafter. Finally, the
handling of subforms in XHTML is described.

9.2 The Form Event Handler

The form event handler for a form is defined in the administration mask of the form type
(see System Administration Guide for details). One event handler can be used for several
form types. Depending on the type and template type of a form, the interfaces for callback
methods differ slightly:

• HTML (not recommended to use it anymore): com.groiss.dms.FormEventHandler

• XHTML and XForms: com.groiss.dms.XHTMLFormEventHandler

• Document form: com.groiss.dms.DocumentEventHandler

• Folder form: com.groiss.dms.XHTMLFolderFormEventHandler

The common methods of FormEventHandler, XHTMLFormEventHandler and
XHTMLFolderFormEventHandler are:

87

9.2. THE FORM EVENT HANDLER

public void beforeInsert(T f) throws Exception;
public void beforeUpdate(T f) throws Exception;
public void beforeDelete(T f) throws Exception;
public void afterInsert(T f) throws Exception;
public void afterUpdate(T f) throws Exception;
public void afterDelete(T f) throws Exception;
public String getName(T f) throws Exception;

T is defined as extends DMSForm. The first three methods beforeXX are called before the
respective database actions are performed. The next three methods afterXX are called after
the respective database actions are performed. The beforeShow method is called before the
page of the form is built. With getName you may overwrite the toString method of a form.

Hint: If a form event handler is specified for a form and this form will be imported by
@enterprise import-function, the form event handler(s) will be called.

The callback methods for showing HTML forms (com.groiss.dms.FormEventHandler):

public void beforeShow(T f, FormContext ctx, HttpServletRequest req)
throws Exception;

public void onShow(T f, ActivityInstance ai, HTMLPage p,
HttpServletRequest req) throws Exception;

For XHTMLForms and XForms (com.groiss.dms.XHTMLFormEventHandler):

public void beforeShow(T f, FormContext ctx, HttpServletRequest req)
throws Exception;

public void onShow(T f, FormContext ctx, XHTMLPage p,
HttpServletRequest req) throws Exception;

public void modifyModel(T f, Element formElement, FormContext ctx);

Method beforeShow is called before the (X)HTML page is built.
Method onShow is called after the (X)HTML is generated, so you can make additional
replacements.
Method modifyModel is only applicable for XForms, see below.

Example: In the following example the beforeShow and onShow methods are used:

@Override
public void beforeShow(TestAddress_1 f, FormContext ctx, HttpServletRequest req) {

if (f.getCountryField() == null) {
f.setCountryField("AT");

}
}

@Override
public void onShow(TestAddress_1 f, FormContext ctx, XHTMLPage p,

HttpServletRequest req) {
p.get("name").setStyle("background-color:red");

}

88

9.3. THE FORM TABLE HANDLER

In beforeShow a default value is set for a form field, in onShow we set the style of an
element.

Example: Using Form Event Handler with XForms

public void onShow(
DMSForm form, FormContext ctx, XHTMLPage p, HttpServletRequest req) {
Element root = p.getRoot();
Element f = XMLUtil.getElement(

"//xf:textarea[@ref='/data/form/texti']", root, XForm.xformNS);
f.setAttribute("style","color:red");

}

In this example we use XPath to get the textarea with the identification [@ref=’/data/form/texti’]
and set a new text-color. The following code shows the text-area within the XForm:

....
<xf:textarea ref="/data/form/texti" rows="" cols="">

<xf:label class="label100">MyTextarea</xf:label>
</xf:textarea>
...

If your form is of type folder form, the interface com.groiss.dms.XHTMLFolderFormEventHandler
can be implemented, providing two additional methods:

public void onAdd(T f, DMSObject o) throws Exception;
public void onRemove(T f, DMSObject o) throws Exception;

T is defined as extends DMSFolder & DMSForm. If your form is of type document form the
interface com.groiss.dms.DocumentEventHandler provides the following method which
is called when the content of a DMS document will be initially set or changed:

public InputStream onSetContentAsStream(T document,InputStream content);

9.3 The Form Table Handler

A subform table or configured table (see GUI configuration) can be customized by using a ta-
ble handler. The class must implement the interface com.groiss.dms.FormTableHandler.
The class is registered in the tablefield tag (of a subform) as attribute tablehandler
or in the XML GUI configuration file by using the element tableHandler (which is the
recommended way). The interface contains the following methods:

public void init(HttpServletRequest req, FormContext ctx);
public List getList(List<T> list);
public void modifyColumns(List<ColumnDescription> colDescs);
public void modifyTableLine(T f, Map<String,Object> line);
public String lineStyle(T f, String style);

The first method is useful to initialize your class with the request. With the second method
you have the possibility to modify the delivered list and return it. The third method allows to
modify the table header. With the fourth method you can modify each table line. The last
method is for changing the style of the table lines by returning a new css class.

89

9.4. XFORMS

9.4 XForms

XForms is a standard defined by the W3C consortium for the definition of web forms. In
@enterprise XForms can be used as an alternative to HTML forms. The advantages of
XForms make this technology an excellent choice for all further web form implementations.
This section describes how XForms can be used in @enterprise.

Following the functional principle for displaying a XForm is described:

• The XForm template is loaded and parsed.

• Within the model element an instance element with instance- and context-data is
added. The form fields are accessible via the path data/form/fieldname.

• The bind element with visibilities is added to the model.

• Depending on the kind of representation the appropriate submit-buttons and their
actions are added.

• The XForm is converted to a XHTML page: Each XForm control is converted to a
HTML equivalent which is filled with the data of the model and displayed with the
appropriate visibility.

The following example shows the model of a form with the form fields name, country and
amount:

<xf:model>
<xf:instance>
<data xmlns="">
<form object="com.groiss.forms.wiztest_1:1000074412" task="1000074417">
<transactionId>73</transactionId>
<avwcreatedby>roland eisenberg</avwcreatedby>
<avwcreatedat>2009-04-06T07:05:22Z</avwcreatedat>
<avwchangedby>roland eisenberg</avwchangedby>
<avwchangedat>2009-04-07T08:28:22Z</avwchangedat>
<name>John Doe</name>
<country>GB</country>
<amount>40011</amount>

</form>
<context>
<viewmode>view_text</viewmode>
<activityinstance oid="1000042420">Process 158</activityinstance>
<processinstance oid="1000042417">158</processinstance>
<task oid="1000000185" id="wiztest_request" version="0">
Request</task>
<processdefinition oid="1000000090" id="wiztest" version="1">
Test Process </processdefinition>
...

</context>
</data>

</xf:instance>
<xf:bind nodeset="/data/form/name" required="false()" type="string" />

90

9.4. XFORMS

<xf:bind nodeset="/data/form/country" required="false()" type="string" />
<xf:bind nodeset="/data/form/amount" required="false()" type="decimal" />
<xf:submission action="com.groiss.storegui.FormWrapper.updateNoAction"

replace="instance" method="post" markempty="true" validate="false" id="submit0" />
<xf:submission action="com.groiss.storegui.FormWrapper.finish?afterSubmit=

com.groiss.storegui.FormWrapper.afterFinish"
method="post" replace="instance" markempty="true" id="submit1" />

<xf:submission action="com.groiss.storegui.FormWrapper.updateAndAction?afterSubmit=
com.groiss.storegui.FormWrapper.gotoComeFrom"
method="post" replace="instance" markempty="true" id="submit2" />

</xf:model>

Hint: Form data are written in first model of a XForm which represents the default model!

In addition to the form fields the following context data are included in default model:

• activityinstance: The oid and toString of the current activity

• processinstance: The oid and Id of the process instance

• task: The oid, Id, version and the name of the task

• processdefinition: The oid, Id, version and the name of the process definition

• viewmode: The view mode with one of the following values: update, insert, search,
view, view_version, view_text

Hint: On log level TRACE the whole XForm is written into log (before converting into
HTML).

In the following some examples should illustrate the usage of XForms.

Example 1: Setting a field to read-only: The fields curefrom and cureto are editable only, if
the field reason is set to value cure.

<xf:bind nodeset="/data/form/curefrom" readonly="/data/form/reason != 'cure'"/>
<xf:bind nodeset="/data/form/cureto" readonly="/data/form/reason != 'cure'"/>

Example 2: Usage of value lists: The different types of a vacation are stored in a value list.
XForms use an own model element for value lists.

<xf:model id="valuelist">
<xf:instance src="com.groiss.wf.html.ValueList.show?id=holidaytype"/>

</xf:model>

For the src attribute the represented URL must be entered. The attribute id references the
Id of the value list. If more than one value list should be used, the id’s must be separated by
commas. The body of a XForm contains an element with reference to the value list:

91

9.4. XFORMS

<xf:select1 ref="/data/form/type"><xf:label>Vacation type</xf:label>
<xf:itemset model="valuelist" nodeset="/valuelists/list[@id='holidaytype']/item">
<xf:label ref="label"/>
<xf:value ref="value"/>

</xf:itemset>
</xf:select1>

Example 3: Configuration data: The form should use the currency symbol defined in the
configuration (of an application). If configuration parameter should be used within the
XForm, the configuration element is needed which defines all parameters as property
element with their names. The name consists of the application-id as prefix and the parameter-
name. @enterprise parameters do not need a prefix. The values are inserted at runtime:

<xf:instance>
<data xmlns="">
<configuration>
<property name="myappl:currency.symbol" />

</configuration>
</data>

</xf:instance>
...
<xf:bind id="currency" nodeset="//property[@name='myappl:currency.symbol']"/>

Example 4: Usage of subtable (subform): The element xf:repeat is needed. Within this
element the formtype of subform and a subformid must be specified. The created HTML
structure is the same as described in section XHTML forms with Sub-tables and it is also
possible to define the same attributes:

<xf:repeat formtype="com.groiss.forms.subform_1" subformid="1">
<xf:label class="label100">Subtable</xf:label>

</xf:repeat>

Example 5: Calculate sum from subforms: A billing form contains a subform which
represents the items. The main form should display the sum of the items. For this purpose a
bind element can be used which computes the sum with the attribute calculate:

<xf:bind nodeset="/data/form/totalamount"
calculate="sum(/data/form/subform/form/total)"/>

Example 6: Embedded subtable: With XForms it is possible to embed subtables with
the attribute xf:repeat-nodeset (for any element). The attribute value (called nodeset
for element repeat) is a XPath expression which selects the subforms. The content of
the repeat element is repeated for each subform. The buttons Delete and New line are
XForm triggers which resolve the XForm actions "delete" and "insert". It is necessary for
@enterprise to add a subformid and formtype to the repeat element:

<xf:group class="xformscontrol" ref="/data/form/subform[@id='1']/form">
<label>Time item:</label>
<div class="scEditableSubform">
<table class="subformtable">
<tr>

92

9.4. XFORMS

<th class="subformtable-column-itemdate">itemdate</th>
<th class="subformtable-column-costcenter">costcenter</th>
<th class="subformtable-column-description">description</th>
<th class="subformtable-column-timefrom">timefrom</th>
<th class="subformtable-column-timeto">timeto</th>
<th class="subformtable-column-lunchbreak">lunchbreak</th>
<th class="subformtable-column-homeoffice">homeoffice</th>
<th class="subformtable-column-minutes">minutes</th>

</tr>
<tbody xf:repeat-nodeset="/data/form/subform[@id='1']/form[position()!=last()]"

formtype="com.dec.avw.appl.hr_timeitem_1" subformid="1" id="repeat_1">
<tr>
<td>
<xf:input ref="itemdate" />

</td>
<td>
<xf:input ref="costcenter" />

</td>
<td>
<xf:input ref="description" />

</td>
<td>
<xf:input ref="timefrom" />

</td>
<td>
<xf:input ref="timeto" />

</td>
<td>
<xf:input ref="lunchbreak" />

</td>
<td>
<xf:input ref="homeoffice" />

</td>
<td>
<xf:input ref="minutes" />

</td>
</tr>

</tbody>
</table>
<xf:trigger ref="/data/form/subform[@id='1']/buttons">
<xf:label>@@@ep:new_line@@</xf:label>
<xf:insert position="after"

nodeset="/data/form/subform[@id='1']/form" at="index('repeat_1')" />
</xf:trigger>
<xf:trigger ref="/data/form/subform[@id='1']/buttons">
<xf:label>@@@ep:delete@@</xf:label>
<xf:delete nodeset="/data/form/subform[@id='1']/form" at="index('repeat_1')" />

</xf:trigger>
</div>

</xf:group>

93

9.5. THE XFORMS API

9.5 The XForms API

This section will show you some useful examples for the usage of the XForms API.

9.5.1 Using the form event handler

Your handler should implement com.groiss.dms.XHTMLFormEventHandler, the same as
for XHTML forms (see section The Form Event Handler for details). Note the specifics in
two methods:

• onShow: The method is called before the XForms elements are replaced with HTML
elements.

• modifyModel: enables the manipulation of the XForms model before it is mixed into
the form. The difference to the manipulation of the form in the beforeShow method is
that this method is also called when the form data are sent to the client after an update.

9.5.2 View a form

Sometimes it is necessary to view the form with specific visibilities or buttons. The following
method can used for all types of forms:

com.groiss.wf.html.HTMLUtils.showForm

For XForms the action parameter is ignored, set the submitAction in the SubmitButton.
Example:

public Page showForm(HttpServletRequest req) throws Exception {
// get the formtype
FormType ft = Store.getInstance().get(FormType.class, "id=?", "appl_fid");
// create a new form
DMSForm form = ft.newInstance();
// setting field(s)
form.setField("field1", "text-from-server");
// add a submit button
SubmitButton sb = new SubmitButton("Insert");
sb.setSubmitAction("test.Xformtest.update");
return HTMLUtils.showForm(form, Arrays.asList(sb), null, new FormContext(req));

}

This method shows an empty form, one field value is set, and a submit button is added.
Visibilities and modes can be modified with the com.groiss.dms.FormContext.
Note that XForms submit buttons have two modes:

• replace=instance: the response from the server replaces the instance data

• replace=all: this is the default, the response from the server replaces the page (as
normal HTML form submit does)

You can set the replace mode on the submit button.

94

9.5. THE XFORMS API

9.5.3 Implement the submit action

The action is implemented as a servlet method with a HttpServletRequest parameter.

• First get an instance of the XForms implementation:

XFormImpl XFormImpl.getInstance (HttpServletRequest req);

• The request contains an object parameter containing classname:oid, so you can get the
right form from the database (if oid is null, you get an empty form):

DMSForm f = HTMLUtils.getObject (req);

• To save the values from the request into the form, use:

void XFormImpl.setValues (DMSForm form, HttpServletRequest req);

• The complete XForms model is also accessible, get the
com.groiss.xforms.XFormInstance object:

XFormInstance XFormImpl.getFormInstance (HttpServletRequest req);

The com.groiss.xforms.XFormInstance interface has several methods, for exam-
ple getting and setting form fields:

XFormInstance.getFieldValue(String path);
XFormInstance.setField(String path, Object value);

The path in the first method if an XPath to the field, the Object in the second method
is either an XML (JDOM) Element or Attribute.

The following example method illustrates a form update:

public Page updateForm(HttpServletRequest req) throws Exception {
DMSForm f = HTMLUtils.getObject(req);
// for accessing the form, first get the implementation
XFormImpl xfimpl = XFormImpl.getInstance(req);
// set the values to a form
xfimpl.setValues(f, req);
// then update the form
OrgData.getInstance().update(f);
// send back a page
HTMLPage p = new HTMLPage();
p.setPage("<html>Done.</html>");
return p;

}

If the submission mode is replace=all, the method is completed by returning an HTMLPage.
Sometimes it is necessary to resend the changed form to the client (for example if you have
changed subforms in a non-editable table). In this case you can use refreshForm:

HttpServletResponse HTMLUtils.refreshForm(HttpServletRequest req)

If the submission mode is replace=instance, send back the changed instance data using this
method:

impl.sendFormInstance(XFormInstance inst, HttpServletResponse res)

95

9.5. THE XFORMS API

9.5.4 XForms buttons in the form

For defining submission buttons in the form, use the form editor. You can define the Id,
the server url (action), the replace mode and the validation. If you don’t want a button, but
invoke the submit action from JavaScript, use the following:

ep.xforms.xformSubmitLocal2(
{modelid: "model", replace: "instance",
action: "test.Xformtest.compute", validate: false});

The parameter modelid is always "model", replace can be defined as "instance", "none" or
"all", the action is a servlet method and if validate is specified as true, an error message
will be shown if the form is not filled correctly.

9.5.5 Client side event handling

According to the XForms definition, it is possible to define event handlers for the following
XForms events:

• xforms-value-changed

• xforms-enabled

• xforms-disabled

• xforms-readonly

• xforms-readwrite

• xforms-required

• xforms-optional

• xforms-valid

• xforms-invalid

• xforms-refresh

• xforms-recalculate

• xforms-revalidate

• xforms-rebuild

• xforms-model-
construct

• xforms-model-
construct-done

• xforms-model-

destruct

• xforms-ready

• xforms-help

• xforms-next

• xforms-previous

• xforms-submit

• xforms-submit-done

• xforms-submit-error

As an example, the following event handler for the XForms-submit event shows a confirm
dialog before form submission:

require(["ep/Utils", "dojo/on", "dojo/domReady!"], function(Utils, on) {
on(window, "xforms-submit", function(evt) {

var submission = evt.xformSubmission;
if(submission) {

if(!submission.resumed) { //this is the original action
evt.preventDefault(); //stop original submission
//let the user decide
Utils.yesNoCancel("Confirm first...").then(function(result) {

//flag to identify second submission and avoid check
submission.resumed = true;
ep.xforms.xformSubmitLocal2(submission); //retry submission

});
}

}
});

});

96

9.6. XHTML FORMS

9.5.6 Subform handling

When using editable subforms tables, the subforms can be manipulated in a form submission
with mode replace=instance. In the following example a subform is added:

XFormInstance instance = impl.getFormInstance (req);
Element root = instance.getInstanceElement();
Element formdata = root.getChild("form");
// there may be more than one subform element, subformid is attribute id
Element subformelement = formdata.getChild("subform");
// list of subforms
List<Element> subformelements = subformelement.getChildren("form");
// the last subform is the prototype
Element prototype = subformelements.get(subformelements.size() - 1);
// the new subform
Element clone = prototype.clone();
// set some fields
clone.getChild("amount").setText("123");
// add it as last element before the prototype
Element parent = prototype.getParentElement();
int index = parent.indexOf(toClone);
parent.addContent(index, clone);

// send result to the server
xfimpl.sendFormInstance(instance,

new String[] { "/data/form/subform[@id='1']/form" }, res);

Note, that we use a different signature of the sendFormInstance method: the client must be
informed, which subform tables have to be refreshed.

9.5.7 Evaluate the bindings

The XForms bindings may contain constraints and mandatory checks, which are evaluated
when submitting a form. However, you can perform these checks without client interaction.
The following piece of code shows the principle:

XFormInstance instance = xfimpl.getFormInstance(form, ctx);
instance.processBindings(true);
return instance.isValid();

The code calls getFormInstance from the XForms implementation object with a form and a
FormContext. Then, it evaluates the bindings and returns the validity of the model

9.6 XHTML forms

This section will show you some useful examples for the usage of XHTML forms.

97

9.6. XHTML FORMS

9.6.1 XHTML forms with Sub-tables

@enterprise allows the definition of master-detail relations between forms. Master-detail (or
1:n) relations are common in many application areas. Consider the relation of an "order" and
the order items as an example.
To model such a relation using @enterprise forms you define first the "detail" form (the
"order item" in the previous example) and load it into @enterprise. Next, you define the
master-form with a reference to the detail-form.
This reference is defined with the HTML-Tag tablefield, which has the following at-
tributes:

• formtype: The name of the Java class of the subform.

• subformid: An integer value as identification of the subform. There can be more than
one subform in a form and they must have different numbers.

• configid: Reference to a table defined in GUI configuration XML (see chapter Con-
figuring the Worklist Client for more details defining a table). The reference consists
of the XML-id (created by the @enterprise GUI-Configuration) and the node-id, i.e.
<xmlid>.<nodeid>. Following an example of a subform table in XML:

<table id="jobform_subtable">
<name>Jobform subtable</name>
<actions>
<action id="new" />
<action id="edit" />
<action id="delete" />

</actions>
<sortable>true</sortable>
<selection>ROWMULTI</selection>

</table>

In case of subforms only some attributes are possible for a subform table:

– actions: Defines the toolbar actions; new, edit and delete are the default actions.
Own actions can be defined within <nodes> block as described in chapter Non
tree nodes (<nodes>). If an own function is called following parameters are
important for subform tables:

* object: Contains all selected subform entries depending on selection.

* _src: The <classname>:<oid> of the mainform

* id: The id of the subform (= attribute subformid)

– selection: ROWMULTI, ROWONE or NONE; defines the selection mode of
table entries.

– sortable: true or false; if true, the subtable is sortable.

• class: A CSS class can be defined for the subform. By entering CSS class balloon and
calling ep.resize.initBalloonResizing() in a DOJO onLoad handler it allows
the subtable to resize automatically.

98

9.6. XHTML FORMS

9.6.2 The attribute epblock in XHTML-Forms

Elements with an epblock attribute can be used to set the visibility of a section in a form.
All div tags, which have this special attribute, will be displayed in the mask Visibility of
Forms. The id attribute of the div tag is necessary for unique identification.
Example:

<div id="thefield_div" epblock="true">
<table>
<tr>
<td class="tdb"><label for="thefield">FieldName:</label></td>
<td><input type="text" id="thefield" name="thefield" dbtype="VARCHAR"

maxlength="30" size="20" /></td>
</tr>

</table>
</div>

99

10 The Workflow Engine

In this chapter we first present the function of the @enterprise workflow engine. After this,
the API of the engine is explained. Examples will show the possibilities of the API.

10.1 Process definition and execution

The definition of a process can be represented as graph. The activities are the nodes, the
edges represent the flow of control. The graph of the process definition is either generated
from a WDL script or graphically defined using the process editor.
The nodes of the graph can belong to the following types:

• task: interactive task (done by the user)

• system: automatic step, call of a program

• process: call of a sub process

• condition: labeled as if, while, exit_when: branch with condition

• andjoin and orjoin: join node after a split to parallel branches

• nop: structural nodes labeled as par, begin, end, and goto

The edges are directed and can have one of the following types:

• normal

• then: The edge is followed, when the condition in the previous node evaluates to true.

• else: The edge is followed, when the condition in the previous node evaluates to false.

Fig. 10.1 shows the same process in WDL notation and as graph produced from the process
editor. This graph is structurally equivalent to the internal structure of the process definition.

100

10.1. PROCESS DEFINITION AND EXECUTION

process iftest()
version 1;
name "iftest";
forms f Jobform;
application default;
begin

if (f.recipient = null) then
all right();

else
r1 left();

end;
while (f.subj = "1") do

r2 while1();
r3 while2();

end;
end;

Figure 10.1: Process graph

The workflow engine is an interpreter for the process definition graph. Its responsibility is to
change the state of the process instances according to the process definition graph.
The behavior of this interpreter can be described with the two procedures start_activity
and finish_activity shown in Fig. 10.2.

When a workflow is initiated, the procedure start_activity is called, it selects the initial
activity of the process and calls the procedure recursively. The behavior of this procedure
depends on the type of the node currently processed. If the type is nop (par, loop, endif, or
end) no action is performed and the execution proceeds with the successor nodes. If the
type of the node is condition (if, while, or exit_when) the expression defined with the node
is executed and depending on the result the branch marked with then or the branch marked
with else is followed. The two node types closing a parallel execution - andjoin and orjoin -
are handled in the following way: When processing an orjoin node, the successor is started
when the first branch reaches the orjoin node. When processing andjoin nodes, the successor
is started when the last branch reaches the node. If the node is a task node, the following
steps are performed: the (optional) procedure defined for this activity is executed, then the
agent is assigned. At this point the procedure terminates.

When the user finishes an activity, the procedure finish_activity is invoked (the button com-
plete in the worklist client) with the activity. In the procedure finish_activity the successors
of the node are started. The second argument defines the type of edge to follow.

States of process instances and activity instances are shown in Fig. 10.3 and Fig. 10.4.

101

10.1. PROCESS DEFINITION AND EXECUTION

procedure start_activity(act)
if type_of(act) = condition then

if execute_expression(act)
then finish_activity(act,"then");
else finish_activity(act,"else");

end if;

elsif type_of(act) = nop then
finish_activity(act,"normal");

elsif type_of(act) = orjoin then
if this is the first finished branch then

finish_activity(act,"normal");
end if;

elsif type_of(act) = andjoin then
if this is the last finished branch then

finish_activity(act,"normal");
end if;

elsif type_of(act) = process then
start_activity(init_activity(act));

elsif type_of(act) = activity then
execute_procedure(act);
assign_agent(act);

elsif type_of(act) = system then
execute_procedure(act);
finish_activity(act,"normal");

end if;
end;

procedure finish_activity(act, b)
if no successors of act then

finish_activity(parent(act));
else

for all successors succ of act in branch b do
start_activity(act);

end do;
end if;

end;

Figure 10.2: Interpreting the process definition

The process is either running (state started) or not running - when it has been finished
normally (state finished) or when it has been aborted (state aborted).
When an interactive activity is started, it is assigned to a role (state started) or to a user
(state active). Taking the activity from the role-worklist to the personal worklist changes
the state to active. Putting it in the suspension list changes the state to suspended. When
the process is aborted, the active activities afterwards have the state aborted. Finishing an

102

10.1. PROCESS DEFINITION AND EXECUTION

Start process started

finished

aborted

reactivate

finish the last step

abort

reactivate

Figure 10.3: Process States

finish predecessor
or start step

started

suspended
[agent = role]

active

suspended
[agent = user]

finishedcompensated

waiting

aborted

take

finish

finish

abort
abort

select next agent
or choice path

compensation on going back

into/out of
suspension list

into/out of
suspension list

give back

Figure 10.4: Activity States

activity normally leads to state finished. When the agent of the following task or a choice
path have to be selected, the state of the activity is waiting, until this action has been done.
The action "go back" compensates the activities lying on the path to the previous activity,
this activities have then the state compensated.
The constants for this states are defined in the interface com.groiss.wf.ActivityInstance.

103

10.1. PROCESS DEFINITION AND EXECUTION

10.1.1 Structure of run-time data

Whenever a process or activity is started, some objects are created and stored in the database.
We call these objects run-time data, because they are created at run-time (of the engine) in
opposition to the build-time data (for example the process definition).
Fig. 10.5 shows the relationship between the process graph and the run-time data. The
process structure shown in the left part of the figure is composed of nodes and edges.
Nodes of type task have a reference to a com.groiss.wf.Task object. When the process is
started, for each node the engine processes an com.groiss.wf.ActivityInstance object
is created. These objects have references to the corresponding node of the process graph.
More than one com.groiss.wf.ActivityInstance can be generated for one node in the
process graph in one process instance: The functions "set agent" or "give back" create
additional com.groiss.wf.ActivityInstance objects, so that the history of the process
instance can be seen when listing the com.groiss.wf.ActivityInstance objects.

Process Structure Task Definition Process Instance

Task 1

Task 2

Task 3

StepInstance 1

StepInstance 2

StepInstance 3

StepInstance 4

Node 1

Node 2 Node 3

Node 4

Node 5

Figure 10.5: Process graph and run-time data

If the node in the process graph is of type process the corresponding
com.groiss.wf.ActivityInstance object represents the execution of a subprocess and
also implements the interface com.groiss.wf.ProcessInstance.

The com.groiss.wf.ActivityInstance objects representing the execution of the subpro-
cess are children of this object.
Fig. 10.6 shows such a graph of com.groiss.wf.ActivityInstance objects. The object
p0 represents the execution of a process instance p0 In this process instance four steps have
been executed, the tasks t1,t2, t3, and the process p1. The execution of p1 contained the

104

10.2. THE @ENTERPRISE WORKFLOW API

steps t4, t5, and t6.

The API provides the methods getParent in com.groiss.wf.ActivityInstance and
getActivityIntsance in com.groiss.wf.WfEngine, for navigating through this hierar-
chy. A process instance has always at least one root node (com.groiss.wf.ProcessInstance
object) and one or more leaf nodes.

p0

p1

t2

t3

t1

t4

t5

t6

Figure 10.6: Graph of ActivityInstance objects

10.2 The @enterprise workflow API

The classes and interfaces for accessing the workflow engine are located in the package
com.grois.wf. The objects of the process definition and the run-time data can be accessed
with the following interfaces:

• ProcessDefiniton representing the definition of a process

• Task the interactive steps of a process definition

• ProcessInstance the instance of a process

• ActivityInstance the instance of a step of a process

The methods for manipulating process instances are executed using the interface WfEngine.
The method getInstance of interface WfEngine returns an WfEngine object.
The methods are arranged in four groups:

• Create a process instance

105

10.2. THE @ENTERPRISE WORKFLOW API

• Find process instances

• Get information about process instances

• Change the state of process instances

10.2.1 Create a process instance

To create a process instance we must specify the following data:

• The process definition

• The user who starts the process

• The organizational unit, where the process is started

• The date when the process should be finished (optional)

See the chapter Organizational Data for information how to get users and org.-units. The
process definition can be retrieved with one of the methods of WfEngine:

ProcessDefinition getProcessDefinition(String id);
ProcessDefinition getProcessDefinition(String id, int version);

Additionally, listProcessDefinitions returns the process definitions of an application,
getStartableProcesses the processes a user can start.

When the arguments are collected, the process can be started using:

ProcessInstance startProcess(ProcessDefinition p, User u, OrgUnit d,
Date duedate, String id)

The last argument is the process instance id. If you leave it null, the system assigns an id.

10.2.2 Find process instances

The following methods are used to find a process instance:

public List<ActivityInstance> getWorklist(Application a, boolean withRepr);
public List<ActivityInstance> getRoleWorklist(Application a);
public List<ActivityInstance> getSuspensionList(Application a);
public List<ActivityInstance> getRoleSuspensionList(Application a);
public ProcessInstance getProcess(String id);
public ProcessInstance getProcess(long oid);
public ProcessInstance getProcess(DMSForm f);

The first four methods retrieve the worklist, role-worklist, suspension list and role-suspension
list of the current user. You can call the methods with application null, for getting the items
for all applications. An alternative way is to use the methods

public List<ActivityInstance> getWorklist(WorklistKind wlKind, Application a);
public List<ActivityInstance> getWorklist(Set<WorklistKind>

wlKinds, Application a);

If you know the id or the oid of a process, call one of the getProcess methods.

106

10.2. THE @ENTERPRISE WORKFLOW API

10.2.3 Get information about a process instance

The interface ActivityInstance has getter methods for all the information stored in the un-
derlying object: the agent, start time, end time, status, organizational unit, process definition,
process instance, type, and task.
The interface ProcessInstance has additional methods for getting the subject and the id.
In the WfEngine interface the following methods are available:

• public List<ActivityInstance> getActiveTasks(ProcessInstance process)
returns all active (state started, active, or suspended) tasks of a process

• public List<ActivityInstance> getActiveTasks(ProcessInstance process,
User u)
like above, restricted to a user.

• public List<? extends ActivityInstance> getAllInteractiveTasks(
ProcessInstance pi)
returns all interactive tasks of a ProcessInstance, even if they are children of a parfor,
par or scope.

• public List<ActivityInstance> getActivityInstances(
ProcessInstance process)
all activity instances of a process instance (all children).

• public DMSForm getForm(ActivityInstance ai, String id)
a form of the process, identified by the id; if ai is part of a parfor or subprocess
without form, the form of the next parent (process instance) will be returned in case of
availability or otherwise the next parent process form (until the root process instance is
reached). The structure of the process instance hierarchy is shown in section Methods
for process instances.

• public List<DMSForm> getForms(ProcessInstance process)
all forms of the process.

• public ProcessInstance getMainProcess(ActivityInstance ai)
the root of the tree of activity instances.

• public ProcessInstance getParent(ActivityInstance ai)
the parent of an activity instance.

• public List<DMSObject> getDocuments(ProcessInstance process)
a list of documents attached to the process

• public List<DMSNote> getNotes(ProcessInstance process)
the notes attached to a process instance.

10.2.4 Manipulation of process instances

The API provides methods for all actions you can do from the worklist client: finish, take,
untake, goBack, seeLater, seeAgain, setAgent, gotoTask, copyTo, makeBranch, setOrgUnit,
setDescription. See there for details.
The following methods apply to process instances:

107

10.2. THE @ENTERPRISE WORKFLOW API

public void abort(ProcessInstance process);
public void reactivate(ProcessInstance process)
public void archive(ProcessInstance process);
public void setSubject(ProcessInstance process);
public void setSubjectToString(ProcessInstance process, String str);

10.2.5 Getting the context

In conditions and system steps the method defined by the application can retrieve the current
activity instance with the following code:

WfEngine e = WfEngine.getInstance();
ActivityInstance ai = e.getContext();

Hint: In case of a take hook getContext returns that ActivityInstance which is
created after the take operation. In case of an untake hook getContext returns the
ActivityInstance that is created before the untake operation will be performed. To get the
"untaken" ActivityInstance use ThreadContext.getAttribute("untakenActivity").

10.2.6 Methods for process instances

There are several methods with process instance as arguments and how they perform needs
some clarification.
The structure of a process instance is as follows:

activityInstance -> [parfor_1 .. -> [subprocess_1 ...->]] main_process

The relation shown as arrow is a parent relation between activity instances. The getParent
method returns the target of this relation. If we start at a leaf node (ActivityInstance) the
first call returns the parfor node if existing. After other nested parfors the node of the current
subprocess will be found and finally, after other possible parfor and process nodes, the main
process. Any of these nodes except the first implements the process instance interface. The
method getProcessInstance returns the next activity instance with type PROCESS (not
parfor) that can be found when calling getParent repeatedly.

The methods on process instances behave as following:

• archive: This is the only method applicable only on the main process.

• abort, reactivate: Normally applicated on the main process, but it is possible to
perform this operations on intermediate nodes.

• getDocuments, getNotes, hasDocuments, hasNotes, setPriority: These meth-
ods first navigate to the main process, then perform like called with it.

• makeBranch, setSubject, getForms, getActivities, getActiveTasks: The
result depends on the argument. For example, to get the local forms inside a parfor,
the method getForms must be called with the parent of the activity instance

108

11 Using the Workflow API

The programming of a workflow application contains several different tasks, which we will
describe in this chapter:

• Methods that are part of workflow execution: expressions, postconditions, preprocess-
ing, system steps.

• Interactive functions: called on user request as extension to the standard worklist
functions.

• Enhancing the functionality of forms.

• Setting the default behavior of some actions in the application class

• Internationalization of applications.

• Appearance of the client: configuration of the main screen and the worklists. Program-
ming of application specific worklists.

11.1 Application Methods Called by the Engine

The application programmer can define several types of methods which are executed by the
workflow engine:

• system step in the process definition,

• preprocessing: executed before the StepInstance is visible in the worklist,

• compensation: executed when compensating this step (function go back),

• postcondition: executed when user completes the task,

• take- and untake-hook: executed when the user takes the activity instance or gives it
back.

• condition: condition evaluation in if, while, exit when, choice.

109

11.1. APPLICATION METHODS CALLED BY THE ENGINE

In each case a Java method can be specified. In the first and last case the name of the
method is specified in the process definition, the other method names are specified in the
task declaration. The methods can have zero to n String parameters. The return value must
be boolean for conditions and postconditions and is ignored otherwise.
The following example shows two methods, foo and fee. The method foo can be used as
system step or postcondition, the second for all above cases.

class Test {
public void foo(String a, String b) {

...
}

public boolean fee() {
...
return true;

}

}

The value of the string parameters are constants, in the process definition and task declaration
the method call must be specified with the parameters, for example:

Test.foo("first", "second")

Note, that you also have to specify the package together with the class name if the class
belongs to a package. The class file must be in the class path of the server or the classes
directory of an application.
The following example shows a method which is called, when an activity instance is taken:

public void setFieldApproval() {
WfEngine e = WfEngine.getInstance();
ActivityInstance ai = e.getContext();
DMSForm f = e.getForm(ai, procFormId); //form id defined in process editor
User u = (User)ai.getAgent();

//set the field in the form
f.setField("approvedBy", u);
e.updateForm(f);

}

The methods first gets the activity instance, the process instance, and then a form of this
process. The field approvedBy of this form is set to the agent of this activity instance.

11.1.1 Usage of script-language GROOVY

@enterprise also offers the possibility to enter a GROOVY-script instead of a method-call
(preprocessing, compensation, etc.) in tasks and task-functions. GROOVY is an object-
oriented programming language for the Java platform. It is a dynamic language with features
similar to those of Python, Ruby, Perl, and Smalltalk. More information can be found on

110

11.1. APPLICATION METHODS CALLED BY THE ENGINE

http://www.groovy-lang.org

For using GROOVY in @enterprise you have to start with the keyword groovy: and a
following groovy-script in one of the method-fields as shown in the following example:

groovy:
form_procFormId.setField("approvedBy",(User)ai.getAgent());
engine.updateForm(form_procFormId);

Hint: Groovy must be activated via the hidden parameter ep.scripts.enable in @enterprise
configuration-file!

The context for tasks is:

• engine is the object com.groiss.wf.WfEngine

• ai is the object com.groiss.wf.ActivityInstance

• pi is the object com.groiss.wf.ProcessInstance

• store is the object com.groiss.store.Store

• dms is the object com.groiss.dms.DMS

• orgdata is the object com.groiss.org.OrgData

• user is the object com.groiss.org.User

• form_<procFormId> is the corresponding form

The context for task-functions is:

• request is the object HttpServletRequest

• response is the object HttpServletResponse

• context is the object ServletContext

• session is convenient for request.getSession(false) - can be null

• params is a map of all form parameters - can be empty

• headers is a map of all request header fields

• out is equal to response.getWriter()

• sout is equal to response.getOutputStream()

• ai is the object com.groiss.wf.ActivityInstance

• pi is the object com.groiss.wf.ProcessInstance

111

11.1. APPLICATION METHODS CALLED BY THE ENGINE

These context-variables are defined in com.groiss.groovy.WFBinding, but can be config-
ured via the hidden parameter ep.groovy.binding.class in configuration-file.

The following example shows a groovy-script which is called before activity instance is
visible in worklist (preprocessing):

groovy:
form = engine.getForm(pi, "inputform");
form.description = form.description + "Method call activated by task2.";
engine.updateForm(form);

In this example the field "description" of the "inputform" is extended by the string "Method
call activated by task2". The form-fields are accessible directly without getField and
setField calls.

In the next example a groovy-script is entered in a task-function which is assigned to all
tasks:

groovy:
u = com.groiss.util.ThreadContext.getThreadPrincipal();
out.println("Logged on User: " + u.getFirstName() + " " +

u.getSurname() + "
");
out.println("Instance Details: " + request.getParameterMap());

If this task-function is called via worklist, the current user and information about the selected
instance will be displayed.

11.1.2 XPath-Conditions

The XML Path Langauge (XPath) is developed by the W3-consortium for addressing parts
of an XML-document (considered as tree). The access on @enterprise process data is done
with following variables:

• Forms: The access on a form and its elements is possible with variable $form_<fid>.
The several fields are subelements, e.g.:

<transactionId>2</transactionId>
<avwcreatedby>Frank Mansdorf</avwcreatedby>
<avwcreatedat>2010-01-29T09:34:29Z</avwcreatedat>

The task-field, OID and the class are defined as attributes at the form-element:

<form object="com.dec.avw.appl.hr_recruiting_1:1000002101"
task="1000098715">

</form>

Objects are defined as follows:

<selectagent object="com.dec.avw.core.User:12345">
...object attributes...

</selectagent>

112

11.1. APPLICATION METHODS CALLED BY THE ENGINE

The access to subforms is done via the:

<subform id="1">
<form object="com.dec.avw.appl.hr_evaluation_1:1000099042"

task="1000098715">
<transactionId>0</transactionId>
....

</form>
</subform>

• Current process instance: The access is possible by using the variable $pi. The
XML-structure of a process instance is defined as follows:

<pi object="com.dec.avw.core.StepInstance:12345">
<agent object="com.dec.avw.core.User:12345">
<firstName>Frank</firstName>
...

</agent>
</pi>

• Current activity instance (engine.getContext()): The access is possible
by using the variable $ai. The behavior is analog to process instance.

• User of current step: The access is possible by using the variable $user. In
process conditions this user is always the ThreadUser. The XML-structure of a user
object is defined as follows:

<user object="com.dec.avw.core.User:12345">
<firstName>Frank</firstName>
...

</user>

• Current date: The variable $now contains the current date.

• Java method: XPathCheckClass.echo(’arg’) = ’arg’
Any JAVA methods can be called, whereas String parameter are allowed only. The
API programmer is responsible for the RETURN value, but String is recommended.

• Configuration: There are 2 different kinds of configuration and their access possi-
bilities:

– Application: $configuration_<appl_id>/property[@name=’km’]/text()

– System: $configuration/property[@name=’avw.servername’]/text()

An other possibility to define XPath conditions is the usage of method
com.groiss.wf.SystemAction.evaluateXPath.

Examples for XPath-Conditions:

//check, if form field value of type com.groiss.org.User
//is the same as the current thread user:

xpath:$form_f/recipient = $user
//check for com.groiss.org.User attribute "firstName":

113

11.1. APPLICATION METHODS CALLED BY THE ENGINE

xpath:$form_f/recipient/firstName = 'Frank'
//check a date field against current date:

xpath:$form_f/effectiveDateField = $now
//checks the value of the form field "status" in subform with subform-id 1:

xpath:$form_f/subform[@id='1']/form/status = 'ok'
//checks is the agent of the current process instance the thread user:

xpath:$pi/agent = $user
// checks the agent's id of the current activity instance:

xpath:$ai/agent/id = 'frank'
//evaluates the given XPath expression:

xpath:com.groiss.wf.SystemAction.evaluateXPath("$form_f/finished = '1'")
//check against configuration parameter "avw.servername"
//stored in ep.conf:

xpath:$configuration/property[@name='avw.servername']/text() = 'ep_o'

11.1.3 Adding methods to the system step editor

The system step editor is a tool in the process editor that allows adding and editing of chosen
methods in a system step. These are, by default, useful standard methods of @enterprise.

To add own methods (e.g. part of an application) to the editors list, the desired methods must
be annotated with @com.groiss.wf.CallableMethod. A scanner searches in the system- and
the application classpath when the editor is opened for the first time after a server start and
looks for methods with that specific annotation. All found methods are added to the list of
methods in the editor.

Example:

@CallableMethod(group="@@@ep:forms@@",
params={"{id:'id',type:'formfield'}","{id:'id',}"})

public void methodName (String parameter1, String parameter2) {

...

}

The first two parameters of the annotation support the usage of resource keys, if they are
marked with @ signs (e.g. @@@ key @@). It is also possible that both - the group and the
description of the method - are automatically found in the resources. For this purpose, they
must not be described in the annotation and the key must have the following syntax:
<fully qualified class name>.<method name>_

Example:

com.groiss.wf.SystemAction.addFolder_

A desc must be added for the description key and for the group the group key. However,
the ID of the parameter (the same one that was assigned in the annotation) must be specified
first, followed by _label (for the label) or _desc (for the description). It looks like this:

114

11.2. INTERACTIVE FUNCTIONS

com.groiss.wf.SystemAction.addFolder_parameter1_label
com.groiss.wf.SystemAction.addFolder_parameter1_desc

More details about the annotation itself and how to describe the methods and their parameters
for the editor can be found in the API documentation of com.groiss.wf.CallableMethod.

11.2 Interactive Functions

The set of standard functions applicable in the worklist client can be extended with the so
called Task-Functions. The functions can be used for arbitrary application specific tasks, for
example sending mails, filling forms with some initial data, or anything else.
We differentiate between four types of functions:

• Functions applicable in the worklist in certain tasks. These functions can be attached
to task definitions in the system administration.

• Functions applicable in the worklist with every task of an application,

• task-independent functions,

• functions for viewing additional information for users, organizational units, and
process instance history.

In the user interface only these tasks are shown, where the user has the execute right. Task-
independent functions are reached with the link "Functions" in the navigation tree of the
client.
The signature of the Java methods is as follows:

public void foo(HttpServletRequest req, HttpServletResponse resp)
public Page foo(HttpServletRequest req)

See chapter Servlet Methods for a discussion of these two method signatures.
After you wrote the Java method you have to define a Task-Function object with the name of
your method in the system administration.

File com/groiss/demo/DemoFunctions.java

/** function in worklist: approve one or more orders with task-function */
public Page approve(HttpServletRequest req) throws Exception {

User u = ThreadContext.getThreadPrincipal();
WfEngine e = WfEngine.getInstance();
String[] tasks = req.getParameterValues("functionTask");
for (String aistr: tasks) {

ActivityInstance ai = e.getActivityInstance(Long.parseLong(aistr));
if (!u.equals(ai.getAgent())) {

throw new ApplicationException("You are not the agent of this task.");
}
DMSForm f = e.getForms(ai.getProcessInstance()).get(0);

115

11.3. APPLICATION ADAPTER

f.setField("approvedby", u);
f.setField("approved", "1");
e.updateForm(f);
e.propagateChange(ai);

}
JSONObject result = ClientUtil.getChangesAsJSON(

req.getParameter("nodeid"), true);
return new ActionPage("parent.require(['ep/Utils'], function(Utils) {" +

"Utils.refreshWorklists(" + result + ", true);});");
}

11.3 Application Adapter

For each application you can define a Java class where some characteristics of the application
can be defined. This class must implement the interface com.groiss.wf.ApplicationAdapter.

There exists a default implementation com.groiss.wf.DefaultApplicationAdapter
which is used when no application specific class is defined. You can either write a subclass
of com.groiss.wf.DefaultApplication or implement the interface
com.groiss.wf.ApplicationAdapter. The first alternative is preferred, because it is
more stable against changes of the default implementation or enhancements of the interface.

11.4 Utilities for building an HTML interface

In this section some utility methods of the class com.groiss.wf.html.HTMLUtils are
described.

11.4.1 Show the form

Two methods can be used for showing a process form:

public static Page showForm(HttpServletRequest req) throws Exception;
public static Page showForm(HttpServletRequest req, ActivityInstance ai,

String formid, int mode) throws Exception;

The first method calls the second, where the additional parameters ai, formid, and mode are
taken from the equally named ServletRequest parameters. The mode is one of the following:

0 update mode
9 view mode without buttons

Create a PDF version of form/page

By using following methods in class com.groiss.wf.html.HTMLUtils a PDF version of
a given form can be created. The form is first created in VIEW_TEXT mode (with the
permissions of the current activity if parameter task contains its oid).

116

11.4. UTILITIES FOR BUILDING AN HTML INTERFACE

public void showPdfForm(HttpServletRequest req, HttpServletResponse res)
throws Exception;

public void showPdfForm(DMSForm form, FormContext ctx, OutputStream os,
String addr, Locale l) throws Exception;

Example how showPdfForm() could be called from a XForm:

<a class="nonprint" href="javascript:window.open(
'com.groiss.wf.html.HTMLUtils.showPdfForm/form.pdf?object='+
document.getElementById('object').value+
'&task='+document.getElementById('task').value,'xx');void(0)">

Print

If you need to mix-in HTML elements (input, textarea, select, etc. e.g. in onShow of form
event handler) that are not part of the form type definition, i.e. these fields are not stored in
the database, it is on your own to convert these fields manually as shown in the following
example:

Component c = p.get("myfield");
// set some value in onShow
c.setAttribute("value", "Non-DB Input-Field val");
// change input to span for PDF
if (ctx.getMode() == FormContext.VIEW_TEXT) {

c.getRoot().setName("span");
c.getRoot().setText(c.getAttribute("value"));

}

If you need to manipulate the com.groiss.gui.XHTMLPage object before converting to
PDF, use following method:

public void convertToPDF(XHTMLPage p, OutputStream os, String addr,
Locale l) throws Exception;

The addr parameter can be determined with

com.groiss.servlet.ServletUtils.getServerAddress

and the locale e.g. from com.groiss.util.ThreadContext.

11.4.2 Show a form table

Following method allows to open form-tables in own window/iframe:

public Page showFormTable(HttpServletRequest req);

The request must contain the parameter nodeid which consists of the xml-id (= gui-
configuration) and the node-id (= table node), i.e. xmlid.nodeid
Additionally the boolean parameters showToolbar and hideCloseButton can be added to
the request.

117

11.4. UTILITIES FOR BUILDING AN HTML INTERFACE

11.4.3 Link to forms and documents

For customizing the links to forms and documents the class com.groiss.wf.html.HTMLUtils
contains the following methods:

• getDocumentsLink returns a link to the documents of the process,

• getNotesLink returns a link to the notes of the process,

• getFormLinks returns the links to the process forms concatenated to a string. The
mode is either UPDATE or VIEW, comingFrom is the URL shown after a form submit
and target is the target frame of the submit action.

11.4.4 Object Selection

The class com.groiss.wf.html.HTMLUtils provides the method selectList for select-
ing objects from a list. The method is useful when you want to select an object and get
the selected object in the opener document. The ServletRequest can have the following
parameters:

Parameter
classname Java class of objects
title The title of the window
field The name of the field in the caller form: The classname and oid of the object

is written to the field. The string representation of the object is written
to the field with the specified name followed by "_display".

searchid If a condition (where clause) is needed, the attributes searchid and parameters
must be used and an action node must be created in the appropriate xml-file.
An example how to define parameterized conditions (it is always the same
procedure) can be found in chapter Usage of DOJO and JavaScripts.

noClass instead of < classname >:< oid > only the oid is written to the field
attribs Normally the toString() method is used to display the objects. With the attribs

parameter you can specify a comma-separated list of attributes you
want to see.

searchAttrs If the list is very long a search can be used to restrict the number of elements
shown. Specify a list of attributes where you want to search. An input field will
appear on the mask. If the given string is a prefix of one of the attributes of an
object, the object will appear in the list.

The entries are sorted alphabetically.
When selecting an object, two values are written to the opener form. The object classname
and oid, concatenated with a colon (:) is written to the given field. The objects String
representation is written to the field named field_display.

Example: The following url is used to show a window for user selection:
The HTML code shows a button opening a window for selecting users:

<script>
function selectUser(){

window.open("../servlet.method/com.groiss.wf.html.HTMLUtils.selectList?"+

118

11.5. TASK-FUNCTIONS IN FORMS

"classname=com.dec.avw.core.User&title=User&field=customer"+
"&attribs=surname,firstName,id&searchAttrs=surname,id",
"search",'width=500,height=500,directories=0,toolbar=0,scrollbars=1');

}
</script>
...

<input type="hidden" name="customer" value=""/>
<input type="text" name="customer_display" value="" style="width:180"/>
<input type=button class="ep_button" value=" ? " onclick="selectUser()">
<input type=button class="ep_button" value=" X "

onclick="form.customer.value='';form.customer_display.value='';"></td>

11.5 Task-Functions in forms

@enterprise allows to place buttons for task-functions in forms. For this purpose you have to
write the following placeholder

• in HTML forms: "%%taskfunction:fid%%"

• in XHTML forms and XForms: <script id="toolbarfunctions">fid1,..,fidn</script>

fid is the id of a task-function.

To sum up, there are several possibilities to place task-functions:

1. in the submenu appearing when you click on the cog-wheel in the worklist. the "Show
in worklist" checkbox must be clicked.

2. in the toolbar: add the key "taskfunction:fid" to the list of actions.

3. in the form: add the key "%%taskfunction:fid%%" in the html form;
add the line <script id="toolbarfunctions">fid1,..,fidn</script> in the XHTML form
or XForm

4. in the toolbar when the form is shown in the frame of the worklist. Add the key
"%%toolbarfunctions:fid1,..,fidn%%" into the HTML form and the key
<script id="toolbarfunctions">fid1,..,fidn</script> into xhtml forms / XForms. fid1
and fidn are ids of task-functions. It you specify no task-function at all, only the
standard buttons are shown.

Hint: The necessary task functions have to be assigned to the corresponding tasks in
administration, otherwise no functions are visible.

In any case the parameter functionTask contains the oid of the activity instance where the
task function was invoked. In case 2, if more than one worklist entries have been selected,
this parameter appears for every selected entry.
In the target field of the task-function, you can specify the target window. You can also add
window properties if you want to create a new window. Add the properties after the target
name and a "," (comma), for example: _blank,toolbars=0,width=300,height=200

119

11.6. BATCH PROCESSING

Hint: If a target window is specified, the form will not be saved when activating the save
button.

11.6 Batch Processing

In @enterprise two types of automated steps exist:

• synchronous: this is specified in WDL by the keyword system followed by a method
call. The method is executed in the same thread and within the transaction context
of the operation which started the step. After execution of the method, the step is
finished.

• asynchronous: specified by the keyword batch followed by a class name. Some
methods of this class are executed after the step has been started - in their own
transaction and thread.

Use the first method (synchronous) whenever possible, i.e. if the execution time of the
method is not too long (it executes in the same transaction as the finish action of the previous
interactive step) and if you don’t need to wait for an external event or system to finish the
step.
The specific behavior of batch jobs can be influenced via a class implementing the interface
com.groiss.batch.BatchAdapter:

public interface BatchAdapter {
void startup() throws Exception;
void afterCreation(BatchJob job) throws Exception;
void doStart(BatchJob job) throws Exception;
void doPoll(BatchJob job) throws Exception;
void beforeCompletion(BatchJob job) throws Exception;
void afterCompletion(BatchJob job, boolean commit) throws Exception;
void doCompensate(BatchJob job) throws Exception;
Pair<Integer, String> getErrorCode(BatchJob bj, Throwable ex);

}

The com.groiss.wf.batch.NullAdapter class can be used as an extension point for
specific adapter implementations. The NullAdapter provides method implementations
which just log the call (at log level DEBUG).
The workflow-engine will generate a single instance of the adapter class, the startup
method of the class is called once. The other methods are called on this single instance per
batch job with the current batch job as a parameter.
There are several variations in the life cycle of a batch job (initiated via flagging of the job,
see below), but the general scenario is as follows:
When the workflow engine reaches a batch step, it creates a
com.groiss.wf.batch.BatchJob object and writes it to the database, this batch job con-
tains control data and state information.
The com.groiss.wf.BatchManager timer is responsible for starting batch jobs and for
finishing the steps after the batch job has completed. The flow of control is as follows:

120

11.6. BATCH PROCESSING

1. When the batch job is created, the startup method of the specified BatchAdapter
class is called (this is done only once for each class, not for each batch job). Then the
batch job state is set to CREATED and the afterCreation method is called. In the
afterCreation method no explicit ROLLBACK is done if an error occurs.

2. The BatchManager timer starts the batch job by calling the doStart method. After
successful completion the state of the batch job is STARTED. If an exception is thrown
in doStart, the state of the batch job changes to STARTERROR and a ROLLBACK
will be performed. No further action is taken by the batch system.

3. Next the batch job must be finished. This can be triggered from an internal or external
event (for example via reception of an email). Via calling the method
BatchManager.markJobFinished, the state of the BatchJob object will be FIN-
ISHED.

4. When the BatchManager detects finished jobs during its next timer controlled run, it
completes them. First it calls beforeCompletion. If there is an exception, the job
is placed in state FINISHERROR. No further action is taken by the batch system. If
beforeCompletion was executed successfully, afterCompletion is called with a
boolean parameter which indicates if the job is now in state COMPLETED (commit
= true) or in state FINISHERROR (commit = false). If an exception is thrown in
afterCompletion, a ROLLBACK will be performed.

5. On going back via the batch job step, the method doCompensate is called.

As mentioned above, the life cycle of a batch job can be modified by appropriate flagging
with respect to six aspects, which can be combined (almost) arbitrarily.

• startnow: A batch job where startnow is set is started immediately after the
end of the current transaction and not during the next timer triggered run of the
BatchManager.

• newthread: By specifying newthread, the start of the job takes place in a thread
created newly for this batch job instance. The original thread creates the batch job and
calls afterCreation, but the start of the job is done in the new thread. This feature
could be used when the start of the batch job itself takes significant time.

Any number of threads could be working concurrently, each on one individual batch
job step instance. The workflow engine does not limit thread creation by e.g. using
a bounded thread pool. Its is questionable practice to have the threads linger in the
system for a long time, e.g. by periodically polling for results and going to sleep in
between.

• retrystart: When using retrystart, an exception in doStart does not set the
state of the batch job to starterror. Instead, the batch job stays in state CREATED and
a new start attempt will be made during the next timer run. Such further attempts can
be avoided, if the doStart method explicitely marks the batch job as erroneous via
calling BatchManager.markJobError.

121

11.6. BATCH PROCESSING

To suspend further start attempts without changing the batch jobs state, doStart can
call BatchManager.markJobSuspendRetry. Start attempts can be commenced by a
later call to BatchManager.markJobRetry.

• autofinish: Setting autofinish means that immediately after the doStart method
has terminated in a normal manner, the job is marked as finished and then completed
by the system itself. Could be used for "fire and forget" batch jobs.

• pollfinish: When using pollfinish, the timer will actively check if the batch job
is finished via a call to the doPoll method of the adapter.

The polling will take place in the thread of the timer, unless the newthread modifyer
is specified, then polling will take place in a dedicated thread for each job.

If the check implemented in doPoll determines that the batch jobs is not yet finished,
it does not need to do anything. If the check determines that the job is finished, it must
mark it explicitly by calling BatchManager.markJobFinished.

An exception in doPoll does not change the state of the batch job. To "give up" on
this job, the doPoll method should explicitly mark the batch job as erroneous via
calling BatchManager.markJobError.

To suspend further poll attempts without changing the batch jobs state, doStart can
call BatchManager.markJobSuspendPoll. Poll attempts can be commenced by a
later call to BatchManager.markJobPoll.

• gobackonerror: Setting gobackonerror to true means that in case of an unhandled
exception during execution of the doStart method, engine tries to goBack to the last
interactive step.

The behavioral modification flags can be checked at the batch step dialogue in the process
editor or by adding them literally after the class name in the WDL batch statement, e.g.:

batch com.groiss.demo.DemoBatchAdapter() startnow newthread;

The defaults for the life cycle modifications are:
startnow=false, newthread=false, retrystart=false,
autofinish = false, pollfinish=false, gobackonerror=false.
The following table deals with aspects of the life cycle modification flags concerning threads:

newthread startnow thread in which doStart is called
false false batch manager (timer) thread

(during its next run)
false true event dispatcher thread

(after successful completion of the current transaction)
true false new thread for this batch job instance

(during the next run of the batch manager timer)
true true new thread for this batch job instance

(via the event dispatcher after successful completion of the cur-
rent transaction)

122

11.6. BATCH PROCESSING

The following examples illustrate the usage of this framework. We will first provide a simple
implementation and then illustrate the usage of retrystart and pollfinish.

File wdl/batchproc.wdl

process batchproc()
application default;
version 1;

forms f Jobform;
subject f.subj;
begin

<order_start> all order(f);
repeat

order_start:user a_task(f);
batch com.groiss.demo.DemoBatchAdapter() newthread;

until xpath:"$form_f/finished = 'true'";
end

The process is a slight variation of the well-known jobproc example. We introduce an
additional batch step, the processing logic is implemented in the class
com.groiss.demo.DemoBatchAdapter.
The general notion of the batch job we want to implement is to write a file with some process
data to a process specific location in the file system. Then we trigger some external entity to
process the file. The external entity will place a second file in the same directory (the result
of its processing). The batch job will be finished through invocation of an URL and some of
the contents of the result file are transferred into the form.
The com.groiss.demo.DemoBatchAdapter implements the interface
com.groiss.wf.batch.BatchAdapter, imports the needed things and defines some utility
methods, which state the location of the directories where the files will be placed. Under a
subdirectory batchdemo in the server’s temporary directory, we will place one directory for
each process, named like the process id.

File java/com/groiss/demo/DemoBatchAdapter.java

public class DemoBatchAdapter implements BatchAdapter {

private static final Logger logger = LoggerFactory.getLogger(
DemoBatchAdapter.class);

public static final String FORMID = "f";
public static final String FIELDID = "description";

protected File getMainDir() {
return new File(Settings.getTempDir(), "batchdemo");

}

protected File getProcDir(BatchJob job) {
return new File(getMainDir(), getProcId(job));

}

protected String getProcId(BatchJob job) {

123

11.6. BATCH PROCESSING

return job.getContext().getProcessInstance().getId();
}

protected DMSForm getForm(BatchJob job) {
return WfEngine.getInstance().getForm(

job.getContext().getProcessInstance(), FORMID);
}

@Override
public void startup() {

File mainDir = getMainDir();
mainDir.mkdir();
logger.debug("{}.startup: maindir={} ", getClass().getName(), mainDir);

}

@Override
public void afterCreation(BatchJob job) {

File procDir = new File(getMainDirName(), getProcId(job));
procDir.mkdir();
logger.debug("{}.afterCreation() for job {}: procdir={},",

getClass().getName(), job, procDir);
}

@Override
public void doStart(BatchJob job) {

logger.debug("{}.doStart() in Thread {} for job {}",
getClass().getName(), Thread.currentThread().getName(), job);

try {
File outFile = new File(getProcDir(job), getProcId(job) + ".html");
String fieldContent = getForm(job).getField(FIELDID);
try (PrintWriter out = new PrintWriter(new FileWriter(outFile))) {

out.println("Output File " + new java.util.Date());
out.println("<html>" + fieldContent);
String url = Admin.getInstance().getServerURL() +

"servlet.method/com.groiss.demo.DemoBatchAdapter.notifyFinish?" +
"bjOid=" + job.getOid();

out.println(new Link(url, "continue...").show() + "</html>");
}
logger.debug("{}.doStart() for job {}: " +

"wrote filed content({}) to outfile={},",
getClass().getName(), job, fieldContent, outFile);

} catch (Exception ex) {
throw new ApplicationException("doStart", ex);

}
}

@Override
public void beforeCompletion(BatchJob job) {

logger.debug("{}.beforeCompletion for job {}:", getClass().getName(), job);
try {

File inFile = new File(getProcDir(job), getProcId(job) + ".in");
try (BufferedReader in = new BufferedReader(new FileReader(inFile))) {

String line = in.readLine();

124

11.6. BATCH PROCESSING

DMSForm f = getForm(job);
f.setField(FIELDID, line);
Store.getInstance().update(f);
logger.debug("{}.beforeCompletion for job {}: " +

"set formfield to :{} from infile={}",
getClass().getName(), job, line, inFile);

}
} catch (Exception ex) {

throw new ApplicationException("beforeCompletion", ex);
}

}

@Override
public void afterCompletion(BatchJob job, boolean commit) {

logger.debug("{}.afterCompletion for job {}:", getClass().getName(), job);
if (commit) {

File procDir = getProcDir(job);
FileUtil.deleteDir(procDir);

}
}

public void notifyFinish(HttpServletRequest req, HttpServletResponse res)
throws Exception {

long bjOid = Long.parseLong(req.getParameter("bjOid"));
BatchJob bj = Store.getInstance().get(BatchJob.class, bjOid);
BatchManager.markJobFinished(bj);
res.getWriter().println("Done");

}

@Override
public void doCompensate(BatchJob job) {/* implements interface */}

}

The startup method creates the batchdemo directory. It is called by the BatchManager the
first time the DemoBatchAdapter is used. We could establish a communications channel
with some external entity here (e.g. a connection to a database or a JMS system).

The afterCreation method creates the appropriate subdirectory for the process. We use
the getContext method of the BatchJob object to retrieve the current ActivityInstance.

The doStart method creates a file (<processid>.html) and writes some process specific data
into it. The "real" start would take place instead of the comment.

The beforeCompletion method checks for the result file (<processid>.in)1 and transfers
the first line of this file into the description field of the form attached to the process.

After successful completion, we delete the files and directories in the afterCompletion
method.

1It is assumed that the file has been created by some external system (or that it was created manually for the
sake of the example).

125

11.6. BATCH PROCESSING

For finishing, we provide the servlet method notifyFinish which expects the oid of the
batch job as parameter bjOid. There is also the <processid>.html file where a link is
provided witch can be clicked to trigger the finish notification.2

The compensation method doCompensate does nothing in this simple example.

This completes the simple example. In the following example, we use retrystart and
pollfinish, together with an extended version of the batch adapter.
The BatchManager timer will periodically check an (externally imposed) condition to
determine if the start of the job has been successful and will also periodically poll to
determine if the jobs has ended.
For the start condition, we will use the existence of a subdirectory with the id of the process
as its name; for the termination condition we will use the existence of an response file in this
very directory.

File wdl/batchproc2.wdl

process batchproc2()
application default;
version 1;

forms f Jobform;
subject f.subj;
begin

<order_start> all order(f);
repeat

order_start:user a_task(f);
batch com.groiss.demo.DemoBatchAdapter2() newthread retrystart pollfinish;

until xpath:"$form_f/finished = 'true'";
end

The adapter class extends the class of the previous example:

File java/com/groiss/demo/DemoBatchAdapter2.java

public class DemoBatchAdapter2 extends DemoBatchAdapter {

private static final Logger logger =
LoggerFactory.getLogger(DemoBatchAdapter2.class);

The afterCreation method does nothing besides logging. In particular, the process instance
specific subdirectory is not created.

@Override
public void afterCreation(BatchJob job) {

logger.debug("{}.afterCreation() for job {}: uncreated procdir={},",
getClass().getName(), job, getProcDir(job));

}

2Please ensure that the "Check Referer header" parameter is turned off for the link and the entire example to
function as intended.

126

11.6. BATCH PROCESSING

The doStart checks for the existence of the process instances specific subdirectory. Since
the retrystart modifier is being used, the batch adpters doStart method will be called
repeatedly until this directory has been created3.
If it exists, the doStart method of the super class is called (see above). If it does not exist,
an exception is thrown. But since we specified retrystart, the batch jobs state is still
CREATED and further start attempts will be made by the timer. After the directory is created
(e.g. manually), the start will be successful.

@Override
public void doStart(BatchJob job) {

File procdir = getProcDir(job);
if (procdir.exists()) {

logger.debug("{}.doStart() for job {} start o.k.",
getClass().getName(), Thread.currentThread().getName(), job);

super.doStart(job);
} else {

throw new ApplicationException(getClass().getName() +
".doStart() dir not found: " + procdir);

}
}

The doPoll method checks for the existence of an *.in file. If it is found, the job is marked
as being FINISHED. If the file is not found, no action takes place (and the polling will be
repeated later on).
Since the pollfinish modifier is being used, no explicit marking of the job is needed
(especially, there is no need to click the link in the <processid>.html file.

@Override
public void doPoll(BatchJob job) {

logger.debug("{}.doPoll() in Thread {} for job {}",
getClass().getName(), Thread.currentThread().getName(), job);

try {
File inFile = new File(getProcDir(job), getProcId(job) + ".in");
if (inFile.exists()) {

logger.debug("{}.doPoll() for job {}: infile({}) found,",
getClass().getName(), job, inFile);

BatchManager.markJobFinished(job);
} else {

logger.debug("{}.doPoll() for job {}: infile({}) not found,",
getClass().getName(), job, inFile);

}
} catch (Exception ex) {

throw new ApplicationException("doPoll", ex);
}

}

3By an external system or manually for the sake of the example

127

11.6. BATCH PROCESSING

11.6.1 Batch jobs and concurrency

Batch job objects may be modified concurrently. This could be the case if a process instance
currently executes a batch job, and the process is being aborted (or reactivated afterwards).
Batch jobs can also be aborted via the process history or from the admin GUI.
The batch mechanism will always get a fresh copy of the batch job from the database after
executing a BatchAdapter.doXX() callback. Therefore, it is not wise to call any setter
methods on (possibly outdated) batch job instances directly, especially without updating
batch job via the store afterwards. We recommend to use the BatchManager.mark* methods,
they take care of this aspect.
If you nevertheless must use the setters because you need fine-granular changes, then adhere
to the following pattern:

@Override
public void doStart(BatchJob job) {

... // may take quite some time
job = BatchManager.getFreshBatchJob(job); // get the current state
job.setResultValues("myresult");
store.update(job); // explicitly update the job

}

The BatchManager.mark* methods always fetch the latest batchJob from the database. This
copy is being changed and returned to the caller. If you need to make any changes to a
BatchJob object after calling one of the BatchManager.mark*, you can and should use this
returned copy. Nevertheless, it is recommended to abstain from modifying a batch job after
calling BatchManager.mark*;

@Override
public void doPoll(BatchJob job) {

... // may take quite some time
job = BatchManager.markJobFinished(job); // note the assignment to the original object
job.setResultValues("myresult");
store.update(job); // explicitly update the job;

}

128

11.7. EVENT MECHANISM

11.7 Event Mechanism

The event mechanism is used for raising and handling events inside the workflow engine. An
event can be raised from the process execution or via API from another program. The event
will be received from all process instances which have registered for the event and the event
handler, specified by the receiver, will be called.
The event is identified by a name and an optional context object. If the raiser specifies such
an object, a handler registration matches only when the same context object is given or
when the handler registered without a context object. The context object itself is either a
com.groiss.store.PersistentObject or a String.

11.7.1 WDL event elements

The following extensions have been made to our process definition language WDL to define
the event mechanism:

registerForEvent =
"registerForEvent" "(" eventname ["," eventhandler ["," context]] ")".

unregister =
"unregister" "(" eventname ")".

sync =
"sync" "(" eventname ["," eventhandler ["," context]]")".

raiseEvent =
"raiseEvent" "(" eventname "," "current_tx" ["," context] ")".

context =
"parent" | "processInstance" | "mainProcess" | formid ["." fieldname].

registerForEvent register to receive events with the given name (first parameter). The sec-
ond parameter is the name of an eventhandler (a Java class implementing the interface
com.groiss.event.IEventHandler or extending com.groiss.event.EventHandler).
The optional third parameter designates a context object (see below).

unregister Removes the registration of all events with this name from nodes below the
parent of the current node.

sync waits for receiving an event. The parameters have the same meaning as in registerForEvent.

raiseEvent The first argument is the name of the event. The next argument must be
current_tx at the moment. The third argument defines the context object.

context There are several different types of context:4

4The traditional keyword process is deprecated. It has the same (unchanged) semantics as the new parent
keyword, but the naming gave the wrong impression that it always is a process instance.

129

11.7. EVENT MECHANISM

parent : the context is the oid of the immediate parent of the current activity instance
(can be a process instance or a parfor node)

processInstance : the oid of the innermost (sub-)process instance reachable from the
current activity instance

mainProcess : the oid of the top level process instance for the current activity instance

formid : the form object with id formid reachable from the current activity instance

formid.fieldname : the object from field fieldname of the form with id formid
reachable from the current activity instance

11.7.2 The Event API

All operations (except sync) defined in WDL can be performed from the API. The interface
Event defines the methods an event must have:

public interface Event {
public String getName();
public ActivityInstance getRaiser();
public Object getContext();
public Object getField(String name);
public Date getRaiseDate();
public void afterDispatch();
public void onNotDispatched();
public int getTxType();
public boolean isAbort();

}

The implementation com.groiss.event.BasicEvent can be used as implementation (and
is used for events raised from the WDL statements above).
The com.groiss.event.EventHandler is a class containing the following methods:

public boolean handle(Event e, ProcessInstance handlerProc, EventRegistry reg)
public boolean onRegister()
public void onUnRegister(EventRegistry reg)

Before the event handler is actually registered, the method onRegister is called. If
onRegister returns false, there will be no registration and the calling activity instance
(sync or registerEvent) will be be finished immediately.
When the registration matches a raised event the handle method is called. And unRegister
is called when the eventhandler is unregistered. You will make subclasses of this class for
doing some actions in the handle method. The com.groiss.event.EventHandler class
itself writes a log file entry when handle is called and does nothing in onRegister.

The utility class com.groiss.event.EventManager is used to raise events and to register
and unregister for events:

public class EventManager {
public static void raiseEvent(Event e);
public static long register(String name, Class eh, Object context);
public static void unregister(long oid);
public static void unregister(String name, ProcessInstance registrant);

130

11.7. EVENT MECHANISM

public static void unregisterAll(ProcessInstance registrant);
}

Events are submitted using raiseEvent. With register you can register an event handler,
the method returns the oid for the registration. Use this oid for the method unregister.
Alternatively, there is a unregister method for deleting registrations for a given event name
and process instance.
unregisterAll removes all registrations made by a process instance.

11.7.3 Event Processing

The WDL statement registerForEvent or the API call EventManager.register writes the
event name, event handler, the registrant, and the context object into the registration table.
When raiseEvent is called, all "matching" event handlers are executed (in undefined order).
For each event handler a new instance is created and the handle method is called. Matching
is defined as: same event name, and when a context object has been defined on register,
the context object of the event must be the same (means equal for String, same oid for
com.groiss.store.PersistentObject). The following table subsumes this behavior (Y
means handler is fired, N means handler is not fired, = means firing depends on object or
string equality).

register
null object string

null Y N N
raise object Y = N

string Y N =

The handling of raised events is performed synchronous in the same thread as the raising.
The event raiser does not know how many handlers have been invoked. If the handling of an
event throws an (uncatched) exception, the transaction is rolled back.
In log level "debug" or higher raising and handling of events is logged.
After an event for a sync is executed, the sync-step is finished if the handle method returns
true.
If unregister is not called explicitly, the handlers are removed at the end of the process
(the outermost main process in case of subprocesses).
Example:

process p1
forms f Jobform;

begin
all task1(f);
registerForEvent("personChange", PersonEventHandler, f.agent);
...

end;

process p2
forms f Person;

131

11.8. EXAMPLES

begin
all changeData(f);
raiseEvent("personChange", current_tx, f.pers);
...

end;

It an instance of process p1, we call it pi1, reaches the line registerForEvent, the following
record is added to the event registry:

client eventname context eventclass
pi1 personChange hugo PersonEventHandler

Process instance pi1 waits for personChange events, which apply to the object "hugo" ("hugo"
is the value of f.agent). When an instance of process p2 - pi2 - reaches the line raiseEvent
and f.pers has the value "hugo", then an event is raised with the following properties:

getName: personChange
getRaiser: pi2
getContext: hugo

The event manager looks in the registry after matching registrations and finds the above
entry, because event name and context object matches. An instance of PersonEventHandler
is created and the handle method is called with the events and process instance pi2 as
arguments.

11.7.4 Cluster

Event handlers are executed on the node where the event has been raised.

11.7.5 Administration

In the administration you can view the list of registrations and you can add and remove
registrations.
Processes waiting in a sync can be finished manually from the process history.

11.8 Examples

11.8.1 Start a Process

The first example in this section starts a process using the API. This is an often needed task:
Either you have to start processes from a program or want to fill the forms with initial values.
In this example the process jobproc is started and the form of the process is initialized.
The start form is static and resides in the serverarea directory:

File classes/alllangs/demo/StartJob.html

<!DOCTYPE html>
<html>
<head>

<script src="../scripts/dojo/dojo.js"

132

11.8. EXAMPLES

data-dojo-config="parseOnLoad: true"></script>
<link href="../servlet.method/com.groiss.gui.css.StyleConf.loadCSS"

rel="stylesheet" type="text/css"></link>
<title>StartJob</title>

<script>
require(["ep/widget/DateField", "ep/widget/ObjectSelect"]);
</script>
</head>
<body class="claro" >
Start invoice processing:

<p/>
<form action="../servlet.method/com.groiss.demo.StartJob.start">
<table>

<tr>
<td>@@@invoice_number@@:</td>

<td><input name="num" type="text"></td>
</tr>
<tr>

<td>@@@supplier@@:</td>
<td><input name="supplier" data-dojo-type="ep/widget/ObjectSelect"

classname="com.dec.avw.appl.demo_supplier_1">
</td>

</tr>
<tr>

<td>@@@order@@</td>
<td><input name="srmorder" data-dojo-type="ep/widget/ObjectSelect"

searchid="demo.OrderSelect">
</td>

</tr>
<tr>

<td>@@@ep:comment@@:</td>
<td><textarea name="comment"></textarea></td>

</tr>
<tr>

<td>@@@ep:duedate@@:</td>
<td><input name="duedate" showTime="false"

data-dojo-type="ep.widget.DateField"/>
</td>

</tr>
</table>
<input type="submit" value="Start Process" class="ep_button"></form>
</body>
</html>

The method start in the class StartJob:

File com/groiss/demo/StartJob.java

public class StartJob {

public Page start(HttpServletRequest req) {
// get parameters

133

11.8. EXAMPLES

String num = req.getParameter("num");
Persistent supplier = HTMLUtils.getObject(req, "supplier");
Persistent order = HTMLUtils.getObject(req, "srmorder");
String comment = req.getParameter("comment");
String duedatestr = req.getParameter("duedate");
Date duedate = com.groiss.cal.CalUtil.parseDate(duedatestr);

User user = ThreadContext.getThreadPrincipal();
WfEngine e = WfEngine.getInstance();
OrgData od = OrgData.getInstance();
OrgUnit dept = od.getHomeOrg(user);

ProcessDefinition pd = e.getProcessDefinition(
"demo_incoming_invoice_processing");

if (!e.getStartableProcDefs(null).stream()
.map(p -> p.first).toList().contains(pd)) {

throw new ApplicationException(
"The user is not allowed to start this process.");

}
ProcessInstance pi = e.startProcess(pd, user, dept, duedate, null);

DMSForm form = e.getForm(pi, "invoice");
form.setField("num", num);
form.setField("supplier", supplier);
form.setField("srmorder", order);
form.setField("comments", comment);
form.setField("duedate", duedate);
e.updateForm(form);

/* variant 1: just write a text.
HTMLPage p = new HTMLPage();
p.setPage("<html><body>Process " + pi.getId() + " started.</body></html>");
return p; */

/* variant 2: refresh the worklist and optionally show the details. */
boolean showDetails = Configuration.get().getBoolean("avw.start.with.form");
JSONObject result = ClientUtil.getChangesAsJSON("demo.wl", true);
return new ActionPage("parent.require(['ep/Utils','dojo/topic'],

function(Utils,topic) {" +
"Utils.refreshWorklists(" + result + ",

true," + showDetails + ",true);});");

/* variant 3: send it to another agent, worklist has not changed, just bring it to foreground.
ActivityInstance ai = e.getActiveTasks(pi).get(0);
e.changeAgent(ai, OrgData.getInstance().getById(User.class, "hugo"), null, null);
return new ActionPage("parent.require(['ep/Utils'], function(Utils) {" +

"Utils.showWorklist('demo.wl');});");
*/

}
}

134

11.8. EXAMPLES

11.8.2 Find running Processes

The following example, a simple process instance monitor, shows the work items assigned to
a selected user.
A dynamically created form lets you select a user, on submit the list of work items belonging
to this user is shown.

135

11.8. EXAMPLES

public class Monitor {

/** Show a select list of users.
*/
public Page showMask(HttpServletRequest req) {

HTMLPage result = new HTMLPage();
List<User> l = Store.getInstance().list(

User.class, "\"ACTIVE\"=1", "surname");
result.setPage("<form action=" + "'com.groiss.demo.Monitor.showList'>Benutzer:" +

new SelectList("user", l, 10).show() +
"
<input type=submit>" +
"</form>");

return result;
}

/** Show the worklist of a selected user.
*/
public Page showList(HttpServletRequest req) {

HTMLPage result = new HTMLPage();
long user = Long.parseLong(req.getParameter("user"));
StringBuilder p = new StringBuilder("<html>");
WfEngine e = WfEngine.getInstance();
ThreadContext.setThreadPrincipal(
(User)Store.getInstance().get(User.class, user));

List <ActivityInstance> l = e.getWorklist(null, false);
for (ActivityInstance ai:l) {

p.append(ai.getProcessInstance().getId() +", " + ai.getStarted() +
", " + ai.getProcessDefinition().getId() + "
");

}
result.setPage(p.toString());
return result;

}
}

136

12 Configuring the Worklist Client

12.1 Introduction

The appearance of the Worklist Client of @enterprise is fully configurable. Use the GUI
Configuration editor described in System Administration manual. Different clients can be
built by defining configuration files 1.
The next sections describe the syntax of such configuration files and then the implementation
of a worklist class is presented.

12.2 The Elements of the Configuration File

The configuration file contains the structure of the navigation tree. The tree consists of nodes
of different types. Depending on the type, different attributes or child nodes are available.
The standard configuration file resides in the file ep-impl-<versionnr>.jar in
classes/standard.xml

Hint: Do not change, manipulate or shadow the file standard.xml!

More often you want to create application or user group specific clients. In such a case
you define your own configuration file and put it into the classpath. For this purpose the
Configuration Editor in the @enterprise Administration is recommended to use. The URL
for a client based on such a configuration file is:

http://<host>:<port>/<context-root>/servlet.method/
com.groiss.smartclient.Main.showMainPage?id=<gui_id>

<gui_id> stands for the name of the configuration file, (without the ".xml" suffix).
The configuration is described in XML format, the XSD (XML Schema Definition) is in the
file guiconfig.xsd in the conf directory of the file ep-impl-<versionnr>.jar.
The structure of the navigation tree is:

<?xml version="1.0" encoding="UTF-8"?>
<config version="2.0">

<userProfile>

1The configuration files are read from the classpath. Due to preprocessing and caching, changes in such a file
are not effective immediately. A configuration is reread from the file if the main URL has the suffix &reload.

137

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

...
</userProfile>
<standardActions>
...

</standardActions>
<tree>

...
</tree>
<nodes>
....

</nodes>
</config>

The root element config contains the whole tree configuration in the element tree (no other
child elements of config is applicable for the HTML client). The elements userProfile
and standardActions are also needed, but it is possible to change the actions inside these
elements. The tree can contain a various number of elements.

When a user logs in, the navigation tree is built using the following rules: For the structure
of nodes in the tree a corresponding tree of HTML labels and links is built.
The tree is then composed of node elements (e.g. type node, worklist, dms, etc.). Before
we look at the possible types of nodes we present the possibilities to customize the main
tree. The table 12.1 gives you an overview about the most important attributes and in which
context they can be used.

138

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

la
be

l

no
de

w
or

kl
is

t

st
ru

ct
ur

ed
W

or
kl

is
t

dm
s

ta
bl

e

pr
oc

es
sS

ta
rt

fu
nc

tio
nL

is
t

fu
nc

tio
n

re
po

rt

qu
er

y

ac
tio

n

ob
je

ct
E

xt
en

si
on

target x x Target window of link or action
href x x URl of link or action
onClick x x Javascript subclass of _Action. In new GUI, if

this is present, href and target is ignored.
widget x x Javascript subclass of widget. In new GUI this

defines the appearance and function of the ac-
tion or node. Either onClick or widget is speci-
fied.

columns x x x x List of table columns, contains column elements
columnPicker x x x x TRUE, if picker should be displayed
actions x x x x List of action elements
toolbarShape x x x x Either ICON, TEXT or BOTH
selection x x x x Possible selections: HIDDEN (NONE), ONE,

MULTI, ROWONE, ROWMULTI
useFilter x x x x Show filter menu.
paging x x x x Show paged table: only TableRenderer tables
pageSize x x x x Size of page in paged mode
defaultSortColumn x x x Initial sort, syntax: ("+" | "-") <colid>
type x x Worklist type: USER, ROLE, SUSP, ROLE-

SUSP, SUBST_USER, ROLE_NO_SUBST,
SUSP_NO_SUBST, ROLESUSP_NO_SUBST,
SUSP_ONLY_SUBST, AUGMENTED, NONE

tablehandler x x x Table adapter for worklist, DMS or form table
formhandler x Form event handler for form tables
classname x x x Name of Java class
editTargetProps x x Properties of the detail window suitable for

Javascript method window.open()
detail x URl for the toolbar actions
model x Model class implementing TableAdapter
applications x x List of applications
targetId x x x Id of process, function or report
mode x Mode for process start: DUEDATE, FORM,

DIRECT, ALL (= default)
orgUnit x Id of organizational unit for process start in

mode DIRECT
worklistId x Id of worklist to show after process start (only

old gui)
searchAttrs x List of attributes for search
condition x x SQL condition string which can contain place-

holders (?)
allowModifications x x Allows insert, update, delete using JSON-

Loader.
types x x Types for placeholders in condition string
allowFormTypes x List of formtypes allowed in the DMS
defaultAction x x x Double-click action
application x x Application restriction for worklist
attribs x List of shown attributes
form x If the extension class is not a form (i.e. a Persis-

tent), a form (html mask) can be specified for
displaying the data

attachedTo x Object class where this object is attached
apply x Apply to NONE, ONE, MULTI objects
params x x x Additional parameter added to the URl, not used

in @enterprise itself
filterId x x Reference to an id of a worklist for sharing fil-

ters
links x x x Parameter compatibility / tabs / tabsWithout-

Forms, only in old GUI
printable x x x x Print function for table
helpContext x x x x Context sensitive help
fetchAttrs x x Allow to (pre-)fetch dependent objects from the

database by efficient operations

Table 12.1: Overview about most important GUI configuration attributes139

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

12.2.1 Own layout of main page in smartclient

With element layoutWidget it is possible to define a (template) widget (ideally a di-
jit/layout/xx widget - e.g. BorderContainer). This element is placed within the <tree>
element, e.g.:

<?xml version="1.0" encoding="UTF-8"?>
<config version="2.0">

<userProfile>
<widget>ep/widget/smartclient/UserProfile</widget>
<action id="setContext" />
<action id="admin" />
<action id="roles"></action>
<action id="substitutions"></action>
<action id="organization"></action>
<action id="useMobileGui"></action>
<action id="settings"></action>
<action id="changePassword"></action>
<action id="aboutInfo"></action>
<action id="logout" />

</userProfile>
<standardActions>

<action id="help" />
</standardActions>
<tree>
<layoutWidget>ep/widget/smartclient/demo/MainLayoutContainer</layoutWidget>
<navigationType>COLLAPSIBLE</navigationType>
<title>{counter} {config} - {context}</title>
<collapsed>false</collapsed>
<label id="tasks">

....
</label>

</tree>
</config>

12.2.2 Tree Nodes

The tree is described using nested node elements. A Node can have the following common
elements:

id: An id which identifies the element.

ref: With this attribute it is possible to define a reference to another node in another XML
file, e.g.

<node id="mycalendar" ref="standard.calendar">
<name>My calendar</name>

</node>

In the example above all attributes are merged from node calendar of standard gui
configuration (= standard.xml) into current node mycalendar. Only the attribute name
should not be taken from standard.xml. This results in following (internal) structure:

140

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

<node id="mycalendar" ref="standard.calendar">
<name>My calendar</name>
<!--resolved: ref="standard.calendar"-->
<widget>ep/calendar#ep/widget/smartclient/calendar/CalendarPane</widget>
<helpContext>user/calendar</helpContext>

</node>

Non-node elements missing in the referencing node are always copied. Node elements
are copied only, if withChildren="true".

withChildren: In addition to the ref attribute the attribute withChildren="true" can be
used to refer to whole subtrees and not only single (pruned) nodes, e.g.

<label id="mysearch" ref="standard.search" withChildren="true"/>

name: This name is visible in the tree. Within <name> the definition of e.g. images or
Java Scripts are possible (see example Function (<function>)).

default: If this element is present and its value is true, the node is the default node. The
page represented by this node will be shown when the user navigates to this client the
first time.

rightsMayExecute: Visibility of this node is restricted to users having one of the rights in
the list (comma separated list of id’s)

rolesMayExecute: Visibility of the node is restricted to users having one of the roles in
the list (comma separated list of id’s). Restrictions to roles within org-units are also
possible with following syntax: [deptid "!"] roleid

The attributes rightsMayExecute and rolesMayExecute are just for controling the
visibility in the tree. There is no checking or granting of permissions involved. The
called functions must apply their own permission checks.

Please note that for the node to be visible when both rightsMayExecute and
rolesMayExecute are specified, the current user must at least be granted one of the
rights and be assigned to one of the roles.

collapsible: Defines, if the tree is collapsible or not (true/false).

default: One of the links in the tree can be the default-Link. This page is then loaded
initially (after login). The value is TRUE or FALSE.

widget: A widget can be defined here which is used by smartclient. An example for such a
widget are the DMS-Tree in Navigation, the calendar pane, etc.

reloadOnShow: This boolean parameter should be used for tabs only which are reloaded
on each click. A meaningful example is an additional process instance tab which
should be reloaded every time via servlet request. Example configuration:

<action id="linkedItems"> <!-- itsm linked items-node -->
<href>com.groiss.itsm.ITSMFunctions.showLinkedItemsTab</href>
<name>Incidents / Changes</name>
<reloadOnShow>true</reloadOnShow>

</action>

In the following sections the available node types are described.

141

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

Label (<label>)

Defines a simple label, e.g.

<label id="mylabel">
<name>Simple Text</name>

</label>

Node (<node>)

Defines a hyperlink; href defines the link (opens a page in an iframe) or it is possible to
define an onClick action (defining a widget for example). With element target the target
of the link can be defined (value right is the default).

Examples:

<node>
<name>Current Date</name>
<href>../servlet.method/com.groiss.demo.HttpDemo.showDate</href>

</node>

<node>
<name>@@@ep:stored_queries@@</name>
<onClick>ep/widget/smartclient/reporting/actions/ShowStoredQueries</onClick>

</node>

Worklist (<worklist>)

The node element worklist defines the class implementing the interface
com.groiss.wf.html.Worklist and represents a link to the worklist.

With the element application you can restrict the worklist items to a given application.
If this element is not present and the worklist node is not inside an application node, the
worklist for all applications is retrieved.

The element tableHandler defines the class implementing the interface
com.groiss.wf.html.Worklist. We recommend to implement this interface.

The type of the worklist (user worklist, role worklist, etc.) is specified within the element
type, table 12.2 shows the possible values. You may specify almost any combinations of
these types. The id attribute is used to refer to this worklist description from the API.

A special type is AUGMENTED which is for situations when the WorklistHandlers do
not just filter/restrict the precalculated worklists but also augment the lists with additional
tasks. Worklist adapter classes must fill the list for themselves in the case of full worklist
construction (initial worklist fetch and complete refresh). In the case of delta computation
(partial worklist building for notifications) the list contains all changes (even irrelevant ones)
and must be filtered appropriately.
To differentiate between the cases, the com.groiss.wf.html.WorklistDescription pa-
rameter (which is part of the init call) provides the method isDelta which returns true

142

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

in case of partial worklist building and false otherwise. For notifications to work in such
a scenario, the property ep.notification.sendto.augmented.worklists must also be checked
under @enterprise Administration/Configuration/Other parameters.

In the case of partial worklist building for augmented worklists, WorklistHandler.getList
will be called with a list of ActivityInstances which contains

• items that origin from the unaugmented part of the worklist and therefore should be
kept in the result and

• items that origin from the augmented part of the worklist. According to the intended
semantics of the augmentation, such items might or might not be relevant for the
worklist. It is the responsibility of the getList() implementation to remove irrelevant
augmented items from the result.

To differentiate between the two cases, WorklistDescription.isAugmentedItem can be
used.
Another special type is NONE. Worklists of this type are not part of the active notification
mechanism on the client. They will refresh when they are opened, or when an explicit refresh
action is triggered in the client. Worklist.getList will always be called with an empty list,
the Worklist implementation must calculate the list itself and return it. The worklisttype
NONE should not be combined with other types (then it would have no effect).

It is also possible to define a defaultAction which is executed when a table entry is double-
clicked. Especially for worklists the action showWlDetails can be defined to display the
detail tabs of an entry.

With element showInlineDetailsAt it is possible to define where the detail view of an
worklist entry should be displayed. With value row the details can be shown in worklist
table directly (an own area appears beneath the selected row). Alternatively a column can be
defined as value in following way: column:<colid> whereby <colid> is the id of the column
defined in XML (see section with columns beneath).

The element dndHandle allows to configure the drag & drop (DnD) behavior of a worklist.
The value off means that no DnD is possible for this worklist. The value handle allows DnD
in principle, but only a small area on the left side of a worklist entry can be used for DnD
actions. The value row is the default behavior and allows DnD for a worklist entry as known.
If text selection in worklist rows is needed, only the modes handle and off can be used.

The element actions defines the applicable functions from the table 12.3. Actions can be
combined like in the example below (actions finish and finishAndSelect). Additional actions
can be defined in block <nodes> described in section Non tree nodes (<nodes>) which are
accessed by using <xmlid>.<action_id>.
Furthermore, the following elements are available for customizing worklists:

• columns: a set of <column> elements can be defined with following attributes
(example see below):

143

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

USER the personal worklist: agent is the user
ROLE the role worklist plus the role worklists of the substituted

users
SUSP the suspension list of the user plus the suspension list of the

substituted users
ROLESUSP the suspended item where the agent is a role the user has or

substitutes
SUBST_USER the personal worklists of the substituted users
ROLE_NO_SUBST like ROLE without the substitutions
SUSP_NO_SUBST like SUSP without the substitutions
ROLESUSP_NO_SUBST like ROLESUSP without the substitutions
SUSP_ONLY_SUBST suspension list of the substituted users only
AUGMENTED for situations when the WorklistHandlers do not just fil-

ter/restrict the precalculated worklists but also augment the
lists with additional tasks

NONE WorklistHandler must calculate the list. No active notifica-
tion on the client.

Table 12.2: Worklist Types

Id Description
finish complete one or more tasks
untake put item back into role worklist
finishAndSelect finish and select next agent
finishAndComment finish and comment for next agent (+ select next agent)
goBack go back to one of previous steps
seeLater put work item into suspension list
makeVersion make a version of the process instance
take take an item from the role worklist
recall recall an item from the suspension list
recallAndTake take an item form the role suspension list
setAgent set a new agent
newFolder new userfolder
editFolder edit userfolder
cut cut selected item and put it into clipboard
insert insert item from clipboard
adHoc adhoc-functionality for worklist
loadDoc load a DMS object and attach it to process instance
taskfunction:functionid functionid is the id of a task-function
space separator

Table 12.3: Actions

– id: from table 12.4 or self defined id, the worklist implementation must provide
the value.

144

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

Id Description
role role the work-item belongs to
order manual order for the worklist content by using

drag & drop; this column cannot be used for
worklist type AUGMENTED

id process id
orgUnit department name
pd process name
task task name
subject process subject
documents links to the forms and documents
functions link to the functions (icon)
started when the work item has been created
received when the work item has been received
dueDate the due date of the task
processDuedate the due date of the main process
finished in the suspension list till ...
currentEditor the current editor (only displayed, if AUTO-TAKE)
priority priority of the process instance
origin symbolizes, if user sees the instance via substitution or not
application the application where the process belongs to
lastAction the last action of the task (name: triggering_action)
hasSeen column for displaying seen/unseen entries (name: has_seen)

Table 12.4: Columns of Worklist

– name: the name of the column

– formFields: the definition of a form field could be done with following syntax:
process-definition-id ":" process-version ":" form-path
{ ";" process-definition-id ":" process-version ":" form-path }

Where the following variants of form-path are allowed:

* form-id ":" field-id1 :
display the value of the field field-id1 of the form

* form-id ":" field-id1 ":" field-id2 :
display the value of field field-id2 of the field field-id1 of the form

* form-id ":" subform-number ":" field-id1 :
display a comma separated list of values of field field-id1 of the subforms
with number subform-number of the form

* form-id ":" subform-number ":" field-id1 ":" field-id2 :
display a comma separated list of values of field field-id2 of field field-id1
of the subforms with number subform-number of the form

This syntax defines for every process instance which form field is shown. Please
note that the definition of only one form-path per process definition/version is
allowed, i.e.:

145

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

myproc:1:myf:field1;myproc:1:myf:field2 is not possible, because field1
and field2 are read from the same process definition/version.
myproc:1:myf:field1;mypproc2:1:myf:field2 is possible, because field1
and field2 are read from different process definitions/versions.

If the worklist contains an instance of a process not listed in the field specification
the column will remain empty.

– visible: if set to true, the column is displayed automatically without using the
columnpicker.

– rowSpan: a positive integer could be defined for rowspan (analog to HTML)

– colSpan: a positive integer could be defined for colspan (analog to HTML)

– unhideable: defines, if column could be hidden via column picker

– localizeValue: translates value (depending on resource bundle), if set to true

– icon: path to an icon; it is displayed instead of the name

– jsClass: enter a path to a widget which handles this column (see e.g. in demo.xml
ep/widget/smartclient/wl/columns/CombinedSubject)

– filterable: if true, the column can be used for filter mechanism

– type: defines the type of a column; possible values are: string, date, dateTime,
UTCdate, UTCdateTime, number (for numbers without comma) or decimal
(for numbers with comma + appropriate representation according to decimal
formatter configuration).

– sortable: if true, column is sortable

– shortcut: an arbitrary shortcut can be defined here by entering the appropriate
keys. A list of keys is listed on
http://dojotoolkit.org/reference-guide/1.10/dojo/keys.html.

Example: CTRL+SHIFT+W
If these keys are pressed at once, this worklist-node will be displayed.

• defaultSortColumn: This parameter allows to define a column which is sorted by
default. If a user is changing the order in table, the new order is stored in the user
properties table (and read from there). The element defaultSortColumn must contain
the sort direction (+ or -) and the column-id as value (see example below). The sort
direction + defines ascending order, descending order is -. If one attribute is missing,
the first (or given) column will be sorted (by default in ascending order).

• defaultGroupColumn: This parameter allows to define a column which is taken as
default group-by-column. If a user is changing the group-by-column in table, the
new setting is stored in the user properties table (and read from there). The element
defaultGroupColumn must contain the column-id as value and optional the descending
sort direction (see example below). The sort direction - defines descending order, the
column-id without sort-direction defines ascending order.

• selection: the selection mode of worklist-entries can be modified.

146

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

– NONE or HIDDEN: no selection possible in worklist (NONE works in smart-
client only!)

– ONE: checkboxes will be displayed, but only one checkbox simultaneously can
be selected

– MULTI: checkboxes will be displayed

– ROWONE: one row can selected only

– ROWMULTI: multiple rows can be selected

• toolbarShape: This parameter allows to set the representation of toolbar functions
in following ways:

– ICON: Function representation as icon

– TEXT: Function representation as text

– BOTH: Function representation as text and icon (only in smartclient usable)

• folderActions: Allows the definition of actions which are displayed in a dropdown
menu beside the worklist node. A well-known example is the creation/adaption of user
folders of a worklist (action-id: newUserFolder, deleteUserFolder, editUserFolder,
etc.). The definition of folderActions is equal to the element actions (the Example of a
worklist node shows how folderActions can be defined). The action inheritTableSet-
tings allows to inherit table settings (sorting/grouping/column hiding/column widths)
to subfolders.

• params: It is possible to add additional parameters to worklist requests, e.g. x=1&y=2

• filterId: Reference to an id of a worklist for sharing filters.

• printable: If this element is set to true, in GUI a printer icon is displayed and allows
to print the displayed worklist (only in smartclient!).

With following attributes it possible to increase the performance of the worklist table:

• <avoidDocsAndNotes>true</avoidDocsAndNotes> avoids selection of documents and
notes; should only be set if neither documents nor notes are needed in the application!

• <avoidUserFolderFilter>true</avoidUserFolderFilter> avoids filtering by userfolder
contents; should only be set if user folders are not used in the application!

Example of a worklist node:

<worklist id="myworklist">
<name>@@@ep:worklist@@</name>
<type>USER</type>
<application>default</application>
<printable>true</printable>
<dndHandle>handle</dndHandle>
<actions>
<action id="finish">
<action id="finishAndSelect" />

147

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

</action>
<action id="goBack" />

</actions>
<folderActions>

<action id="newUserFolder" />
</<folderActions>
<columns>

<column filterable="false" visible="true" sortable="true" name="#"
groupable="true" id="order" jsClass="ep/widget/smartclient/wl/columns/Order"/>
<column colSpan="1" sortable="true" name="@@@ep:id@@" groupable="true" id="id"/>
<column filterable="true" visible="true" unhideable="true" name="@@@ep:subject@@"
groupable="true" id="subject" />
<column name="@@@ep:origin_path@@" groupable="true" id="origin"/>
<column type="dateTime" name="@@@ep:finish_till@@" groupable="true" id="dueDate"/>
<column id="process" name="@@@ep:process@@" visible="true" />
<column id="task" name="@@@ep:task@@" visible="true" colSpan="2" />

</columns>
<defaultSortColumn>-id</defaultSortColumn>
<defaultGroupColumn>dueDate</defaultGroupColumn>

</worklist>

This node describes a link to the user worklist (type=USER) with 5 columns defined in 2
rows, four of them are visible, the other can be selected using the column selection menu
on the right edge of the table header. The column with name id is sorted by default in
descending order.

Structured worklist (<structuredWorklist>)

The structured worklist is a special kind of worklist and allows to structure it. This could
be necessary, if a user folder or a worklist with substitutions should be used. Structured
worklists must contain an id and supports following types (<type>): USER for user folder
and SUBST_USER for substitutions. For SUBST_USER also the element structure is
needed with following values:

• perFolder: Only the/all user folder trees of substituted persons are displayed without
top level folder (= worklist). For each person a user folder tree is displayed.

• perUserAndFolder: For each substituted user a tree with its worklist items (worklist
and user folder) is displayed.

• perUser: Only the worklists of substituted users are displayed without user folder
items (for each person a worklist node is displayed).

In standard.xml the attribute filterId with value wl means, that all stored filters are inher-
ited from the standard-worklist depending on attribute id in worklist description node.

Hint: In structured worklists it is also possible to define the tuning attributes avoidDocsAndNotes
and avoidUserFolderFilter which are described in worklist section!

148

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

Start process (<processStart>)

Defines a link for starting processes. Following modes are available, the mode is specified
via the element mode:

DUEDATE: On click on the link a form is shown where the due date and the start department
can be entered.

DIRECT: On click on the link the process is started immediately.

FORM: On click on the link the process form is shown before process is started. This option is
usable in smartclient only! The button label for starting the process can be configured
by adding the following element: <params>buttonlabel=Name of button</params>

ALL: The list of startable processes of the application is shown.

The Attribute targetId denotes the id of the process (only for mode DUEDATE, DIRECT
and FORM). The system uses the active process with this id and the highest version number.
With attribute orgUnit (only for DIRECT and FORM) you can define, in which organiza-
tional unit the defined process (targetId) should be started. In mode ALL (default-mode) the
element applications can contain a list of application ids.

Example:

<processStart id="myprocstart">
<name>Start</name>
<applications>default,myappl</applications>
<worklistId>standard.wl</worklistId>

</processStart>

Function (<function>)

Shows a link to a global task function, parameters can be specified.
Example: A link to the function note_global will appear for all users with the role r1. The
function will be called with the arguments x = 1 and y = 2. Left of the function name the
specified icon is shown.

<function id="myfunction">
<name>My function</name>
<targetId>note_global</targetId>
<rolesMayExecute>r1</rolesMayExecute>
<params>x=1&y=2</params>

</function>

Function list (<functionList>)

Shows a link to all global task functions of an application.
The attribute applications can contain a list of application ids.

<functionList id="myfunctions">
<name>My functions</name>
<applications>default,itsm,crm</applications>

</functionList>

149

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

Report (<report>)

A node can be configured to link to a stored query.

<report id="id_22">
<name>My report</name>
<targetId>bsp_03</targetId>

</report>

The node report contains the element targetId of the report (see Reporting manual).

DMS (<dms>)

Shows the DMS of @enterprise. Following additional attributes can be defined:

• actions: Analog to node type worklist description.
Examples:

– createVersion: A version of the currently selected DMS object can be created by
activating this function in toolbar.

– taskfunction:<function_id>: The function with the specified id is displayed in
toolbar.

• columns: Analog to node type worklist description.

• allowFormTypes: This attribute can contain a list of forms, which are allowed or
denied depending on attribute allow. This attribute can contain the values true/false
whereby false means that the entered form types are not allowed. All other form types
of @enterprise can be used.

More common table attributes can be found in section Table.

Example:

<dms id="mydms">
<name>DMS folder</name>
<actions>
<action id="new" />
<action id="delete" />
<action id="space" />
<action id="cut" />
<action id="copy" />
<action id="link" />
<action id="paste" />
<action id="space" />
<action id="replace" />
<action id="sendTo" />
<action id="startProcess" />
<action id="space" />
<action id="changeType" />
<action id="createVersion" />
<action id="attachNote" />

150

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

<action id="signDoc" />
<action id="download" />
<action id="space" />
<action id="folderProps" />
<action id="clipboard" />

</actions>
<columns>
<column id="name" name="@@@ep:name@@"

visible="true" icon="" />
<column id="form" name="@@@ep:additional_data@@"

visible="true" icon="images/form.gif" />
<column id="type" name="@@@ep:docType@@"
visible="true" icon="" />

<column id="size" name="@@@ep:docSize@@"
visible="true" icon="" />

<column id="changed" name="@@@ep:changed_at@@"
visible="true" icon="" />

<column id="status" name="@@@ep:locked_by@@"
visible="false" icon="" />

<column id="info" name="@@@ep:properties@@"
visible="false" icon="images/info.gif" />

<column id="versions" name="@@@ep:versions@@"
visible="false" icon="images/version.gif" />

<column id="attachedNotes" name="@@@ep:notes@@"
visible="false" icon="images/dms/attachednotes.gif" />

<allowFormTypes allow="false">f_mainform(1)</allowFormTypes>
</dms>

Table (<table>)

A table can be created whereas the table should be a form table, but can be a persistent table.
Following most needed attributes are:

• classname: The classname of the object (a com.groiss.store.Persistent).

• tableHandler: The tablehandler to manipulate the table (see section The Form Table
Handler).

• model: Here you can define the table model (default: com.groiss.storegui.FormTable).

• condition: Possibility to enter a SQL condition for restricting table result. The
parameters are represented by question marks (?).

• allowModifications: If true, insert,update and delete using
com.groiss.smartclient.JSONLoader is allowed.

• types: Allows to define the datatypes of the given parameters defined in the condition.
For each parameter in condition a type is needed (comma-separated list). Possible
values are:

– Persistent

– Date

151

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

– Long

– Double

– Integer

– String

– OIDList

A parameter with type OIDList has to be a nested JSON array (double square brackets
are needed!), e.g. [[oid1,oid2,oid3]]. The condition has only one question mark (e.g:
"oid not in (?)").

• columns: Analog to node type worklist description.

• actions: Analog to node type worklist description. A special action for (form)
tables is formExportToExcel which allows to export the displayed table as XLSX-file
(Microsoft Excel).

• editTargetProps: The window properties can set here by adding several parameters
separated by semicolon. The syntax is the same as using the JavaScript method
window.open().

• columnPicker: If set to true, the column picker is displayed.

• useFilter: If set to true, the filter mechanism of @enterprise for tables is provided.

• paging: If set to true, the paging mechanism of @enterprise for tables is used (for v1
tables only!).

• pagesize: Individual paging size for this table. If not set, the user parameter is used
and as default the configuration parameter (for v1 tables only!).

• defaultSortColumn: This parameter allows to define a column which is sorted by
default. If a user is changing the order in table, the new order is stored in the user
properties table (and read from there). The element defaultSortColumn must contain
the sort direction (+ or -) and the column-id as value. The sort direction + defines
ascending order, descending order is -. If one attribute is missing, the first (or given)
column will be sorted (by default in ascending order).

• defaultGroupColumn: This parameter allows to define a column which is taken as
default group-by-column. If a user is changing the group-by-column in table, the
new setting is stored in the user properties table (and read from there). The element
defaultGroupColumn must contain the column-id as value and optional the descending
sort direction. The sort direction - defines descending order, the column-id without
sort-direction defines ascending order.

• selection: checkboxes on the left side of table-entries can be modified.

– NONE or HIDDEN: no selection possible in table

– ONE: checkboxes will be displayed, but only one checkbox simultaneously can
be selected

152

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

– MULTI: checkboxes will be displayed

– ROWONE: one row can selected only

– ROWMULTI: multiple rows can be selected

• toolbarShape: This parameter allows to set the representation of toolbar functions
in following ways:

– ICON: Function representation as icon

– TEXT: Function representation as text

– BOTH: Function representation as text and icon

• admin: If set to true, table can be used as @enterprise admin only.

• noSearch: If set to true, whole table is displayed (e.g. if more table entries are
available than allowed to display) by default and no search is possible.

• noWarning: If set to true, no warning is displayed, if more table entries are available
than allowed to display.

• subformid: If table is used as subform table, it is possible to enter the subform id
(integer value) here which identifies the relation between mainform and subform.

• printable: If this element is set to true, in GUI a printer icon is displayed and allows
to print the displayed table.

• fetchAttrs: Allow to (pre-)fetch dependent objects from the database by efficient
operations. The content is a comma separated list of names of java fields of the
corresponding class. The field names must denote persistent objects! Usually one
BulkQuery per field is executed instead of a (single record) select-statement per record
and field.

Example:

<table id="myformtable">
<name>MyForm table</name>
<model>com.groiss.storegui.FormTable</model>
<classname>com.dec.avw.appl.MyForm_1</classname>
<searchAttrs>str</searchAttrs>
<columns>
<column id="str" name="str" visible="true" />
<column id="dt" name="dt" visible="false" />
<column id="deci" name="deci" visible="false" />
<column id="pb_art" name="pb_art" visible="false" />

</columns>
<columnPicker>true</columnPicker>
<useFilter>false</useFilter>
<actions>
<action id="new" />
<action id="edit" />
<action id="delete" />
<action id="searchfield" />

153

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

<action id="search" />
</actions>
<paging>true</paging>
<columnPicker>true</columnPicker>
<printable>true</printable>
<defaultSortColumn>+str</defaultSortColumn>
<defaultGroupColumn>-dt</defaultGroupColumn>

/table>

It also possible to define tabbed views shown in the following example. The master-view
must contain the element tabs. The slash at the first position indicates that the master-view
is shown as tab Common. The second position indicates the detail page (= second tab)
which is defined as own node - named detail in this example - in the XML named myxml
within the nodes block (see section Non tree nodes (<nodes>) for more details about this
block). A further necessary attribute in master-view is detail to get a tabbed window view.
In our example the detail-view is a table (displayed in page) with columns Id and Name
which represents the history of the master-view. If an entry is double-clicked (= element
defaultAction) or selected and the toolbar function view is activated, the detail-view of
the selected entry is opened. The attribute toolbarTarget indicates that a toolbar (frame
with id tbframe) is displayed as vertical toolbar (= element toolbarAlign).

<table id="master">
<name>Master</name>
<model>com.groiss.storegui.FormTable</model>
<classname>com.dec.avw.appl.master_1</classname>
<detail>com.groiss.storegui.TabbedWindow.showDialog</detail>
<actions>
<action id="new" />
<action id="edit" />
<action id="delete" />
<action id="searchfield" />
<action id="search" />
<action id="allsearch" />

</actions>
<searchAttrs>master_id</searchAttrs>
<tabs>/,myxml.detail</tabs>
<paging>true</paging>
<useFilter>true</useFilter>
<editTargetProps>width=850,height=500</editTargetProps>
<columnPicker>true</columnPicker>

</table>

<nodes>
<table id="detail">
<name>Detail</name>
<model>com.groiss.storegui.FormTable</model>
<tableHandler>com.groiss.test.DetailTableHandler</tableHandler>
<classname>com.dec.avw.appl.detail_1</classname>
<actions>
<action id="view"/>

</actions>
<defaultAction>view</defaultAction>

154

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

<toolbarTarget>tbframe</toolbarTarget>
<toolbarAlign>v</toolbarAlign>
<page>mask/TabTB.html</page>
<tableTarget>parent</tableTarget>
<columnPicker>true</columnPicker>
<columns>
<column id="detail_id" name="Id" visible="true" />,
<column id="detail_name" name="Name" visible="false" />

</columns>
<editTargetProps>width=800,height=500</editTargetProps>

</table>
</nodes>

An alternative way for a detail view is the usage of a com.groiss.store.Persistent
instead of forms. For this purpose the attributes tabs and formHandler are needed like
in following example. An example of such an formHandler can be found in our demo
application.

File demos/classes/demo.xml

<table id="supplier2">
<name>@@@supplier@@ Custom persistent, old table</name>
<version>1</version>
<classname>com.groiss.demo.Supplier</classname>
<tableHandler>com.groiss.demo.SupplierTableHandler</tableHandler>
<formHandler>com.groiss.demo.SupplierFormHandler</formHandler>
<tabs>/demo/masks/supplier.xhtml</tabs>
<useFilter>true</useFilter>
<actions>
<action id="new" />
<action id="edit" />
<action id="delete" />
<action id="demo.testCache" />

</actions>
<columns>
<column id="name" name="@@@ep:name@@" visible="true" />
<column id="description" name="@@@ep:description@@" visible="true" />
<column id="street" name="@@@street@@" visible="true" />
<column id="city" name="@@@city@@" visible="true" />
<column id="zip" name="@@@zip@@" visible="true" />
<column id="country" name="@@@country@@" visible="true" />

</columns>
<columnPicker>true</columnPicker>

</table>

XML fragment (APP TREE)

This node allows to load application specific GUI-XML fragments into the tree. The attribute
fragmentName defines the name of the XML file containing the tree fragment, for example:

<APP_TREE fragmentName="fileName"/>

For each application @enterprise searches in the classpath for a resource using the following
path: <applid>/<fragmentName>.xml, applid is the id of an application. If such a file is

155

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

found, the APP_TREE node is replaced with the contents of the top-level XML-element of
the fragment file. The top level element must be a <fragment>.
For example, a fragment file contains two nodes:

<fragment>
<node id="node1">...</node>
<node id="node2">...</node>

</fragment>

After the substitution, the two nodes node1 and node2 are inserted into the GUI-configuration
instead of the APP_TREE node.
If there is more than one application containing a file with the given name, the contents
of all files are inserted, ordered by the application startup sequence. If there is no file for
replacement found, the APP_TREE node is just removed.

Hint: Note that there is a predefined fragment in @enterprise Administration:

<APP_TREE fragmentName="admin_tasks_fragment"/>

For all applications that have a fragment file with the name admin_tasks_fragment.xml the
content is displayed after the Dashboard node in the section Admin tasks.

12.2.3 Non tree nodes (<nodes>)

If elements should not be displayed in tree, they must be defined within <nodes> block and
outside of block <tree>. For non tree nodes the attribute ref is possible too as mentioned in
section Tree Nodes. Following elements are allowed:

Actions (<action>)

Sometimes it is necessary to define own functions. For this purpose the <action> element
can be used like in following example:

<nodes>
<action id="print">

<name>@@@print@@</name>
<href>javascript:window.print()</href>

</action>
</nodes>

This new defined action is referenced in the worklist actions block, e.g.:

<worklist id="myworklist">
<name>Worklist</name>
<actions>
...
<action id="xmlfilename.print">
...

</actions>
</worklist>

Following attributes for actions are available:

156

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

• name: The name of the action. Within <name> the definition of e.g. images or Java
Scripts are possible (see example Function (<function>)).

• href: Defines the link which opens an iframe

• onClick: Analog to href, but does not open an iframe; possibility to enter a path to a
widget

• target: The target of the link can be defined, value right is the default. With value
ajax a AJAX servlet method can be called which could be necessary e.g. for subform
tables.

• editTargetProps: The window properties can set here by adding several parameters
separated by semicolon. The syntax is the same as using the JavaScript method
window.open().

• apply: Defines, if action should be applied for a table entry or could be executed
without selection. Following modes are available:

– NONE: action can be executed without selecting a table entry

– ONE: action can be executed only, if one table entry is selected

– MULTI: action can be executed, if one ore more table entries are selected

• shortcut: an arbitrary shortcut can be defined here by entering the appropriate keys. A
list of keys is listed on
http://dojotoolkit.org/reference-guide/1.10/dojo/keys.html

Example: CTRL+SHIFT+A
If these keys are pressed at once in appropriate context, the action will be performed.
The appropriate context depends on the availability/visibility of the function, e.g. if
function is a toolbar function of the worklist, the worklist must be displayed first (and
maybe a worklist entry must be selected) before the shortcut can be used.

Object extension (<objectExtension>)

With help of this element an object extension can be created. For more information please
read chapter Adding tab Additional Info.

Object selection (<query>)

This element allows the definition of an object selection. Such a selection is needed for
DOJO selection which are explained in chapter Usage of customized DOJO controls.

(Sub-)tables (<table>)

Ordinary tables are defined normally within <tree> block. Subtables should be defined
within <nodes> block. A description how to do this is available in section XHTML forms
with Sub-tables. In case of XHTML forms changing the subforms normally does not refresh
the main-form. If a refresh is desired, add the element <params>refreshForm</params>
to the configuration of the subform table.

157

12.2. THE ELEMENTS OF THE CONFIGURATION FILE

12.2.4 Internationalization

Use @@@key@@ like in HTMLPage. The resource must reside in classpath of the
application. If standard @enterprise resources should be used, the key must contain a leading
ep:, e.g. @@@ep:role@@. It is also possible to use resources of other applications. In this
case the application-id is the prefix instead of ep:, e.g. @@@itsm:abortandarchive@@.

12.2.5 Adding HTML Code Between the Links

Arbitrary HTML Code can be put between the links in the navigation tree, for example
a horizontal rule (<hr>). You specify a node with the HTML code as name and no other
attributes. Example:

<label>
<name><hr/></name>

</label>

12.2.6 Configure user parameters

The user properties in the configuration file contains an attribute with the following value,
where you can add parameters in form of a list to show or hide options on the settings page
of the users. These properties are accessible via the User profile / Settings dialog.

A summary of these properties is given in the following table (parameter and meaning):

• avw.email.notification: E-mail notification for entry in worklist

• locale: Language

• avw.timezone: Time zone

• mail.composew.mode: E-mail format for compose window

• ep.style.theme: Theme selection

• ep.gui.tree.persist_expansionstate: Restore tree view (e.g. DMS)

• dms.show_hidden_docs: Display hidden documents

Example: Define an own settings node in section nodes

<action id="mySettings">
<name>@@@ep:settings@@</name>
<onClick>ep/widget/smartclient/ShowUserProperties</onClick>
<params>list=avw.email.notification,locale</params>

</action>

In this example the options Email notification and Language are visible on the settings page
of the users only. Make a reference to this action within the userProfile node as following:

<userProfile>
...
<action id="mygui.mySettings" />

</userProfile>

158

12.3. CUSTOMIZING THE WORKLIST

12.2.7 Change style and logos/icons

If you want to use your own style for your application, create a file styles.less within the
classes folder of your application (see section Organization of Files for file structure). The
@enterprise styleloader loads this file (depending on startup sequence of the application) and
appends it to the main less-file. More information concerning styling is available in section
Styling.

If you want to change the @enterprise-logos, you have to do following steps manually:

1. Create the directory lang/default/images in classes directory

2. Create a file named enterprise.svg in the images folder to replace the logo at the
login-page and in the top left corner above the navigation frame

Hint: If you create your own theme via style configurator, it is easily to set up the
@enterprise-logos. Just enter an image path in the Application logo and Application logo
inverse (for example: ../images/new_enterprise_logo.svg).

@enterprise uses icons from icomoon library (see https://icomoon.io/#preview-ultimate/).
These icons are available in file ep-icomoon-repackaged-*.jar within the lib-directory of
@enterprise and can be also used by API developers!

12.3 Customizing the Worklist

For achieving full flexibility in worklist layouts, it is possible to write a Java class defining
the appearance of the worklist. You can mix information from @enterprise (user, task name)
with application specific data from forms or other database tables.
Define your class as implementor of com.groiss.wf.html.Worklist and specify the class
in the XML configuration file as additional attribute of the worklist description:

<tableHandler>com.groiss.demo.DemoWorklist</tableHandler>

The com.groiss.wf.html.Worklist interface contains the following methods:

public void init(HttpServletRequest req, WorklistDescription wl, User u);
public Object getTitle();
public List<ActivityInstance> getList(List<ActivityInstance> l);
public void getAdditionalData(List<ActivityInstance> instances);
public void modifyColumns(List<ColumnDescription> colDescs);
public void modifyTableLine(ActivityInstance ai,

Map<String,Object> line);
public String lineStyle(ActivityInstance ai, String style);
public List<Pair<String,String>> listFilters();

The interface com.groiss.wf.html.WorklistDescription used in the init method con-
sists of:

159

12.3. CUSTOMIZING THE WORKLIST

public interface WorklistDescription {
public int getType();
public String getId();
public Application getApplication();
public List<ColumnDescription> getColumns();
public int getLinkType();
public void needForm(String processid, int version, String formid);
public DMSForm getForm(ProcessInstance pi, String formid);
public Set<DMSForm> getForms(String formid);
public boolean isFillCounter();
public boolean isDelta();
public boolean isAugmentedItem(ActivityInstance item);
public String getAttrib(String key);

}

The WorklistDescription contains getters for the definitions from the XML file. The list
retrieved from the method getColumns can be modified to change the displayed columns.
The method needForm is used to define which forms will be needed in the worklist construc-
tion. You must call this method in the init method of your worklist implementation. The
system will then retrieve the forms in an efficient manner. The method getForm retrieves
these forms from the temporary cache.
The methods of the Worklist interface are called in the written order and do the following:

• init: You can init your class with the request. For you convenience, we give you the
type of the worklist, the application, and the user. The init method is called once for
the creation of a worklist.

• getTitle: non null overwrites the title.

• getList: non null overwrites the list, should return list of activity instances,

• getAdditionalData: Your chance to collect data. See the next section for details.

• modifyColumns: You get the header as we suggest it (i.e. the default), a list of
com.groiss.gui.table.ColumnDescription. A ColumnDescription contains
an id and a name. The id is the column-id and the name is the value which is displayed.
The id’s can be found in table 12.4.

You can change this header as you like. The resulting header is used to build the table
lines: for the keywords the system adds the corresponding column, for other names
we add "null" elements.

• modifyTableLine: Your chance to modify the line, called for each table line. Return-
ing null will filter out this line.

• lineStyle: Finally you can change the style of the line, return the name of a table-row
style class.

• listFilters: Define a list of customized filters. See below.

The worklist implementation can be used to define filters, two steps are necessary: First, the
method listFilters defines the available filters:

160

12.4. DISPLAYING ADDITIONAL DATA

public List<Pair<String, String>> listFilters() {
List<Pair<String, String>> result = new ArrayList<>();
// filter processes order
result.add(new Pair<>("demo_order", "Process order"));
// filter tasks start order
result.add(new Pair<>("demo_request_order", "Task start order"));
return result;

}

Next, you must remember the selected filter in a local variable:

String filter;
public void init(HttpServletRequest req, WorklistDescription wl, User u) {
// custom filter step 1: remember filter parameter
if (ThreadContext.getThreadRequest() != null) {
filter = ThreadContext.getThreadRequest().getParameter("filter_s");

}
}

In the method modifyTableLine you can filter out lines with the method clear:

public void modifyTableLine(ActivityInstance ai,Map<String,Object> line) {
if ("demo_order".equals(filter) &&

!(ai.getProcessDefinition().getId()).equals("demo_order") ||
"demo_request_order".equals(filter) &&
!(ai.getTask().getId()).equals("demo_request_order")) {

line.clear();
return;

}
}

The @enterprise class com.groiss.wf.html.FilteredWorklist offers a simple way to
filter worklists by tasks, roles, or processes. Specify the class in the xml configuration file
in the tableHandler element of the worklist configuration and define a filter using the
params element. The worklist in the following example shows only instances of process1
and process2:

...
<tableHandler>com.groiss.wf.html.FilteredWorklist</tableHandler>
<params>{filter: "process", include: ["process1","process2"]}</params>

...

For more details about this implementation of com.groiss.wf.html.Worklist please read
the APIDoc.

12.4 Displaying Additional Data

When displaying the worklist, data can be read from different places, which affects the
performance of the table. Consider a scenario where a database table demo_supplier may
hold additional data about a process in DMS. The simplest approach to display this data in
the worklist would be to define a method getAdditionalData, which gets a list of activity
instances as parameter and to use this information in method modifyTableLine.

161

12.4. DISPLAYING ADDITIONAL DATA

...
line.put("invoice",addProcData.get(pi));
...

As an example, we define a class AdditionalProcDataWL which contains some arbitrary
data.

File java/com/groiss/demo/AdditionalProcDataWL.java

public class AdditionalProcDataWL implements Worklist {

protected HashMap<ProcessInstance, DMSObject> addProcData = new HashMap<>();

@Override
public void getAdditionalData(List<ActivityInstance> list) {

BulkQuery bq = new BulkQuery(list);
String query = "folder " + BulkQuery.IN;
bq.execute(FolderItemRelation.class, query).stream()

.forEach(rel ->
addProcData.put((ProcessInstance)rel.getFolder(), rel.getItem()));

}

/**
* build header for personal and role worklist
* @see com.groiss.wf.html.Worklist#modifyTableHeader(java.util.List)
*/

@Override
public void modifyColumns(List<ColumnDescription> colDescs) {

colDescs.add(new ColumnDescription("invoice", "Invoice"));
}

/**
* build line of personal and role worklist
* @see com.groiss.wf.html.Worklist#modifyTableLine(

com.groiss.wf.ActivityInstance, com.groiss.ds.KeyedList)
*/

@Override
public void modifyTableLine(ActivityInstance ai, Map<String, Object> line) {

ProcessInstance pi = ai.getProcessInstance();
line.put("invoice", addProcData.get(pi));

}

}

The table must be generated using an SQL statement like this:

File sql/addprocdataschema.sql

create table demo_supplier(
oid %OIDTYPE% not null primary key,
transactionId %OIDTYPE%,
name VARCHAR(100),
description VARCHAR(1000),

162

12.4. DISPLAYING ADDITIONAL DATA

street VARCHAR(100),
zip VARCHAR(10),
city VARCHAR(100),
country VARCHAR(100)

)

To sum up, this approach might be somewhat more intensive implementation wise, but in
general it does pay off well in terms of increased performance and diminished server load.

163

13 Communication with other Systems

13.1 E-Mail

13.1.1 Sending E-Mails

The com.groiss.messaging.MessageTemplate interface can be used to create and send e-
mail messages. Message templates can be created in the system administration user interface.
You may specify recipients, subject, message body, etc. The most simple method to send a
message is the following:

com.groiss.wf.SystemAction.sendMessage(templateid);

templateid is the id of a message template. However, there are several methods to manipu-
late the template, see the following example:

MessageTemplate mt = Admin.getInstance().getMessageTemplate("myid");
mt.addRecipient(

new Recipient().setAgentString("test@groiss.com")
.setRecType(javax.mail.Message.RecipientType.CC))
.setSubject("test")
.setBody("Good morning")
.send();

First, the template is read from the database. Then, it is manipulated by adding a recipient, a
subject, and a message body. Finally, the message is sent using the send method.
Alternatively to get a template from the database, a new template can be created with:
Admin.getInstance().createMessageTemplate();

Variable substitution can be used in mail body and subject, for the syntax see section Office
Templates, but control structures are not implemented here. The message template has some
methods for setting the context, depending on these the following variables are set:

• setProcessInstance: pi

• setActivityInstance: pi, ai

• setDocument: form - the form associated with the document, folder - the folder the
document is in

164

13.1. E-MAIL

You can add extra variables with the method setVariableValue.
The template for the message body can be taken from a string (like in the above example) or
from a resource in the classpath using the method setBodyUrl.

The properties of mail sending can be defined by setting a MailSender object using
setMailSender. If this method is not used, a default mail-sender is created using the
properties from the configuration (Communication group). Severel communication properties
can be set using the MailSender. One property, the queuing, can also be set directly using
setQueueAction, the following option are possible:

• QUEUE: With this action the mail is tried to send immediately. If an error occurs, the
mail will be added to the mail queue.

• DEFERRED: With this action the mail is added to the mail queue and will be sent
automatically later. If an error occurs, the mail will be kept a predefined time in the
mail queue (see parameter Max. time for mail queue item (in hours) in handbook
Installation- and Configuration). If this time is exceeded, the administrator will be
informed.

• NO_QUEUE: With this action the mail is sent immediately without using mail queue.

13.1.2 Receiving E-Mails

Receiving mails is a more complicated task. @enterprise contains a mail handler which is
able to read mails from an IMAP mail box. In the system administration you can define such
a mail box and a handler class for processing the incoming mails.
The mail handler class must implement the following interface:

package com.groiss.mail;

public interface MailHandler2 {
public boolean receive(javax.mail.Message msg, MailBox mb);

}

The following example takes the incoming mails and returns a mail with the server info.

File com/groiss/demo/MailGetter.java

public class MailGetter implements MailHandler2 {

@Override
public boolean receive(Message msg, MailBox mb) throws Exception {

Admin admin = Admin.getInstance();
String from = msg.getFrom()[0].toString();
String body = admin.serverInfo();
admin.createMessageTemplate()

.addRecipient(from)

.setSubject("Server info")

.setMimeType("text/plain")

.setBody(body)

165

13.1. E-MAIL

.send();
return true;

}
}

13.1.3 Tab Emails

This section treats the configuration of the tab Emails and the ways to manipulate it.

In @enterprise this tab is defined as XML node with id "mails" in admin.xml. So it is
possible to use it e.g. for a process by adding this id to field Detail tabs on process detail
mask (see Administration Guide, section Processes and subsection Tab: General for details).

For making manipulations you need to define an own XML node in your GUI configuration
XML by adding a class which implements the interface
com.groiss.smartclient.mail.MailActionsHandler
as shown in following example:

<action id="custommails" ref="admin.mails">
<params>{mailhander: "package.to.my.MailActionsHandler"}</params>
<href>com.groiss.mail.MailFunctions.showMailPane?

mailhandler=package.to.my.MailActionsHandler
</href>

</action>

This node extends the @enterprise default Emails tab (admin.mails) with the toolbar func-
tions

• Compose (admin.composeSC),

• Reply (admin.replySC),

• Reply all (admin.replyallSC),

• Forward (admin.forwardSC),

• Edit as new (admin.editasnewSC),

• Edit draft (admin.editDraftSC),

• Delete draft (deleteDraftSC) and

• Refresh (admin.refresh).

These toolbar functions are also defined in the API as
com.groiss.mail.MailFunctions.DefaultMailFunction.

In elements params and href an own implemented MailActionsHandler class is de-
fined. The interface com.groiss.smartclient.mail.MailActionsHandler provides
some methods for manipulating the standard behavior of the Compose window, the mail
sending action and the mail list. Detailed information for each method can be found in the

166

13.1. E-MAIL

APIDoc.

The params element of the XML node is used, if the Emails tab is shown in context of the
(DOJO-)Smartclient (e.g. as tab of a process).
The href element of the XML node is used, if the Emails tab is shown e.g. in a Browser
popup window or in context of a com.groiss.storegui.TabbedWindow implementation
as shown in following example:

<table id="myfolders">
<name>My Folders</name>
<columns>

<column name="@@@ep:name@@" id="name" />
</columns>
<actions>

<action id="new" />
<action id="edit" />
<action id="delete" />

</actions>
<classname>com.groiss.forms.MyFolder_1</classname>
<defaultAction>edit</defaultAction>
<detail>com.groiss.storegui.TabbedWindow.showDialog</detail>
<model>com.groiss.storegui.FormTable</model>
<version>2</version>
<tabs>/,myconfig.custommails</tabs>

</table>

This table shows all forms of form type MyFolder. By editing a table entry a popup window
will be opened with 2 tabs: The form itself and the Emails tab as defined in the XML node
above (id "custommails").

If these manipulations are not sufficient and you need additional toolbar functions, you have
to define a list of toolbar actions in a XML node as shown in following example:

<action id="custommails2" ref="myconfig.custommails">
<params>{mailhander: "package.to.my.MailActionsHandler",

toolbar: "myconfig.myCompose,replySC,replyallSC,editDraftSC,
deleteDraftSC,refresh"}

</params>
</action>
...
<action id="myCompose">

<href>compose</href>
<apply>NONE</apply>
<name>@@@ep:compose@@</name>

</action>

In this example we have defined the toolbar as parameter that contains some default functions
and an own compose function with id "myCompose". By adding the href value "compose"
the client implementation knows that the compose window should be opened when activating
this toolbar function. On server side in your MailActionsHandler class you are able to get
the XML node action id of the executed toolbar function with parameter "actionId" which
allows you to react appropriately.

167

13.2. REMOTE METHOD INVOCATION

Hint: If an other href value is entered, you have to extend the widget
ep/widget/smartclient/wl/MailPane and overwrite JS-function performAction to
handle the appropriate action. In this case you have to modify the XML node in the
following way:

• You have to define the widget in your Emails tab node with the widget element as
shown in following example:

<widget>myappl/MailPane</widget>

• For the href element you have to add the request parameter mailpane as shown in
following example:

<href>
com.groiss.mail.MailFunctions.showMailPane?
mailhandler=package.to.my.MailActionsHandler&
mailpane=myappl/MailPane

</href>

Attention: Because of the definition in the XML file, the & in the URL is
intended!

13.2 Remote Method Invocation

Please note that this functionality is deprecated and that RMI-related components will be
removed in a future version.
You can connect to @enterprise from other Java programs using Remote Method Invocation
(RMI). The class com.groiss.wf.SessionFactory is used as root object to get a session
from a client to the @enterprise server. Write the following lines to connect to a server:

DefaultResource.init("com.dec.avw.resource.Strings",
"com.dec.avw.resource.Errors");

Properties props = new Properties();
props.put("url", url); // host:port
props.put("userid", userid);
props.put("password", password);
Session ss = SessionFactory.createSession(

"com.groiss.avw.RMISessionFactory", props);
Store s = ss.getStore();
WfEngine e = ss.getWfEngine();
OrgData od = ss.getOrgData();
DMS dms = ss.getDMS();
...

The interfaces Store, WfEngine, OrgData, and DMS provide you the necessary API calls of
@enterprise.

168

13.3. WF-XML 2.0

Figure 13.1: Resource types of an asynchronous web service and the methods
they use.

13.3 Wf-XML 2.0

Wf-XML is a protocol for process engines that makes it easy to link engines together for
interoperability. Wf-XML 2.0 is an updated version of this protocol, built on top of the
Asynchronous Service Access Protocol (ASAP), which is in turn built on Simple Object
Access Protocol (SOAP).
@enterprise contains an implementation of the standard. @enterprise can receive Wf-XML
messages to start a process, get the current state of a process and change a process’ state;
and the system can also send all types of messages.

13.3.1 ASAP Overview

ASAP is a protocol that is needed for integration of asynchronous services across the Internet
and their interaction defined by Oasis ASAP Committee. The integration and interactions
consist of control and monitoring of the services. Control means creating the service, setting
up the service, starting the service, stopping the service, being informed of exceptions, being
informed of the completion of the service and getting the results of the service. Monitoring
means checking on the current status of the service and getting an execution history of the
service.
For the support of an asynchronous web service, three types of endpoints are defined to
match the three roles of the interaction: Instance, Factory, and Observer. An endpoint type
is distinguished by the group of operations it supports, and so there are three groups of
operations (see Fig. 13.1).

Typical use of this protocol would be as follows:

• A Factory endpoint receives a CreateInstanceRq message that contains ContextData
and an EPR of an Observer

• The Factory service creates an Instance service (with associated Instance endpoint).

169

13.3. WF-XML 2.0

Figure 13.2: Typical usage scenario of ASAP.

• The Factory responds with a CreateInstanceRs message that contains an EPR for the
Instance

• The Instance service eventually completes its task and sends a CompletedRq message
that contains the ResultsData to the Observer endpoint

13.3.2 Wf-XML Overview

ASAP offers a way to start an instance of an asynchronous web service (AWS), monitor it,
control it, and be notified when it is complete. This service instance can perform just about
anything for any purpose. Wf-XML extends this in the special case that the asynchronous
service is being invoked on a process engine.
The Service Factory maps to a Process Definition; the Service Instance maps to a Process
Instance. Process engines provide some additional capabilities for monitoring the process.
First of all, because it is a process, and not simply an opaque service, there is a process
diagram. This diagram can be retrieved for introspection. Second, since the process is
composed of activities, one can ask the activities for their current values. An activity may
itself represent an invocation of a yet another remote service, and the address of that service
instance may be retrieved. Thirdly, the process definitions can be edited, removed, or added.
Service registry resource is workflow system itself, or some application within this system,
it manages factory resources, that are kind of process definitions, that can create in turn an
operation instances, each of such instances can have one or more running activities.
Each resource has common properties like name, description, and few specific properties,
that will be returned back to GetProperties call. Some of this properties read-only, other can
be modified with SetProperties call.
Container resources like Service registry, Factory, Instance have additionally methods for
container introspection (see corresponding listXXX calls).
Typical use of this protocol would be as follows:

• A Service registry resource receives ListDefintionsRq message, and returns list of
process definitions

170

13.3. WF-XML 2.0

Figure 13.3: Resource types of a process engine web service and the methods
they use.

• A Client pick up required Factory resource from list and send CreateInstanceRq

• A Factory endpoint receives a CreateInstanceRq message that contains ContextData
and an EPR of an Observer

• The Factory service creates an Instance service (with associated Instance endpoint).

• The Factory responds with a CreateInstanceRs message that contains an EPR for the
Instance

• The Instance service eventually completes its task and sends a CompletedRq message
that contains the ResultsData to the Observer endpoint

Context/Result data

As defined in ASAP specification the service factory should provide a schema for the
ContextData element and ResultData elements. The schema may be XML Schema or Relax
NG.
@enterprise WfXML implementation defines common XML Schema for both Context and
Result data, the only difference between them is that Context data may contain additionally
start parameter with optional start-up options (see Fig. 13.4).
Context and result data elements contains zero or more Parameter elements, each parameter
has name and value. Value of Name could be one of the following:

• StartParameter (considered only for createInstance request)

171

13.3. WF-XML 2.0

Figure 13.4: Schema of process Context/Result data.

172

13.3. WF-XML 2.0

• ProcessForms

• DMSFolder

• Notes

Content of Value element is dependent from value of Name element.

StartParameter

Value element contains start-up properties for createInstance call, inside it can be Agent,
Department and DueDate elements.
Value of Agent element is an agent id, that will be assigned with a new process. Agent Id
should be known for @enterprise.
The Department element will contain id of organization unit, that will be assigned with new
process. If department element is missing, then WfXML Engine will take default WfXML
organization unit. This value will be taken from configuration properties of @enterprise.
The date value in DueDate element will affect corresponding property of process. If no
DueDate element is specified, then process will be started without this restriction. Format of
date should be in following format: yyyy-MM-dd´T´HH:mm:ss´Z´.

ProcessForms

Value element contains zero or more Form elements. Each Form has a name that is unique for
the process, this value will be encoded in content of Field element with attribute name=’name’.
Form contains also one or more Field elements and zero or more Form and attached Notes
elements.

DMSFolder

Value element of DMSFolder parameter could contain zero or more of following elements:

• Form

• FolderForm

• DocumentForm

• Note

• WebLink

FolderForm is a folder object, that could contain some additional fields with meta information.
Content elements allowed in FolderForm are the same as for the Value element of DMSFolder
parameter.
DocumentForm is a file document, that could contain some additional fields with meta
information. Content of file is encoded in base64.

Notes

This parameter contains zero or more Note elements.

173

13.3. WF-XML 2.0

WfXML2Timer

WfXML2Timer component is an @enterprise timer that will track status of observed pro-
cesses, once status change detected appropriate method of
com.groiss.wfxml2.engine.IWfXMLEngine will be called. The engine will then lookup
all remote observers and send them notifications. WfXMLTimer will also check expiration of
local observers and once expired observer detected timeout method of corresponding handler
class will be called.

Partner communication

WfXML itself does not require explicit partnership between communicating parts, but
in some situation there is need to define it. These are advantages of communication on
partnership basis:

• Accept only authenticated incoming requests from trusted partners

• Support one-way communications (e.g. through firewall)

• Configurable communication settings

• Automatic and reliable initiation of remote processes through application configuration

Wf-XML Client API

This layer provide easy to use API for communication with external part and dealing with
Wf-XML/ASAP resource properties. This API will be used by @enterprise application
classes and WfXMLEngine layer (see Fig. 13.5).

Example

Lets take a look how these classes can be used on short example.

WfXMLFactory factory;
WfXMLInstance instance;
WfXMLActivity activity;

factory = new WfXMLFactory(
new URI("http://myserver.com/factory/jobproc")));

instance = factory.createInstance();

List activities = instance.listActivities();
activity = activities.get(0);
activity.completeActivity();

instance.getProperties();
if(instance.getStatus().equals("open.running")) {

instance.setName("job process 1");
instance.setProperties();

}
instance.changeState("closed.abnormalCompleted.aborted");

174

13.3. WF-XML 2.0

Figure 13.5: Overview of WfXML client classes.

175

13.3. WF-XML 2.0

First of all we get access to factory resource with WfXMLFactory, this can be done either:

• through use of service registry method listDefinitions,

• or simply by call to constructor of WfXMLFactory with exact URL to external factory
resource.

After that we get access to instance resource. This can be done in following ways:

• By call to factory method listInstances if we want to get existing instance

• By call to factory method createInstance if we want to start new process

• By call to constructor of WfXMLInstance object with exact URL to existing instance
resource, and reference to factory object

Once we got instance object we can list activities, get and set properties, and also change
instance state.

Access to activity resource can be gained from:

• instance resource object, by calling listActivities method

• or by call to constructor of WfXMLActivity class, with exact URL to external activity
resource.

Activity object can be used by clients to get/set properties and to complete activity.

Observer resource can be used if client wants to subscribe/unsubscribe itself for process
instance state notifications. The following short example show us how this could be done:

LocalEPObserver observer = LocalEPObserver.createInstance(null,
MyObserver.class, null, null);

instance.subscribe(observer);
observer.getObserver().setProcess_url(

instance.getAddress().toString());
observer.getObserver().update();

LocalEPObserver is special kind of WfXMLObserver, that will use @enterprise Obser-
verService for accepting of incoming notifications. Alternatively client can specify any other
observer resource by call to instance subscribe with URL parameter.

To unsubscribe itself from notifications, client should call instance method unsubscribe
with reference to WfXMLObserver object that should be taken off subscription. Access to
existing observer object can be gained from:

• instance observers property

• or simply by call to constructor of WfXMLObserver class with exact URL that points
to observer resource.

176

13.3. WF-XML 2.0

Local observers should be first taken from database, and only after that they can be passed
to call to unsubscribe method. Client should remember value of observer id property, if
sooner unsubscribe is possible.

long observerId = observer.getId();

...

LocalEPObserver observer = LocalEPObserver.getInstance(observerId);

instance.unsubscribe(observer);

13.3.3 Administration

Installation

There are few steps required before Wf-XML interface of @enterprise can be used. First
of all Axis2 Web-service container should be installed either as part of @enterprise, or as
standalone web-app inside @enterprise web-server. Implementation classes are dependent
from runtime context of @enterprise, and cannot be launched out of it.

Once Axis distribution is installed and verified, we can overwrite generic axis configuration
file (server-config.wsdd) located in WEB-INF directory with prepared configuration from
com/groiss/wfxml/server/impl.

Configuration

Wf-XML components relies on few configuration properties, that should be configured by
administrator, before it can be used. The following properties can be set via the GUI under
Administration→ Configuration→ Communication.

First of all we have to specify relative location of Web-service classes on @enterprise
web-server:

wfxml2.serviceregistry.path=/services.axis2/WfXML2ServiceRegistryService
wfxml2.factory.path=/services.axis2/WfXML2FactoryService
wfxml2.instance.path=/services.axis2/WfXML2InstanceService
wfxml2.activity.path=/services.axis2/WfXML2ActivityService
wfxml2.observer.path=/services.axis2/WfXML2ObserverService

Also default organization unit and user id for default agent should be configured:

wfxml2.orgunit=gi
wfxml2.user=wfxml_user

An @enterprise server can be configured to run with three different operating modes:

• off: Wf-XML is turned off. The server does not send messages and it also does not
accept incoming messages.

• active: An active server sends messages to other servers and accepts messages. This
is the ‘normal’ operating mode, like it is used in the specification.

177

13.3. WF-XML 2.0

Server A (active) Server B (active)

CreateProcessInstance

ProcessInstanceStateChanged

Server A (active) Server C (passive)

CreateProcessInstance

Outgoing-Buffer
Get waiting messages from buffer

Figure 13.6: Active-active and active-passive Wf-XML communication.

• passive: A passive server does not send messages itself, it only receives incoming
messages. Active servers can request outgoing messages from passive servers, but a
passive server never sends messages itself. The passive server stores outgoing message
in a buffer and keeps them until the target server requests them. This might be useful
for security reasons where you want to allow connections to be established just in one
direction. Figure 13.6 shows a diagram with active-active and active-passive server
communication. The direction of the arrows always indicates the direction in which
the connection is established. Responses are sent back through the same connections.

For proper work of WfXML Engine layer in @enterprise timer task should be registered
under Administration→ Admin-Tasks→ Server→ Timer :

• Timer class name: com.groiss.wfxml2.engine.timertask.WfXMLTimer

• Period: By default 60 seconds. Lower value will decrease status notification delays,
higher will save system time resources.

The following additional settings must be applied to an @enterprise server in order to use
Wf-XML:

You have to define communication partners in Admin-Tasks→ Communication→WfXML
→ Partner List. You must set the following data for each Wf-XML partner server:

• Server: The ID of the server. In case of @enterprise servers, this must be the server id
of the partner.

• Operating Mode: Operating mode of the partner server. If you set it to ‘passive’, the
local server will try to request messages from this server, because it doesn’t expect
the partner server to send any messages. Mind: this works only, if the local server is
active! Two passive servers cannot communicate with each other.

• Host Name: The host name of the partner server.

• Port: The port on which the partner server is listening for HTTP requests.

178

13.3. WF-XML 2.0

Figure 13.7: Connect to service registry screen.

• Path: The context path

Here you can also get a quick overview of your local server with the Local status link.
If you click on Partner status, your server sends a test message to the other server and
displays information about the partner server. Mind that this works only if both servers are
@enterprise servers.

13.3.4 Wf-XML Web client

For quick test of functional state of Wf-XML @enterprise, or any other Wf-XML implemen-
tations - administrator has possibility to use web client interface, that can be reached with
following URL or find under Administration→ Admin-Tasks→ Communication→ WfXML
→ Web Client.

On first page location of ServiceRegistry Service should be specified, and list of definitions
managed by ServiceRegistry can be obtained (see Fig. 13.7) by using following URL:

http://<host>:<port>/<context-root>/services.axis2/WfXML2ServiceRegistryService

It is also possible to restrict the definition list by adding an application id with parameter
?application_id=<applid>.
After successful connection to ServiceRegistry service user will be able to browse list of
definitions managed there (see Fig. 13.8).

After selection one of definitions, which are Factory resources following actions are possible:

• Show properties will display available properties of Factory resource

• List instances action will show the list of running processes that belong to the selected
Factory resource

• Create instance action will provide form where initial process properties can be
specified (see Fig. 13.9). In this form name, subject, description fields can be specified.
Additionally context data can be specified in XML format. Schema specified for
factory is also displayed to make easy for client XML validation. After Create action
successfully processed new screen with short information about created instance will
be presented.

From this point we can operate on instance resource level. On this level we have following
actions available for use:

179

13.4. LDAP

Figure 13.8: List of definitions screen.

• Show properties action will display form with available properties, observers and
context/result data for selected instance. This form allows to perform modifications on
some instance properties.

• List activities action allows to browse list of active activities for this process instance.
From this point we can operate on activity resource level.

• Change state action will display a form where required state can be specified. After
successful change of instance state the instance properties page will be displayed.

• Subscribe action will display a form observer URL can be specified. After successful
observer subscription the page with instance properties will be displayed.

On the activity resource level we have following actions available for use (see Fig. 13.10):

• Complete activity action will provide form where option path can be specified.
After successful completion of activity user will be redirected back on instance level
(instance properties screen).

• Show properties action will display form with available properties for selected activity,
this form also can be used to perform modification of instance properties or context
data.

13.4 LDAP

The organizational data of @enterprise can be synchronized with directory services (LDAP-
servers). With the administrative interface, one can define a set of LDAP-servers for the
purposes of either importing (part of) their directory data and incorporate it in the @enterprise
organizational data or to export this organizational data into an LDAP server.
In most cases, an installation wanting to synchronize with directory services will define
exactly one LDAP server and employ a unidirectional synchronization. Technically it is

180

13.4. LDAP

Figure 13.9: Create instance screen.

Figure 13.10: Activity list screen.

181

13.4. LDAP

possible to have a single LDAP server and to bidirectionally import from this server as well
as export to this server. But on an administrative level it is strongly recommended to use
either @enterprise as the source and the LDAP server as the target or vice versa, but not at
the same time.
Please note that LDAPv3 must be supported by the LDAP-Servers.

13.4.1 Basic Aspects of the Synchronization Mechanism

The synchronization can be characterized by the following aspects:

• Directory Service: Comprises the technical aspects of the directory server. Needed
are the hostname or IP-address, the port, the path in the directory tree to use as a search
root, a filter which can be applied to the entires in this tree, and credentials in the form
of a user name and a password.

• Direction: Each LDAP-Server can act as source of imported data or as destination of
exported data.

• Timer Involvement: The synchronization can be carried out manually or executed by
the LDAPDirSyncTask timer (the system takes care that at most one LDAP synchro-
nization operation takes place at at one point of time).

• Scope: The following organizational entities of @enterprise are subject to LDAP
synchronization:

– Rights

– Organizational Units

– Organizational Hierarchies

– Roles with associated permissions

– Users with associated roles and permissions

While all of these entities can be synchronized by a default mechanism, most installa-
tions will probably restrict themselves to a subset, e.g. import of user data (see the
System Administration guide for a description of a basic implementation for this).

• Schema Mapping The default synchronization mechanism uses a fixed directory
schema at this moment. But since each organization employs its specific schema to
structure the information in the directory, the default mapping mechanisms can be
replaced by a customer specific one in the form of a Java class.

13.4.2 Default Schema Mapping

Since we strive for a possibly complete mapping of all the @enterprise organizational data,
we defined a specific LDAP schema. It is provided as ldap/schema.ldap in the epimpl.jar file
in the lib directory of @enterprise installations. This schema comprises appropriate defini-
tions for LDAP attributetypes and objectclasses and uses an officially registered enterprise
number (see http://www.iana.org/assignments/enterprise-numbers).

182

13.4. LDAP

The schema must be deployed onto the LDAP server using the proprietary means of the
product. In OpenLDAP, the file must be included in the master schema file (which can
usually be found in /etc/openldap/slapd.conf). For other products, your mileage will vary.
Since the schema is not trivial, it might be advisable to export some organizational data
using the default mechanism and to browse the resulting LDAP directory to gain a better
understanding of the following description.
Under the searchroot, there are the five subdivisions (People, Departments, DeptTree, Roles,
Rights), each implemented as organizational unit:

• Rights: Each right is of objectClass entRight, it is identified (RDN) by the attribute
entId which contains the @enterprise id of the right. For the other attributes, the
mapping is as follows:

– entName: name (mandatory)

– entApplication: application (id of application the right is associated with, manda-
tory)

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

• Departments: Each department is of objectClass entDepartment which is a subclass
of class organizationalUnit. It is identified (RDN) by the attribute ou which contains
the @enterprise id of the department. Other attibutes are:

– entName: name

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

– entOrderAttr: orderattr

– mail: email

– entOrgType: orgtype

– entOrgClass: orgclass (id of the departments orgclass)

– telephoneNumber: telnr

– postalAddress: address

• Department Trees: Each department tree is of objectClass entDeptTree. It is identified
(RDN) by the attribute entId which contains the @enterprise id of the depttree. Other
attributes are:

– entName: name (mandatory)

– entOid: oid

– entXid: transactionid

183

13.4. LDAP

– Under each department tree node, there is a flat collection of directory entries
which represent the edges of the department tree (Java class DeptHierarchy).
Each DeptHierarchy object is mapped to one LDAP entry of objectClass ent-
DeptHierarchy. It is identified by attribute cn. The value of cn is the id of the
subDepartment of the edge, optionally concatenated with the id of the superDe-
partment of the edge. In concatenated RDNs, we use the # as a component
separator. The other attributes are:

* entOid: oid

* entXid: transactionid

* entSubDept: subdepartment (full LDAP DN of the subdepartment, manda-
tory)

* entSuperDept: superdepartment (full LDAP DN of the superdepartment)

By using DNs as the value for the subdepartment and superdepartments entries,
we enable quick navigation in the LDAP-directory.

• Roles: Each role is of objectClass entRole which is a subclass of organizationalRole.
It is identified (RDN) by the attribute cn which contains the @enterprise id of the role.
Other attributes are:

– entName: name

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

– entRoleType: type

– entReferenceRole: reference role (full LDAP DN of the referred role)

– entApplication: application (id of application the role is associated with)

– Below each role node, there is an organizationalUnit with RDN ou=ACLEntries
which contains a flat collection of directory entries which represent the permis-
sions given to the role (Java class ACLEntry). Each ACLEntry object is mapped
to one LDAP entry of objectClass entACLEntry. It is identified by attribute cn.
The value of cn is concatenation of the following fields: id of the right, id of the
department, name of the object class, oid of the object. The other attributes are:

* entOid: oid

* entXid: transactionid

* entRight: avwright (full LDAP DN of the right, mandatory)

* entDept: dept (full LDAP DN of the department)

* entTargetClass: target_class

* entTarget: oid of the object to which this permission applies

* entOrgScope: orgscope (mandatory)

* entObjScope: objscope (mandatory)

* entPositive: positive (mandatory)

184

13.4. LDAP

• People: Each user object is of objectClass entPerson which is a subclass of inetOr-
ganizationalPerson. It is identified (RDN) by the attribute uid which contains the
@enterprise id of the user object. Other attributes are:

– title: title

– givenName: firstName

– sn: surname

– description: description

– mail: email

– telephoneNumber: telnr

– userPassword: password

– entOid: oid

– entXid: transactionid

– entServer: server (id of the users server)

– entActive: active

– entOrderAttr: orderattr

– entLocale: locale

– entPWneverExpires: pwdneverexpires

– entPWmustChange: changepwdnext

– entPWunchangeable: cantchangepwd

– Below each user node, there is organizationalUnit with RDN ou=ACLEntries
exactly like in the case of Roles.

– Under each user node, there is als an organizationalUnit with RDN ou=UserRoles
which contains a flat collection of directory entries which represent the roles
given to the user(Java class UserRole). Each UserRole object is mapped to one
LDAP entry of objectClass entUserRole. It is identified by attribute cn.The value
of cn is a concatenation of the id of the role, optionally followed by the id of the
department. The other attributes are:

* entOid: oid

* entXid: transactionid

* entActive: active

* entDept: department (full LDAP DN of the department)

* entRole: role (full LDAP DN of the role, mandatory)

Exporting to LDAP

Exporting an @enterprise object to the LDAP directory is done like this:

1. Lookup the LDAP entry by its RDN

2. If not found, search it via the entOid Attribute

3. if still not found, create the LDAP entry and export all its subobjects

185

13.4. LDAP

4. else if the RDN changed (attributes which form the RDN in @enterprise were updated),
delete the entire LDAP-subtree below the entry and export the object

5. else if RDN unchanged but Xid changed, then update the LDAP entry

Importing from LDAP

The import algorithm for one LDAP entry can be sketched as follows:

1. If the entry has an entOid attribute, then search in the database based on this oid

2. If not found, search by its RDN

3. If still not found, create a new database object with the attributes of the LDAP entry

4. else check if an update is needed (Xid changed), and update the SQL object as needed

13.4.3 Customizing the Synchronization

The default schema is clearly much more complicated than needed in typical installations
which usually just want to import user data from the directory service.
As already mentioned, one installation can use its own schema mapping semantics by provid-
ing a Java Class which implements com.groiss.ldap.DirectorySyncer. The interface
consists of just one method synchronize which receives two parameters. The first one is the
com.groiss.ldap.DirectoryServer entry as entered in the administrative interface. It
can be used to parametrize the synchronization process or can be ignored altogether. The sec-
ond parameter of synchronize is a DirContext (found in the javax.naming.directory
package). The DirContext represents an established connection to the LDAP-server and
serves as a main entry point for all following operations in the LDAP server (using the the
LDAP-Provider of JNDI).
The following class realizes a simple mapping and can be used as a starting point for ones
one implementations:

File com/groiss/demo/SimpleDirectorySyncer.java

public class SimpleDirectorySyncer implements DirectorySyncer {

private static final Logger logger =
LoggerFactory.getLogger(SimpleDirectorySyncer.class);

private static String[][] attMap = {
{ "cn", "id" },
{ "sn", "surname" },
{ "givenName", "firstName" },
{ "title", "title" },
{ "description", "description" },
{ "mail", "email" },
{ "telephoneNumber", "telNr" }

};

private static String[] ldapAttNames = Arrays.stream(attMap)

186

13.4. LDAP

.map(elem -> elem[0]).toArray(String[]::new);

private static final String LDAPKEYATTNAME = attMap[0][0];

@Override
public void synchronize(DirectoryServer ds, DirContext baseContext)

throws Exception {
SearchControls sc = new SearchControls();
sc.setReturningObjFlag(false);
sc.setReturningAttributes(ldapAttNames);
sc.setSearchScope(SearchControls.ONELEVEL_SCOPE);
NamingEnumeration<SearchResult> ne = baseContext.search("", ds.getFilter(), sc);
while (ne.hasMoreElements()) {

syncObject(ne.next().getAttributes());
}

}

private void syncObject(Attributes attribs) throws Exception {
Object ldapKey = attribs.get(LDAPKEYATTNAME).get();
OrgData od = OrgData.getInstance();
User u = od.getById(User.class, (String)ldapKey);
if (u != null) { // object exists in @enterprise

logger.info("SimpleDirectorySyncer: user {} already present", ldapKey);
setFields(u, attribs);
od.update(u);

} else { // create user object
u = od.createUser();
setFields(u, attribs);
u.setActive(true);
logger.info("SimpleDirectorySyncer: Creating User {},{}", ldapKey, u);
od.insert(u);

}
}

private void setFields(User u, Attributes attribs) throws Exception {
for (String[] mapping: attMap) {

Attribute att = attribs.get(mapping[0]);
if (att != null) {

Object attVal = att.get();
if (attVal != null) {

Field ff = StoreUtil.getField(u, mapping[1]);
LDAPUtils.setField(ff, u, attVal);

}
}

}
}

}

187

13.5. ACCESSING EXTERNAL DATABASES

13.5 Accessing external databases

In order to access SQL databases (other than the primary @enterprise data store), we provide
the notion of external stores (com.groiss.store.external.XStore).

13.5.1 External database setup

An XStore is configured via Administration/Admin tasks/Communication/External Stores
(see System administration guide, section External Stores). Each XStore must have a unique
id and has to be configured with the proper settings for the JDBC framework. The driver
class, the JDBC URL, the username and the password for the remote database must be given.
Some entries might not be needed for special constellations.
Please make sure that the appropriate jar file for the driver is in the class path.
After saving the XStore form, a connection check can be performed. Upon success, some
product and version info of the target database will be displayed.

13.5.2 Basic assumptions and underlying principles

This feature is meant to provide easy access and manipulation of external data without
refraining to low-level JDBC constructs.
The external data is not in an appropriate form to deal with it in the standard way of
@enterprise for internal objects, but rather structured in an arbitrary way.
It is meant to be used rather sparingly for occasional lookups or updates, not for high volume,
high frequency performance critical operations.
There is no connection pool, connections are created on the fly. Auto-commit is disabled
for the connections and the isolation level is set to read committed. Statements are executed
with the configured query timeout.

All the artifacts are in the com.groiss.store.external package.

13.5.3 Getting an XStore

An XStore can be obtained via the XStoreFactory:

XStore xs = XStoreFactory.getXStore(id);

An instance of the xstore is associated with the current UserTransaction. No connection
is yet opened; this will automatically occur on the first time the connection is needed. At
Beanmanager.commit or BeanManager.rollback, the connection of the XStore is either
committed and closed or roll backed and closed.

The XStore class also implements AutoCloseable, upon close() the connection is committed
and closed, so it can also be used in the following manner:

try(XStore xs = XStoreFactory.getXStore(id)) {
...

}

188

13.5. ACCESSING EXTERNAL DATABASES

13.5.4 Transactional operations of an XStore

• getConnection returns the underlying JDBC connection. Will usually not be needed.

• commit commits the connection, but does not close it.

• rollback rolls back the connection, but does not close it.

• close commits the connection and closes it.

13.5.5 Data manipulation operation

The following method allows to execute arbitrary statements (DML or DDL):

int executeStatement(String statement, Object... bindVars);

For DDL statements, it returns the number of records affected by the statement. The state-
ment can contain placeholders in the form of question marks. The bindVars are assigned to
the placeholders in the order given.

int count = xs.executeStatement(
"update mytable set mycolumn=? where key=?",
newValue,keyValue);

13.5.6 Data access operations

• getValue(String query,Object... bindVars) allows to get a single value from
the database.
The query is a select statement that can contain placeholders in the form of question
marks. The bindVars are assigned to the placeholders in the given order. The first
column of the first row of the result set from the database is returned. The value is
obtained internally by using the universal rs.getObject method.

String s = (String) xs.getValue("select mystring from mytable
where key=?",keyValue);

• getValue(int sqlType, String query,Object... bindVars) allows to get a
single value from the database. The sqlType hints what type to assume for the column.

Date d = (Date) xs.getValue(java.sql.Types.DATE,
"select mydate from mytable where key=?",keyValue);

• getRow(String query,Object... bindVars) allows to get the first row of a
query from the database. The following rows are ignored.

DataRow dr = xs.getRow("select * from mytable where key=?",keyValue);

• getList(String query,Object... bindVars) allows to get the resulting records
as a query in the order received.

189

13.5. ACCESSING EXTERNAL DATABASES

List<DataRow> drl = xs.getList(
"select * from mytable where acolumn=? order by bcolumn",
aValue);

13.5.7 DataRow interface

A com.groiss.store.external.DataRow is a simple interface representing one tuple of
a query result. It provides one method:

• getObject(String columnName) returns the object associated with the given col-
umn name. The column names must always be given in lowercase.

See the Java documentation of the com.groiss.store.external package for more details.

190

14 Web services

@enterprise application classes can use external web services, and provide own web service
interfaces for external use. Administration console provides easy management of own web
services, and allows generation of client classes for external web service from corresponding
WSDL.
@enterprise provides support for web service oriented development in a broad variety of use
cases.

14.1 Components

14.1.1 WS-Framework

@enterprise uses the Apache Axis2 Web service engine [7] (v.1.5). It also ships with support
for several WS-standards like WS-Security, WS-Policy, WS-Trust etc. Axis2 provides code
generation capabilities to generate client and service stubs and implementations from or into
WSDL-files. (see: [8]).

14.1.2 EP-Context

This component provides an invocation context for local service implementations, in way
similar as the com.groiss.servlet.Dispatcher class for servlet methods.
The component is implemented as an Axis2 module. The module defines handlers for InFlow,
OutFlow, InFaultFlow, and OutFaultFlow. If a service wants to use this functionality, it must
engage this module in the services.xml file:

<service>
...
<module ref="epcontext" />
...

</service>

When a service specifies the use of this module, a transaction handling mechanism takes
place (cf. com.groiss.servlet.Dispatcher):

• If the web service throws no exception, a commit is performed automatically.

• If the web service signals an error by throwing an exception, a rollback is performed.

If a different behavior is desired, then the web service implementation must take care of it.

191

14.2. PROVIDING WEB SERVICES

14.1.3 Partner Links

Partner links provide a mechanism to obtain location transparency for the addressing of
remote service links.
A partner link maps a logical id of a remote web service to a specific physical transport
address. Changes in the address do not require any changes in the clients, because they
reference just the partner IDs. The mapping of partner IDs to addresses can be accomplished
via the administrative GUI of @enterprise.

14.2 Providing web services

To provide a web service via @enterprise, the Axis2 standard ways of creating web services
should be used.

Code-first write your service-implementation first and generate the WSDL

Contract-first write your WSDL to specify the service, generate the service skeletons and
add your business logic

We recommend you to use the "contract-first" approach, because of better interoperability to
other systems.

14.2.1 Contract-first with Axis2

1. Specify the WSDL

2. Generate your service skeletons with the Axis2 CLI or Ant-Task [9]

3. Compile the generated sources

4. Package the generated sources

5. Add the new library to your application classpath

6. Subclass the service-skeleton and implement your business logic

7. Modify the services.xml to change the implementation class. This step is required,
because it’s not recommended to modify the generated source files.

8. Package your services.xml and your WSDL as an Web service archive (.aar)

9. Upload the archive to the server

10. Deploy the service

An example contract-first-service can be found in the @enterprise demos at demos/webservices.
Instructions on how to run the demo can be found in the readme.txt file.

14.3 Demos

Examples for the various scenarios can be found in the demo package demos.zip.

192

15 XWDL

15.1 Introduction

This chapter presents the XWDL, an extensible XML based dialect of WDL.
The classic approach to define process types in @enterprise was to use the Workflow
Description Language (WDL) or to draw the process with the process editor.
WDL is designed as a kind of structured, human-readable process programming language.
It is not mainly targeted for the exchange of process type information with other systems.
In order to semantically analyze the WDL-scripts, those third-party systems would have to
make use of conventional parsing techniques.
The export/import format of @enterprise allows one to transfer application definitions (which
contain process definitions) between @enterprise systems. While this format is XML based,
the process information is still sent along as a WDL-Script.

Hint: Defined process escalations are not available in XWDL!

The formulation of WDL in a structure-rich XML has the following aims / benefits:

• third-party applications can generate XWDL-Scripts on the grounds of a well under-
stood formalism

• use a plain DTD-driven XML editor to write XWDL-Scripts with automatic syntactical
correctness

• verification of the syntax using solely an out of the box XML-parser.

• third party extensions could be accommodated using an extension approach for the
DTD

15.2 Usage

15.2.1 HTML-Client

XWDL-Processes can be loaded into the system exactly like WDL Processes. There are
two new links on the Process / Script page for viewing (IE6 needed) or downloading the
XWDL-Code of a process.

193

15.3. API

15.3 API

A simple API is provided to insert XWDL-Processes into the system.

package com.groiss.wf.xwdl;
public class ProcessParser implements IProcessParser{

public ProcessDefinition loadProcess(InputStream is, boolean genRoles,
boolean genTasks) throws Exception;

public ProcessDefinition loadProcess(String fileName, boolean genRoles,
boolean genTasks) throws Exception;

public String getErrors();

A XWDL-Process can be loaded from an InputStream or from a File which is specified
via its filename. The booleans genRoles and genTasks state whether roles and tasks should
be generated. When the process could be loaded without errors, no Exception is thrown and
the getErrors method will return the empty string.
A typical usage would be like this:

ProcessParser pp = new com.groiss.wf.xwdl.ProcessParser;
try {

ProcessDefinition pd = pp.loadProcess(fileName, true, true);
} catch (Exception ex) {

//rollback;
}
if (pp.getErrors().length() != 0) {

// error occured;
// rollback;

} else {
// commit;

}

15.4 The basic DTD

The DTD uses ENTITY definitions for the content of each element. This allows for extensions
of the DTD in a modular manner. The extension mechanism is described in the next section.
The DTD resides in the file conf/xwdl.dtd which is part of the distribution in file ep-impl-
<versionnr>.jar.

15.5 An Example

We will now present a rendering of WDL in XWDL by means of an example.

194

15.5. AN EXAMPLE

15.5.1 WDL

The example in WDL is:

process some_control_structures()
version 1;
name "some control structures";
description "Show control structures";
maxtime 10 days;
forms form Jobform;
subject "form.subject";

begin
<first>
all start_task(form);
repeat

choice
"first choice: an if":

if (form.type = "hw") then
all hw_task(form);

elsif (form.type = "sw") then
form.recipient sw_task(form);

elsif (form.type = "adm") then
first:user adm_task(form);

else
first:user none_task(form);

end;

"second choice: a while":
while (form.type="hw") do

form.recipient while_task1(form);
<in_while>
form.recipient while_task2(form);
form.recipient while_task3(form);

end;

"third choice: a loop":
loop

form.recipient loop_task(form);
exit when (form.type="hw");

end;

"fourth choice: system steps":
system com.groiss.wf.SystemAction.nop();
form.recipient between_task(form);
system com.groiss.wf.SystemAction.nop();
system com.groiss.wf.SystemAction.nop();
<label_10>
form.recipient aftersys_task(form);

"fifth choice: andpar":
andpar

form.recipient andpar1_task(form);

195

15.5. AN EXAMPLE

|
all andpar2_task(form);
|
form.recipient andpar3_task(form);

end;

"sixth choice: orpar":
orpar

form.recipient orpar1_task(form);
|
form.recipient orpar2_task(form);
|
form.recipient orpar3_task(form);

end;

"seventh choice: branch":
branch

form.recipient a_branch();
end;

"eight choice: subprocesses":
call subflow1(form);

"nineth choice: goto (into the while)":
goto in_while;

end;
until xpath: "$form_form/finished = 'true'";

end

15.5.2 XDWL

The corresponding formulation in XWDL would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE process SYSTEM "./conf/xwdl.dtd">
<process id="some_control_structures" version="1" name="some control structures"
application="default" description="show the control structures">

<forms>
<formdecl id="form" typ="Jobform"/>

</forms>
<label id="first" />
<activity id="start_task">

<agent string="all" />
<form name="form" />

</activity>
<loop>

<choice>
<case name="first choice: an if">
<if condition="form.type = "hw"">

<then>
<activity id="hw_task">

196

15.5. AN EXAMPLE

<agent string="all" />
<form name="form" />

</activity>
</then>
<elsif condition="form.type = "sw"">

<then>
<activity id="sw_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</then>

</elsif>
<elsif condition="form.type = "adm"">

<then>
<activity id="adm_task">

<agent string="first:user" />
<form name="form" />

</activity>
</then>

</elsif>
<else>

<activity id="none_task">
<agent string="first:user" />
<form name="form" />

</activity>
</else>

</if>
</case>
<case name="second choice: a while">
<while condition="form.type = "hw"">

<activity id="while_task1">
<agent string="form.recipient" />
<form name="form" />

</activity>
<label id="in_while" />
<activity id="while_task2">

<agent string="form.recipient" />
<form name="form" />

</activity>
<activity id="while_task3">

<agent string="form.recipient" />
<form name="form" />

</activity>
</while>

</case>
<case name="third choice: a loop">
<loop>

<activity id="loop_task" >
<agent string="form.recipient" />
<form name="form" />

</activity>
<exit condition="form.type = "hw"" />

</loop>

197

15.5. AN EXAMPLE

</case>
<case name="fourth choice: system steps">

<system methodcall="com.groiss.wf.SystemAction.nop()" />
<activity id="between_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<system methodcall="com.groiss.wf.SystemAction.nop()" />
<system methodcall="com.groiss.wf.SystemAction.nop()" />
<activity id="aftersys_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</case>
<case name="fifth choice: andpar" >

<andpar>
<parallel>

<activity id="andpar1_task" >
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="andpar2_task">
<agent string="all" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="andpar3_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</andpar>
</case>
<case name="sixth choice: orpar">
<orpar>

<parallel>
<activity id="orpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="orpar2_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="orpar3_task">
<agent string="form.recipient" />

198

15.6. THE EXTENSION MODEL

<form name="form" />
</activity>

</parallel>
</orpar>

</case>
<case name="seventh choice: branch">
<branch>

<activity id="a_branch">
<agent string="form.recipient" />

</activity>
</branch>

</case>
<case name="eight choice: subprocesses">
<call id="subflow1">

<form name="form" />
</call>

</case>
<case name="nineth choice: goto (into the while)">
<goto label="in_while" />

</case>
</choice>
<exit condition="xpath:$form_form/finished = 'true'" />

</loop>
</process>

Versioning: If -1 is specified as the version of the process, it gets a new version number.
If there are already process definitions with this id in the system, the new process gets the
highest version number of those processes plus one. If there are no processes with this id,
version number 1 is assigned.

15.6 The extension model

15.6.1 The extension DTD

The extension mechanism follows the spirit of the formulation of Modular XHTML [5]
without introducing any unneeded complexity.
The main idea is to leave the basic XWDL DTD untouched and to define a specific extension
DTD which would include the original DTD like this:

<![INCLUDE [
<!ENTITY % xwdl.mod SYSTEM "./xwdl.dtd">
%xwdl.mod;]]>

Before the inclusion, one would define a name for the extension like this:

<!ENTITY % adonis.name "adonis">
<!ENTITY % adonis.pfx "%adonis.name;:">

Further a namespace for the extension is to be defined:

<!ENTITY % xwdl.process.xmlns.extra 'xmlns:%adonis.name;
CDATA #FIXED "http://www.woanders.com"'>

199

15.6. THE EXTENSION MODEL

The xwdl.process.xmlns.extra entity was included in the attributes for the process element
in the main xwdl.dtd file. By defining the namespace here, we can annotate the specific
elements with the name prefix (adonis in this case).
Additional attributes would be declared via stand alone attribute lists like in the following
example. We add an extra attribute to the element if with an attribute name which is prefixed
by the namespace in the extension DTD. It is defined as implied, so it is not mandatory

<!ENTITY % adonis.if.condition.qname "%adonis.pfx;condition">
<!ATTLIST if

%adonis.if.condition.qname; CDATA #IMPLIED
>

Changes in the element structure are implemented by defining the new elements in the
extension DTD and then by defining the corresponding . . . content entity from the xwdl.dtd
file. The example declares a new element adonis:followingProcess with four attributes and
states the new content model for the activity. Thereby we can use the new element within
activity elements after the original content (agents and forms).
It is a requirement, that the original content of the elements like described in the
xwdl.dtd file is not altered but merely augmented.

<!ENTITY % adonis.followingProcess.qname "%adonis.pfx;followingProcess">
<!ELEMENT %adonis.followingProcess.qname; EMPTY>
<!ATTLIST %adonis.followingProcess.qname;

id CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
gs CDATA #IMPLIED

>

<!ENTITY % xwdl.activity.content
"(agent*,form*,%adonis.followingProcess.qname;*)" >

System steps can be extended as follows:

<!ENTITY % adonis.varout.qname "%adonis.pfx;varout">
<!ELEMENT %adonis.varout.qname; EMPTY>
<!ATTLIST %adonis.varout.qname;

task CDATA #REQUIRED
>
<!ENTITY % xwdl.system.content "(%adonis.varout.qname;)?">

The whole extension dtd looks like this:

<!ENTITY % adonis.name "adonis">
<!ENTITY % adonis.pfx "%adonis.name;:">
<!ENTITY % xwdl.process.xmlns.extra 'xmlns:%adonis.name;

CDATA #FIXED "http://www.woanders.com"'>

<!ENTITY % adonis.if.condition.qname "%adonis.pfx;condition">
<!ATTLIST if

%adonis.if.condition.qname; CDATA #IMPLIED

200

15.6. THE EXTENSION MODEL

>

<!ENTITY % adonis.followingProcess.qname "%adonis.pfx;followingProcess">
<!ELEMENT %adonis.followingProcess.qname; EMPTY>
<!ATTLIST %adonis.followingProcess.qname;

id CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
gs CDATA #IMPLIED

>

<!ENTITY % adonis.varout.qname "%adonis.pfx;varout">
<!ELEMENT %adonis.varout.qname; EMPTY>
<!ATTLIST %adonis.varout.qname;

task CDATA #REQUIRED
>

<!ENTITY % xwdl.activity.content
"(agent*,form*,%adonis.followingProcess.qname;*)" >

<!ENTITY % xwdl.system.content "(%adonis.varout.qname;)?">

<![INCLUDE [
<!ENTITY % xwdl.mod SYSTEM "./xwdl.dtd">
%xwdl.mod;]]>

15.6.2 An Example

An extended XDWL file using the above extension dtd could look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xwdl extensionHandler="com.groiss.wf.xwdl.NullExtensionHandler"?>
<!DOCTYPE process SYSTEM "./conf/adonis.dtd">
<process xmlns:xdwl='http://www.groiss.com'
xmlns:adonis="http://www.woanders.com" id="some_control_structures" version="1"
name="some control structures" description="Show the control structures"
application="default">
<forms>

<formdecl id="form" typ="Jobform" />
</forms>
<label id="first" />
<activity id="start_task">

<agent string="all" />
<form name="form" />

</activity>
<loop>

<choice>
<case name="first choice: an if">
<if condition="(form.type = "hw")" adonis:condition="cc">

<then>
<activity id="hw_task">

<agent string="all" />
<form name="form" />

201

15.6. THE EXTENSION MODEL

<adonis:followingProcess id="ididid" gs="gsgsgs"/>
<adonis:followingProcess id="ididid2" gs="gsgsgs2"/>

</activity>
</then>
<elsif condition="(form.type = "sw")">

<then>
<activity id="swx_task" name="the name of this task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</then>

</elsif>
<elsif condition="(form.type = "adm")">

<then>
<activity id="adm_task">

<agent string="first:user" />
<form name="form" />

</activity>
</then>

</elsif>
<else>

<activity id="none_task">
<agent string="first:user" />
<form name="form" />

</activity>
</else>

</if>
</case>
<case name="second choice: a while">
<while condition="(form.type = "hw")">

<activity id="while_task1">
<agent string="form.recipient" />
<form name="form" />

</activity>
<label id="in_while" />
<activity id="while_task2">

<agent string="form.recipient" />
<form name="form" />

</activity>
<activity id="while_task3">

<agent string="form.recipient" />
<form name="form" />

</activity>
</while>

</case>
<case name="third choice: a loop">
<loop>

<activity id="loop_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<exit condition="(form.type = "hw")" />

</loop>

202

15.6. THE EXTENSION MODEL

</case>
<case name="fourth choice: system steps">

<system methodcall="com.groiss.wf.SystemAction.nop()">
<adonis:varout task="something"/>

</system>
<activity id="between_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<system methodcall="com.groiss.wf.SystemAction.nop()" />
<system methodcall="com.groiss.wf.SystemAction.nop()" />
<activity id="aftersys_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</case>
<case name="fifth choice: andpar">

<andpar>
<parallel>

<activity id="andpar1_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="andpar2_task">
<agent string="all" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="andpar3_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</andpar>
</case>
<case name="sixth choice: orpar">
<orpar>

<parallel>
<activity id="orpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

<activity id="orpar2_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>

203

15.7. EXTENSION API

<activity id="orpar3_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</orpar>
</case>
<case name="eight choice: subprocesses">
<call id="subflow1">

<form name="form" />
</call>

</case>
<case name="nineth choice: goto (into the while)">
<goto label="in_while" />

</case>
</choice>
<exit condition="xpath:$form_form/finished = 'true'" />

</loop>
</process>

15.7 Extension API

Parsing a standard XWDL-file without extensions is done by @enterprise itself.
For the proper treatment of extension attributes and extension elements, we define a callback-
interface. We will use the JDOM-API [6] for processing.

public interface IExtensionHandler {
public void init();
public void handle(Element e, Step s, ProcessDefinition pd);
public void afterSave(ProcessDefinition pd, boolean saved)
throws Exception;

}

Call details:

• for extended elements: when the element is recognized, processing of the JDOM-tree
of the element is done by the handler. The tree walker in @enterprise will never step
"into" such a subtree.

• for extended attributes: when the containing element is recognized. The handler is
expected to process the extended attributes and nothing else.

• oids for the process and the steps are already set when the handler is called, but the
objects themselves have not yet been written to the database.

The extensionHandler is specified via a processing-instruction in the XWDL-file:

<?xwdl extensionHandler="at.adonis.xwdl.ExtensionHandler"?>

The processing instruction must be included at the outermost document level (before the root
XML element).
For debugging purposes, a NullExtensionHandler can be specified. This handler logs its calls
to the system log at log level ERROR.

204

15.7. EXTENSION API

<?xwdl extensionHandler="com.groiss.wf.xwdl.NullExtensionHandler"?>

205

16 BPMN

16.1 Introduction

This chapter presents the details of the BPMN 2.0 export functionality of @enterprise.
BPMN 2.0 [10] and @enterprise constructs cannot be simply exchanged for each other.
While a principal mapping between the model elements can be achieved in a quite straight-
forward manner, there are subtle differences in the details.
The goal of the BPMN exporter is to provide a BPMN view of @enterprise process definitions
with a suitable amount of detail to allow for extension and documentation with third-party
BPMN (drawing) tools.
The internal @enterprise layout information like position and size of the nodes and the
endpoints and way points of the edges is provided. But since the various tools have quite
different geometrical layouts of nodes and routing approaches to edges, the layout will
usually need to be manually adjusted to some degree.
The BPMN process export can be initiated from the tab Source of a process definition. There
are two buttons providing the ability to view or to download the BPMN representation of a
process definition.

16.2 Common elements

16.2.1 Basic layout

Within the root definitions element, there will be nested the itemDefinition elements,
signal elements, message elements, interface elements and their nested operation
elements. Then the central process element follows. After it, there will be globalUserTask
elements and resource elements. The last structure is the single BPMNDiagram element
which contains the geometrical information.

16.2.2 Principal definitions

The definitions root element contains the information prescribed by [10] and the @enter-
prise specific extension namespace.
For the namespace prefix, groissep is used, the corresponding namespace name is
http://www.groiss.com/bpmn20. The exporter attribute of the definitions element is
Groiss @enterprise, the id attribute is the oid of the process definition, with a "_" prefix,
the name attribute is the name of the process definition.

206

16.2. COMMON ELEMENTS

16.2.3 Form types

For each form type mentioned in the process definition and each subform table mentioned in
parallel for constructs, an itemDefinition element is created. The concrete type definitions
(Java classes) are not exported with the process.

For process form variables, the id attribute of the itemDefinition starts with "formtype_",
then the id of the @enterprise form type, an underscore and the version of the form type are
appended (e.g. formtype_mainform_1). The attribute structureRef captures the type infor-
mation of the form, its value is the class name of the Java-class that @enterprise generates
for the form type (e.g. com.dec.avw.appl.mainform_1). The itemKind attribute is always
Information and the isCollection attribute is always false.

For subform tables mentioned in parfor constructs, the id attribute of the itemDefinition
starts with "formtype_", then the id of the @enterprise form type of the main form, an
underscore, the version of the form type and the id of the subform table are appended (e.g.
formtype_mainform_1.1). The attribute structureRef captures the type information of the
form, its value is the class name of the Java-class that @enterprise generates for the the
formtype of the subform, prefixed by "setof_" (e.g. setof_com.dec.avw.appl.subform_1).
The itemKind attribute is always Information and the isCollection attribute is always
true.

16.2.4 Signals

Signals are generated for event-nodes and for choice constructs.
In the header,a signal element is generated for each event name mentioned in the sync,
raiseEvent, register and unregister @enterprise nodes of the process definition.
The name of the signal is the @enterprise event name. If an event context object (a form
variable) was given in the event-node, then the signals structureRef attribute will reference
the corresponding itemDefinition for the form type.

Likewise, for each choice-construct, a synthetic signal element is generated in the header.
The id of this signal is prefixed with "signal_choice", followed by the id of the choice step,
the signals name is prefixed by "choice_", followed by the id of the choice step. There is no
type information associated with this signal.

16.2.5 Messages

Messages are used rather sparingly and just when the XML schema demands such a construct.
The exporter generates one dummy message element with id of create_batch_job_message,
when batch job nodes are used in the process definition at all.

Another message element is generated, if web service nodes are used in the process definition.
The message id is ws_placeholder_message.

207

16.2. COMMON ELEMENTS

16.2.6 Interfaces and Operations

An interface element is constructed for each Web client or Web server entry mentioned in
the invoke, receive and reply nodes of the process. Each interface contains all the operation
elements of the web service or web client used by the process. Each of the operations will
reference the dummy ws_placeholder_message message.

For each batch adapter class used in batch job nodes, there is a single interface element
with a single operation element. The id of the interface element is the batch adapter class
name, prefixed with "if_". The id of the operation element is the id of the interface element
with an suffix of ".createJob".

16.2.7 Resource Definitions

For each of the four principal types of resource definitions (user, role optionally with an
organizational unit, agent of a previous task and agent referenced by a form field), one
resource element is defined as follows:

Resource Id Resource Parameter Name Description
userById userId id of the user
roleById roleId id of the role

[orgUnitId] id of the organizational unit (optional)
previousAgentByLabel label label of the task

agentByFormField formId id of the form variable
fieldName name of the form field

The resource definitions are parametrized to allow for flexible and concise reference via
potentialOwner or humanPerformer elements in the userTask elements.
All four resource definitions are included in every exported BPMN model, even if they are
not used.

16.2.8 Expressions

There are three variants of expressions in process definitions: the @enterprise proprietary
WDL-condition can be used, as well as Groovy and XPath.
An expression is mapped to a formalExpression element, or to an element with the
xsi:type of tFormalExpression. The following table shows the value of the language
attribute of the containing element for the three types of expressions. The expression itself is
captured as the elements content in the form of CDATA.

Expression Type URI language attribute
Groovy http://groovy.codehaus.org

WDL http://www.groiss.com/wdl
XPath http://www.w3.org/1999/XPath

A notable special case is the specification of a single Java method call which is a subset of
the WDL.

208

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

16.2.9 Omissions and Aspects for further enhancement

The following aspects of @enterprise process definitions are currently not within the scope
of the BPMN export mechanism:

• escalations

• timing information

• real data type structures for forms and form fields

• form field modes

• inherent properties of tasks and processes (like due date, organizational units, . . .)

• details of web services like types, messages and mappings of message elements to
properties

Currently there is also no normative schema description for the proprietary extension ele-
ments.

16.3 Mapping of @enterprise constructs

16.3.1 Process definition and form declarations

The process definition itself is mapped to a process element. The id attribute is the id
of the process definition concatenated with "_" and the version of the process definition.
The name attribute is the name of the process definition. Attribute isClosed is set to false,
since there may always be additional events (like abort) occurring in @enterprise. Attribute
isExecutable is set to true, if the process definition was active.

The nested documentation element is populated with the description of the process defini-
tion.

There is a nested groissep:process extension element, where all the properties directly
attached to an @enterprise process definition are preserved in the export in the form of
attributes. The mapping should be self-explanatory.
An additional extension element groissep:exporter is written with the attributes built,
servername, hostname and exportedBy populated with the export date, the avw.servername
configured in @enterprise the hostname of the exporting machine and the principal who
initiated the export.

The begin node of the process is mapped to an startEvent element, the end node is written
as an endEvent element.

For each of the process form variables, irrespective whether they are local forms variables or
in-out form variables, a nested property element is written. The id attribute is the id of the
form variable. The type of the form is referenced via the itemSubjectRef attribute which

209

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

states the id of the corresponding itemDefinition element. The name attribute is just the
id of the form variable.
There may be a nested extension element named groissep:property, if there is additional
information available. The attribute formname will carry the display name of the form
variable (if they are different). In the case of an @enterprise view form, the attribute
baseForm references the id of the base form variable.

16.3.2 Annotations

Annotations are mapped to textAnnotation elements. Those elements are nested within the
current context (which might be the top level process element or which might be a nested
subProcess element from a "parallel for" node. The id attribute of the textAnnotation
element is the oid of the annotation, prefixed by "_". The text of the annotation is cap-
tured in the content of a nested text element. An association element connects the
textAnnotation element via its sourceRef attribute to the the element of the target node
via its targetRef attribute.

16.3.3 Flows

The edges in the process graph are represented in @enterprise as Flow objects. Each Flow
object is mapped to a sequenceFlow element. The id attribute is the oid of the Flow object.
Those elements are nested within the current context (which might be the top level process
element or which might be a nested subProcess element from a "parallel for" node.
Conditional expressions in @enterprise are usually attached to nodes (like if or choice
branch). Contrastingly, in BPMN, the expressions are specified within the flows. The ex-
porter will attach the expressions from the @enterprise nodes to the appropriate sequenceFlow
elements.
For each sequenceFlow element which is not a ’normal’ @enterprise flow, there is a nested
groissep:flow extension element with the attributes type and typeName to capture the
kind of flow in terms of @enterprise.

16.3.4 Common step structure

For each of the steps of an @enterprise process definition (the nodes in the process graph),
an appropriate BPMN element will be generated as detailed below. In addition to the specific
node information there are some common aspects. The id attribute of the BPMN element of
the step will be the @enterprise step id (a numbering scheme within a process definition)
prefixed by "_". The name attribute of the element will usually correspond to the text
displayed within or below the node in the process editor.
There will be a nested extension element groissep:step with the attributes type, typeName,
name, label, icon and color. For steps which are tasks, there may be an additional
skipable attribute.

16.3.5 Activities

Tasks

For each task node, a userTask element will be generated.

210

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

The agents of the task will be captured as a sequence of nested humanPerformer elements
(in the case of users and agents of previous steps), and potentialOwner elements (for roles
and agents via formfields). Those elements will have the appropriate nested resourceRef
and resourceParameterBinding elements like outlined in section Resource Definitions
above.
In the case of a Java method expression to define the agent, there will be a potentialOwner
element with a nested resourceAssignmentExpression with a nested formalExpression
element containing the expression as CDATA.

A notable semantic difference between @enterprise and BPMN is that a multi valued list of
agent descriptions in @enterprise means that the task will be routed in sequential order to
the agents of the list, while the semantics of multiple performers in BPMN is questionable.

The nested documentation element is populated with the description of the task definition.

There will be a nested extension element groissep:userTask with the attributes taskid,
name, version, active, duration, cost, effort, firstAgentAtRuntime and
furtherAgentsAtRuntime. Within these elements there will also be nested element cap-
turing the condition and method hooks potentially attached to a task. Those elements will
be

• groissep:preProcessingAction,

• groissep:postCondition,

• groissep:compensationAction,

• groissep:takeAction and

• groissep:untakeAction

which are formalExpressions. The groissep:postCondition element could have a
nested message element for the post condition message.

The specification of the step forms, that is which form variable is visible in which user task,
is somewhat involved within the context of BPMN.
For a task without any step forms, there will be a nested ioSpecification element with a
nested empty inputSet element and a nested empty outputSet.
Since @enterprise stepform semantics imply potential read write access to the forms, a form
variable has always the data input as well as the data output aspect.
For each step form variable, there will be a dataInput element (with attribute id consisting
of the prefix "in,̈ followed by the id of the containing userTask element and a sequence
number within the step), as well as adataOutput element (with id attribute prefix of "out").
Both elements will have the id of the form variable as name and the id of the corresponding
itemDefinition (formtype) as itemSubjectRef.
The inputSet element will contain dataInputRefs for all the forms, the outputSet
element will contain dataOutputRefs for them.
Additionally, for each of the step forms , there will be one dataInputAssociation element
as well as one dataOutputAssociation element.

211

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

The data input associations connect the "formvar" property to the corresponding
"in_stepid_number" data inputs. Likewise, the data output associations connect the
"out_stepid_number" data outputs to the corresponding "pform_formvar" property.

Adhoc tasks

For each @enterprise adhoc task, there will be a globalUserTask element. Those elements
are not within the main process element, but will be appended to it. Extension elements of
adhoc tasks are identical to ’ordinary’ user tasks.
The representation of adhoc tasks differs from the one for ’ordinary’ user tasks in three areas:

• adhoc tasks do not have a direct representation in the process graph, there will be no
geometry information associated with them.

• there will be no resource assignment (via potentialOwner or humanPerformer
elements)

• there will be no dataInputAssociation and no dataOutputAssociation elements
for step forms

Subprocess calls

A subprocess node is mapped to a callActivity element. The attribute calledElement
has the @enterprise id of the called process. The inner structure of the subprocess itself
is not included in the BPMN export of the calling process definition. To specify the actual
parameters (form variables) for the call, there will be a nested ioSpecification element
and a dataInputAssociation and dataOutputAssiciation element per form variable
just like for the stepforms of user tasks.

System task nodes

A system-node is mapped to a scriptTask element with a nested script element. The
attribute scriptFormat of the scriptTask element will contain the MIME type of the
script language. The script element contains the CDATA of the script text. The used
MIME types are application/x-xpath for XPATH, application/x-groovy for Groovy
and application/x-wdl for WDL.

Batch nodes

A batch-node is mapped to a serviceTask element with batch as implementation attribute.
For each @enterprise batch adapter class name, an interface element with a single nested
operation element is generated in the header. The id of the interface element is batch
adapter class name, prefixed with "if_". The id of the operation element is the id of the inter-
face element with an suffix of ".createJob". The XML schema also needs an inMessageRef,
which always references the dummy create_batch_job_message. This message will only
be generated in the header, if batch-nodes are used in the process at all.

212

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

16.3.6 Control structures

If construct

Each if-node and elsif-node is mapped to a an exclusiveGateway with Diverging direction.
The then flow (groissep:flow) will carry the expression (conditionExpression), the
else flow is marked as the default flow. The end-node is an exclusiveGateway element
with Converging direction.

While construct

A while-node is mapped to a an exclusiveGateway with Diverging direction. The then
flow (groissep:flow) will carry the expression (conditionExpression), the else flow is
marked as the default flow. Note that there is no corresponding end-node for the while-node.

Loop construct

A loop-node is mapped to an exclusiveGateway element with Converging direction. The
corresponding exit-when-node is an exclusiveGateway with direction Diverging. The
then flow (groissep:flow) from the exit-when-node will carry the expression
(conditionExpression), the else flow is marked as the default flow.

Choice construct

A choice-node is mapped to an inclusiveGateway with direction Diverging. For each
choice node, there is a corresponding signal element generated in the root definitions
element. The id of the signal is prefixed with "signal_choice", followed by the id of the
choice step. The name of the signal is prefixed by "choice_", followed by the id of the choice
step. The signal itself symbolizes the manual choice selection of the user. It will carry the
information about which one of the branches is to be followed.
For each of the following choice-branch-nodes, an intermediateCatchEvent is created.
The nested signalEventDefinition references the choices signal via attribute signalRef.
The optional expressions for branch selectability by the user are annotated at the flows
between the choice-node and the choice-branch-nodes. A missing expression is transformed
to a true expression. The end-node of the choice is an exclusiveGateway element with
direction Converging.

Andpar and Orpar constructs

The starting nodes of andpar and orpar constructs are mapped to parallelGateway elements
with Diverging direction. The join-nodes of andpar and orpar constructs are mapped to a
complexGateway element with direction Converging.

For or-join-nodes, the activationCondition of the converging gateway will be annotated
with 1 of n.

For and-join-nodes without an explicit expression, the activationCondition will be n of
n, while for and-join-nodes with an explicit expression, the activationCondition will be

213

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

m of n. For the last case, the expression itself will be captured in a nested groissep:endpar
/ groissep:method extension element.

Branch construct

A branch-node is mapped to an parallelGateway element with Diverging direction. The
branch-flow from the branch-node is named branch, while the normal is not annotated in any
special way. An end-branch-node is mapped to an endEvent element.

Goto and Goto-end constructs

Goto-nodes and Goto-end-nodes are mapped to exclusiveGateway elements with direction
Diverging. The normal flow from the goto-node (to the target of the goto) is marked via
the default attribute. The corresponding sequenceFlow element is named goto, the the
sequenceFlow element of the other flow object is annotated with a false expression via a
nested conditionExpression element.

Parallel-For construct

A parfor-node construct is mapped to a subProcess element. The parfor-node itself and
the corresponding endfor-node are mapped to startEvent and endEvent elements. Those
elements and the other nodes and flows within the construct are nested within a subProcess
element with an id attribute of the id of the startEvent element with an suffix of "_SP".

The nested multiInstanceLoopCharacteristics element of the subProcess element
is marked as parallel by setting attribute isSequential to false. If there is a method call
specified in the end node of the parallel for, there will be a nested completionCondition
element with the formal expression corresponding to the method.

All the @enterprise nodes and flows within the parallel for will be nested within the
subProcess element; the flows to the begin of and from the end of the parallel for are
adapted to reference this element.

There are two principle forms of parallel for constructs. The first one states an iterator class
which determines the parallel instances, the second one iterates over a subform table.

For the kind of parallel for with an iterator class, this class is written as a nested loopCardinality
element within the multiInstanceLoopCharacteristics.

For the second kind of parallel for which iterates over a subform table, there will be a
nested dataObject element representing the subform table. The id attribute of this element
consists of

• the id of the main form,

• a ".",

• the id (number) of the subform table

214

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

• suffixed by the id of the parent subProcess element.

The attribute isCollection will be set to true. The appropriate itemDefinition will be
references via attribute itemSubjectRef.

The multiInstanceLoopCharacteristics element will contain a loopDataInputRef
as well as a loopDataOutputRef element which refer to this data object. The local loop
variable is represented by a property element nested within the subProcess element. The
id attribute of the property is set to the id of the form variable. The type of the form
is referenced via the itemSubjectRef attribute which states the id of the corresponding
itemDefinition element. The name attribute is just the id of the form variable. This
property is also referenced by the inputDataItem and outputDataItem elements nested
within the multiInstanceLoopCharacteristics.

There may be a condition at the parallel for node which decides if a subform instance should
result in a parallel instance. This condition is captured as element groissep:whenExpression
within a nested groissep:parfor extension element.
The actual nodes within the parallel for respectivly the subProcess element will start with a
nested startEvent element and conclude with an endEvent element.

16.3.7 Events

Sync nodes

A sync-node is mapped to an intermediateCatchEvent element with a nested
signalEventDefinition element which references the signal element that has also been
generated in the root definitions element.

The id of this signal is the @enterprise event name, prefixed with "signal_". The name of
the signal is the @enterprise event name.

If the event context object was given in the sync-node, and this was a form or a formfield, then
the signals structureRef attribute will reference the corresponding itemDefinition for
the form type. The signalEventDefinition element of the intermediateCatchEvent
element references the id of the signal by its signalRef attribute. Additionally, there will be
a dataOutput element, a dataOutputAssociationElement, and an outputSet element
by which the output signal of the catch event is mapped to the form variable (if applicable).

The groissep:sync extension element will carry the information about the @enterprise
event handler class and the context string.

Raise nodes

A raise-node is mapped to an intermediateThrowEvent element with a nested
signalEventDefinition element which references the signal element that has also been
generated in the root definitions element.

215

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

The id of the signal is the @enterprise event name, prefixed with "signal_". The name of the
signal is the @enterprise event name.

If an event context object was given in the raise-node, and this was a form or a formfield, then
the signals structureRef attribute will reference the corresponding itemDefinition for
the form type. The signalEventDefinition element of the intermediateThrowEvent
element references the id of the signal by its signalRef attribute. Additionally, there will be
a dataInput element, a dataInputAssociationElement, and an inputSet element by
which the form variable is marked as input for the signal of the throw event (if applicable).

The groissep:raiseEvent extension element will capture the @enterprise event transac-
tion mode and the context string.

Register nodes

An event-register-node is mapped to a scriptTask element which contains the @enterprise
expression to register an event.

Additionally, a signal element has also been generated in the root definitions element.
This signal is not directly linked to the scriptTask element. The id of the signal is the
@enterprise event name, prefixed with "signal_". The name of the signal is the @enterprise
event name. If an event context object was given in the register-node, and this was a form
or a formfield, then the signals structureRef attribute will reference the corresponding
itemDefinition for the form type.

Unregister nodes

An event-unregister-node is mapped to a scriptTask element which contains the @enter-
prise expression to register an event.

Additionally, a signal element has also been generated in the root definitions element.
This signal is not directly linked to the scriptTask element. The id of the signal is the
@enterprise event name, prefixed with "signal_". The name of the signal is the @enterprise
event name. There is no event context object in this case.

Wait nodes

A wait node is mapped to a intermediateCatchEvent element with a nested
timerEventDefinition element.

If a time interval was given, it is included in a nested timeDuration element in ISO-8601
syntax. For workdays, which are not included in ISO-8601 semantics, the suffix "D_W" will
be used.

Other arbitrary date expressions are captured by a nested timeDate/formalExpression
element.

216

16.3. MAPPING OF @ENTERPRISE CONSTRUCTS

16.3.8 Web services

Invoke nodes

A web service invoke-node is mapped to a serviceTask element with implementation
attribute ##WebService. The operationRef attribute references the corresponding nested
operation element in the appropriate interface.

An optional exception handling is mapped to a boundaryEvent element attached to the
serviceTask via attribute attachedToRef. A nested errorEventDefinition element
captures the exception semantics. The end-node of the exception handling is mapped to an
exclusiveGateway element with Converging direction. At this gateway, the normal flow
and the exception flow will meet again.

Receive nodes

A web service receive-node is mapped to a receiveTask element with implementation
attribute ##WebService. The operationRef attribute references the corresponding nested
operation element in the appropriate interface.

If the reception starts the process, the instantiate attribute will be set to true. No further
transformations (like omission of preceding start events) are applied.

Reply nodes

A web service reply-node is mapped to a sendTask element with implementation attribute
##WebService. The operationRef attribute references the corresponding nested operation
element in the appropriate interface.

217

17 Usage of DOJO and JavaScripts

This chapter describes the handling of the @enterprise JavaScript library, the DOJO compo-
nents (AJAX), how to use customized DOJO controls and the new smartclient handling.

17.1 The @enterprise JavaScript library

This section describes how to embed the @enterprise JavaScript library and how the files are
organized in packages. Furthermore some useful methods are explained.

Each page which should use JavaScript must contain following import within the head-tag.
The files are taken from the JavaScript source directory, packaged into the page and cached
on the server:

<script type="text/javascript" src="../scripts/dojo/dojo.js"
data-dojo-config="parseOnLoad: true">

</script>

All @enterprise JavaScript methods are structured in packages and are stored in
alllangs/scripts/ep/_base within the ep-impl-<version>.jar. Some useful methods are
described below:

• ep.util.isFF: Check, if the current browser is Firefox.

• ep.util.isIE: Check, if the current browser is Internet Explorer.

• ep.util.isSafari: Check, if the current browser is Safari. Example:

if(ep.util.isFF) {
//handling for Firefox
...

}
else if(ep.util.isIE) {
//handling for Internet Explorer
...

}
else if(ep.util.isSafari) {
//handling for Safari
...

218

17.1. THE @ENTERPRISE JAVASCRIPT LIBRARY

}
else {
//handling for all other browsers
...

}

• ep.util.getParam(name,query_string): This method gets the parameter value
from the query_string of the URL (= everything behind the question mark). The
parameter query_string is optionally and if not used, document.location.search is the
default search string.

• ep.util.moveEntries(sourceid,targetid,sorted,indexarray): Moves the
selected entries from selectlist sourceid (= id of the source selectlist) to selectlist
targetid (= id of the target selectlist). The parameter sorted is a boolean parameter
and indicates, if the moved entries should be sorted in target selectlist. The parameter
indexarray contains the indices of the entries in source selectlist, which should be
moved. If the parameter indexarray is null, all entries are moved.

• ep.util.moveAllEntries(sourceid,targetid,sorted,indexarray): Moves
all entries from selectlist sourceid (= id of the source selectlist) to selectlist targetid (=
id of the target selectlist) analogous to ep.util.moveEntries().

• ep.util.showToolbar(actions,target,toolbar,orientation): By calling this
method the servlet method com.groiss.avw.html.HTMLToolbar.show will be invoked.
The parameter actions contains all actions, which should be displayed in toolbar. The
actions parameter is a whitespace separated string containing the id’s of the actions
(from a XML-configuration). The target parameter indicates the location, where the
toolbar should be displayed. If the parameter is empty, parent.right is used. With
the optional parameter toolbar you can define the toolbar frame. If not defined, the
parent.toolbarframe is default. The parameter orientation can be used to set the
alignment of the toolbar. The character v symbolizes, that a vertical toolbar should be
used; h or empty orientation parameter means that horizontal toolbar should be used.

Example:

<body onload="ep.util.showToolbar(
'admin.refreshControl myxml.save','parent.right')">

...
</body>

• ep.util.clearToolbar(toolbar): This method removes all functions from the
toolbar. With the optional parameter toolbar you can define the toolbar frame. If not
defined, parent.toolbarframe is default.

• ep.util.urlEncode(val,doc): This method encodes a string (= parameter val)
and returns the encoded value for URL’s. The optional parameter doc contains a
reference to a document object; if the parameter is not used, the current document is
used.

• ep.util.urlDecode(val): This method is the direct opposite to ep.util.urlEncode().

• ep.util.refreshOpener(): Method to refresh the opener window, e.g. if data are
changed in a popup and the opener should be refreshed with this data.

219

17.2. USING DOJO IN @ENTERPRISE

17.2 Using DOJO in @enterprise

The DOJO toolkit is an open source modular JavaScript library designed to ease the rapid
development of cross platform, JavaScript/Ajax based applications and web sites. One
important feature of Ajax applications is asynchronous communication of the browser with
the server: information is exchanged and the page’s presentation is updated without a need
for reloading the whole page.
@enterprise uses the latest DOJO version from http://dojotoolkit.org/

17.2.1 Add DOJO to a page/form

This section describes which components are necessary to use DOJO in your forms (xhtml,
xforms) with the standard @enterprise style:

1. Most important import is:

<script type="text/javascript" src="../scripts/dojo/dojo.js"
data-dojo-config="parseOnLoad: true">

</script>

Depending on the used DOJO control (see section Usage of customized DOJO controls)
it is recommended to use DOJO layers for reducing server requests and increasing
performance. In XForms layers are imported automatically, in all other cases use the
layer ep/common-form-widgets.js like in following example:

<script type="text/javascript" src="../scripts/ep/common-form-widgets.js">
</script>

2. Import style definition:

<link rel="stylesheet" type="text/css"
href="../servlet.method/com.groiss.gui.css.StyleConf.loadCSS">

</link

3. Import widgets, for example:

require(["dojo/parser",
"ep/widget/DateField", //necessary for date fields
"ep/widget/ObjectSelect"]); //necessary for obj. select

DOJO widgets are prepackaged components of JavaScript code, HTML markup and
CSS style declarations that can be used to enrich websites with various interactive
features that work across browsers.

4. Add the following css-class to the body tag:

<body class="claro">

Hint: It is recommended to use dojo/ready instead of <body onLoad="foo()">. More
details according this issue can be found on
http://dojotoolkit.org/reference-guide/1.10/dojo/ready.html#dojo-ready

220

17.2. USING DOJO IN @ENTERPRISE

17.2.2 Usage of customized DOJO controls

This section describes how the components DateField and ObjectSelect can be added to
the form.

Date control - ep/widget/DateField

For adding a datefield an input-field must be created of dojoType ep/widget/DateField
like in following example:

<input type="text" name="changeTime" id="changeTime" showTime="false"
value="" data-dojo-type="ep/widget/DateField" selectToday="true"/>

The attribute showTime means, that the time is displayed, if set to true. If attribute
selectToday is set to true, an additional icon (function) for getting the current day is
displayed beside the date picker. With attribute defaultTime then defined default time
(hh:mm pattern) is selected, otherwise if no default time is specified, the current time of the
client will be used (for dateTime fields only). If the value of a datefield should be changed,
the method set should be used like in following example. The method get reads the value
of the datefield.

require(["dijit/registry"], function(registry) {
registry.byId('changeTime').set('value','01-01-2009');
registry.byId('changeTime').get('value'); //read value of datefield

});

Object selection - ep/widget/ObjectSelect

For adding a object selection an select-field must be created of dojoType
ep/widget/ObjectSelect like in following example:

<select id="substitute" data-dojo-type="ep/widget/ObjectSelect"
name="substitute" style="width:400px" class="ep_select"
classname="com.groiss.org.User" searchAttributes="surname,id"
value="['','']">

</select>

The attribute classname is required and must contain a java class of type
com.groiss.store.Persistent. The following optional attributes can be entered:

• searchAttrs: A comma separated list of attributes can be entered for searching the
input string.

• searchid: This parameter must be used, if a WHERE-clause with parameter should
be used. The searchid consists of the xml-id (created by the @enterprise GUI-
Configuration) and the node-id, i.e. <xmlid>.<nodeid> and executes the appropriate
action node of the xml.

• parameters: The parameters for the attribute condition in xml-file, if the WHERE-
clause contains parameter.

221

17.2. USING DOJO IN @ENTERPRISE

• attribs: A comma separated list of attributes to display; if empty: toString

• noClass: If set to true, the selected value will be in form <oid> instead of <class-
name>:<oid> (default: false)

• value: Initial value in form [’label’,’classname:oid’]

• fetchAttrs: Allow to (pre-)fetch dependent objects from the database by efficient
operations. The content is a comma separated list of names of java fields of the
corresponding class. The field names must denote persistent objects! Usually one
BulkQuery per field is executed instead of a (single record) select-statement per record
and field.

If the selection needs a condition with parameter, it must be defined in following way:

Write an query node in application’s XML which has been created by the @enterprise
GUI-Configuration. This query must be inside the <nodes> block (see section Non tree
nodes (<nodes>)). In our example we need all departments with sub-departments:

<nodes>
...
<query id="DeptsWithSubdeptsSelect">
<classname>com.groiss.org.Dept</classname>
<attribs>name</attribs>
<searchAttrs>name,id</searchAttrs>
<title>@@@ep:dept@@</title>
<condition>
oid in (select superdept from avw_flatdepttree where application=?)

</condition>
<types>Long</types>
<rightsMayExecute>NONE</rightsMayExecute>
<allowModifications>true</allowModifications>

</query>
...

</nodes>

The attribute condition defines the SQL WHERE-clause. The parameters can be defined
with question marks (?) which are the placeholders. In this case the attribute types
is necessary to define the datatypes of the given parameters of the condition. For each
parameter in condition a type is needed (comma-separated list). Possible values are:

• Persistent

• Date

• Long

• Double

• Integer

• String

222

17.2. USING DOJO IN @ENTERPRISE

• OIDList

A parameter with type OIDList has to be a nested JSON array (double square brackets are
needed!), e.g. [[oid1,oid2,oid3]]. The condition has only one question mark (e.g: "oid not in
(?)").
A special placeholder is ${user} which is filled with the oid of the current thread user -
example:

<nodes>
<query id="UserSelectWithoutCurrentUser">
...
<condition>oid > 1000 AND oid != ${user}</condition>
...

</query>
</nodes>

The attribute rightsMayExecute defines the right-id which right should be checked. If the
value NONE is entered, no right check will be performed.

If the property allowModifications is set to true insert, update and delete using JSONLoader
is allowed.

After creating an action node we have to set the attributes searchid and parameters in the
appropriate HTML-file. In our example the parameter is the oid of the default-application:

<select name="dept" id="dept" class="ep_select" style="width:400"
tabindex="2" data-dojo-type="ep/widget/ObjectSelect"
autoComplete="true" searchid="<xmlid>.DeptsWithSubdeptsSelect"
parameters="1">

</select>

The attributes searchid and parameters can be set via JavaScript by using the set method
like set("searchid", value) and set("parameters", value). Following an example
how to use these functions:

require(["dijit/registry"], function(registry) {
var appl = registry.byId("application");
var proc = registry.byId("proctype");
if(appl.value && appl.value!='') {

proc.set("searchid", "ProcDefOfApplicationSelect");
proc.set("parameters", ''+appl.value);

}
});

The methods get and set should be used in the same way described in section Date control -
ep/widget/DateField. In object selection the method get(’value’) returns the key only! If
the displayed value of the current selection is needed, the method get(’displayedValue’)
has to be used.

223

17.2. USING DOJO IN @ENTERPRISE

17.2.3 Implementing own widgets

Functionality beyond forms should be handled with widgets. This section describes some
cases using widgets in @enterprise. First of all widgets should be placed in applications
under appli/classes/alllangs/scripts/ep/widget. A widget consists of a JavaScript
file and perhaps a template (html file). A tutorial how to create and implement widgets is
described under http://dojotoolkit.org/documentation/#tutorials

Public @enterprise widgets

@enterprise offers some public widgets which are needed for creating own applications.
Two widgets (ObjectSelect and DateField) are described already in sections above, but there
are some other mentionable widgets:

• ep/widget/smartclient/grid/Column: Necessary widget for overwriting column
behaviour, e.g. in worklist (attribut jsClass in xml file - see section Configuring the
Worklist Client).

• ep/widget/smartclient/_Action: Widget for creating (task) functions and de-
scribed in section below.

• ep/widget/smartclient/ProcessDetails: This widget allows to display the pro-
cess details with methods showDetails(objectId,props) and getInlineDetails(objectId,props).

• ep/widget/smartclient/ProcessDetailsHandler: Standard process detail han-
dler for displaying detail tabs of a process. It is possible to implement a own detail
handler and enter it at the process definition in administration in appropriate field.

• ep/widget/smartclient/StandardDialog: Widget opens a popup with a Cancel
button by default, OK button and resize handling is optionally. The Cancel button
closes the dialog and discard all changes. The OK button calls the function onCommit
of the panel and closes finally the dialog. Example:

var thePane = new PanelType({
onCommit: function(onComplete) {
// do something..
onComplete();

}
});

var dlg = new Dialog({
title: "Test dialog",
content: thePane,
showOK: true

});

It is important that the function onCommit is defined before the dialog is created. If
components in dialog should resize, the style class balloon must be defined.

• ep/widget/smartclient/SelectDialog: Widget opens a popup where multiple
selection of objects is possible. Following examples shows the functionality:

224

17.2. USING DOJO IN @ENTERPRISE

SelectDialog.show({style: {height: "300px", width: "600px"},
tabs: [{title: "@@@forms@@",
url: "mypackage.MyClass.listFormTypes?exclusive="+
self._getMultiSelectValuesAsString(self.formtypesSelect)}]}).then(

function(result) {
array.forEach(result.values, function(formtype){
self.formtypesSelect.addEntry({value: formtype.value}, formtype.value);

});
});

This example opens a dialog for formtypes selection. The formtypes are retrieved via
the given url from server. The show methods returns a deferred object which allows to
add a then method which contains the selected objects as result. The result is a object
containing a values array. The values are objects of the store which were selected.

SelectDialog.show({style: {height: "300px", width: "600px"},
tabs: [{searchid: "mygui.UserSelect"},
{searchid: "mygui.DeptSelect"},
{searchid: "mygui.RoleSelect"}]}).then(

function(result) {
if (result.searchid == "mygui.UserSelect") {
// special treatment for first tab
}
...

In this example a dialog with 3 tabs is created. The tabs are defined as query-node
in GUI xml (see section Usage of customized DOJO controls - subsection Object
selection - ep/widget/ObjectSelect). The result contains the searchid which indicates
the selected tab.

• ep/widget/smartclient/Toolbar: Widget for defining a toolbar with actions.

• ep/config: AMD plugin to load server-config parameters. These parameters are
defined in properties.xml of appropriate application (see section Organization of Files).
Example:

define(["dojo/_base/declare",
"ep/widget/smartclient/_Action",
"dojo/request",
"ep/Utils",
"ep/config!"],

function(declare,
_Action,
request,
Utils,
serverProps) {
return declare([_Action], {
actionPerformed:function(evt) {

console.debug(serverProps["client.property"]);
console.debug(serverProps["myappl:my.client.property"]);

}
});

});

225

17.2. USING DOJO IN @ENTERPRISE

With help of the AMD-loader plugin ep/config! it is also possible to access/save
any user properties on the client. Usage:

define(["ep/config!",function(epConfig){
return declare([...],function() {

anyfunc: function() {
//access user property
console.debug(epConfig.userproperties.get("user.property"));
//set user property
epConfig.userproperties.set("user.property","new value");

}
};

});

Defined user properties may only be accessible on the client, if they are tagged as
allowOnClient="true". The attribute needsClientRefresh indicates, if a manual
client refresh is needed (value "true") or not. If value is "true" the user will be prompted,
if the refresh could be performed immediately after saving changed user property.

Utility widget

In many cases some common functions are always needed. In @enterprise these functions
are implemented in JavaScript class Utils.js (import as ep/Utils). Following functions are
available:

• showErrorMessage(e): Function to show errors especially at AJAX calls. The
argument could be a String or a JSON result of a AJAX call, e.g.

request.post("url", {handleAs:"json"}).then(function(result) {
}, Utils.showErrorMessage);

If the HTTP response code is an error code, showErrorMessage will be called. The
Dispatcher recognize AJAX calls and returns the appropriate JSON object.

• getErrorInfo(error): Returns a JSON object representing the error received from
a servlet method or null, if the error is sent by some other source. If the result is not
null, it may contain the following properties:

– errornumber: the number of a com.groiss.util.ApplicationException

– message: the message of a com.groiss.util.ApplicationException

– error: the message text of the error

– showHTML: if true, the message should not be encoded when shown to the user

• alert(message,title): This function opens a dialog which shows the given mes-
sage. If no title is passed, the default ’Warning’ will be taken as the dialogs title.

• refreshWorklists(data,showFirst,showDetailsOfFirstAdded,selectAdded):
This method is called with the results on an worklist action. It publishes the added
and deleted entries to the respective worklists. If showFirst is true, it publishes a show
topic for the first added entry. If showDetailsOfFirstAdded is true, the details of first
added entry are shown. If selectAdded is true, the added entry will be selected.

226

17.2. USING DOJO IN @ENTERPRISE

• showWorklist(id): Show the worklist with the given xml-id. Note, that the worklist
is not refreshed by this call!

• formatDateTime(d, pattern), formatDate(d): These methods take the server
settings and formats the given date. If d is null, an empty string will be returned. The
parameter pattern allows to define a own date-pattern; if null, the default pattern of
@enterprise is taken.

• formatPersistent(p): A persistent on client exists as JSON object with following
structure:

{ objectId: "classname:oid", _toString: "a_string" }

The method formatPersistent(p) returns the field _toString. On server side such objects
are build with StoreUtil.toJSONAsReference(persistent).

• formatMessage(string, /* array */ replacements): Formats a message (ar-
gument string) like MessageFormat in Java.

• htmlEncode(str): This function translates some special characters to their represen-
tation in HTML.

• showProcessDetails(pi,selTab,popupContext): With this function the process
details can be shown in a popup window. The argutment pi must consist of <class-
name>:<oid>. The argument tab indicates which tab should be opened. The following
shortcuts can be used:

– notes for notes tab.

– history for history tab.

– process for process tab.

– documents for documents tab.

– form:<formid> for form tab.

• openUserInfo(object,node, orient): This function opens a tooltip dialog with
information about the given user (argument object as <classname>:<oid>).

• taskString(ai) and docsString(doc): These functions returns the string repre-
sentation of given activity instance or document. Both methods can contain the object
as argument or a list of objects. The methods generate HTML: a break (
) between
the entries and an icon at documents. These methods are used e.g. in worklist dialogs
and in document list.

• showDMSFolder(folder,showToolbar,disableUpNav): This function opens the
DMS folder of given DMS object in a popup window. The boolean parameter show-
Toolbar indicates, if a toolbar should be displayed. The boolean parameter disableUp-
Nav allows to avoid breadcrumb navigation to any parent of the folder passed to that
function.

227

17.2. USING DOJO IN @ENTERPRISE

• executeReport(reportId,params,showToolbar,showClose,newWindow): Shows
given report (= reportId) in a popup. It is possible to add additional parameters (=
params) as array which are added to the request. The boolean parameter showToolbar
indicates, if a toolbar should be displayed. With boolean parameter showClose you
can display a close button in popup or not and newWindow indicates, if a popup or the
current window should be used for representation of reporting result.

• confirm(message): A confirmation dialog is displayed with an OK and Cancel
button and the given message. Usage:

Utils.confirm('text').then(function-on-ok, function-on-cancel);

• yesNoCancel(message): A dialog that shows the buttons Yes, No and Cancel with
given message. Usage:

Utils.yesNoCancel('text').then(
function-on-yes_or_no("yes"|"no"), function-on-cancel);

• prompt(message, defaultValue): A dialog that prompts for input of one value.
Usage:

Utils.prompt('text', defaultValue).then(
function-on-ok(newValue), function-on-cancel);

• hasRight(right, object): Returns a deferred JSONObject with the property
’hasRight’ holding the information if the current user has the passed right on the
passed object. The parameter right contains the id of the right and object the target
of this check (as "classname:oid" string, but can be null, if no target specific check).
Usage:

Utils.hasRight("right-id",object).then(function(result));

• getCurrentUser(): Returns the current user as "<classname>:<oid>" string.

Worklist data

The worklist is submitted as JSON array to the client with a set of attributes. The attributes
are categorized in must fields and optional fields. Must fields are always available even
the value of a field is null. Optional fields are available only, if the appropriate worklist is
configured.
Following must fields are available (on client e.g. wrapped in parameter ai for a worklist
entry):

• objectId: Contains the string <classname>:<oid> of current activity instance, e.g.
com.dec.avw.core.StepInstance:4295009902

• id: The process/activity instance id, e.g. 2

• priority: The priority of the current activity instance, e.g. 0

• subject: The subject of the activity instance, e.g. "My subject"

228

17.2. USING DOJO IN @ENTERPRISE

• application: Contains an array with following attributes about the application of
activity instance:

– id: The id of the application, e.g. default

– _toString: The toString-representation of the application, e.g. Default

– objectId: Contains the string <classname>:<oid>, e.g. com.dec.avw.core.Application:1

– _filterVal: The value used for (column) filtering in worklist table, e.g. "default"

– _sortValue: The value used for (column) sorting in worklist table, e.g. "Default"

• task: An array with following attributes about the task of current activity instance:

– id: The id of the task, e.g. order

– _toString: The toString-representation of the task, e.g. Order

– objectId: Contains the string <classname>:<oid>,
e.g. com.dec.avw.core.Task:4294967315

– version: The version of the task, e.g. 1

– _filterVal: The value used for (column) filtering in worklist table, e.g. "order"

– _sortValue: The value used for (column) sorting in worklist table, e.g. "order"

• activityForms: An array of objects containing all process forms used by process
instance. Each array element (= object) contains following attributes:

– id: The id of the process form, e.g. proc_f

– title: The displayed title of process form, e.g. "Process form"

– formtype: The formtype information about the process form with following
attributes:

* id: The id of the formtype, e.g. jobform

* version: The version of the formtype, e.g. 5

• agent: The agent of the current task (= activity instance) with following attributes:

– id: The id of the agent, e.g. eisenberg

– _toString: The toString-representation of the agent, e.g. "Roland Eisenberg"

– objectId: Contains the string <classname>:<oid>,
e.g. com.dec.avw.core.User:4294967203

• pd: This attribute contains the process definition information about current activity
instance:

– id: The id of the process definition, e.g. jobproc

– _toString: The toString-representation of the process definition, e.g. Jobproc

– objectId: Contains the string <classname>:<oid>,
e.g. com.dec.avw.core.ProcessDefinition:4294967273

– version: The version of the process definition, e.g. 7

– _filterVal: The value used for (column) filtering in worklist table, e.g. "Jobproc"

229

17.2. USING DOJO IN @ENTERPRISE

– _sortValue: The value used for (column) sorting in worklist table, e.g. "Jobproc"

• pi: Detailed information about process instance of current activity instance (=
ai.getProcessInstance()):

– oid: The oid of the process instance, e.g. 4295611007

– _toString: The toString-representation of the process instance, e.g. "Process
768"

– objectId: Contains the string <classname>:<oid>,
e.g. com.dec.avw.core.StepInstance:4295611007

– priority: The priority of the process instance, e.g. 0

– dueDate: The process due date in milliseconds, e.g. 1389703560000

– startedAt: The date when process instance has been started (in ms),
e.g. 1389692755000

– startedBy: The agent who started the process instance analog to attribute agent
described above

• orgUnit: The organizational unit of the current activity instance:

– id: The id of the organizational unit, e.g. GI

– _toString: The toString-representation of the organizational unit, e.g. "Groiss
Informatics"

– objectId: Contains the string <classname>:<oid>,
e.g. com.dec.avw.core.Dept:4294967205

• hasNotes: Indicates, if notes are attached to process (activity instance) as boolean
value true/false

• hasDocuments: Indicates, if documents are attached to process (activity instance) as
boolean value true/false

• hasSeen: Indicates, if activity instance is seen or unseen (boolean value true/false)

• taken: Contains the date in milliseconds about the time when activity instance was
taken (e.g. from role-worklist)

• started: Contains the date in milliseconds when current activity instance was started

• dueDate: The due date of current activity instance in milliseconds

• taskfunctions: The task functions of activity instance as an array of strings con-
taining <classname>:<oid>

• canUntake: Indicates, if activity instance can be untaken (boolean value true/false)

• origin: Symbolizes, if user sees the (activity) instance via substitution or not (possi-
ble values are in Java class ActivityInstance)

Optional fields could be for example:

230

17.2. USING DOJO IN @ENTERPRISE

• finished: The finished date of an activity instance, e.g. in suspension list

• lastAction: The last action as numeric value (see Java class ActivityInstance for
details)

• currentEditor: The current editor of the activity instance (only available, if AUTO-
TAKE is activated) which contains the information analog to attribute agent mentioned
above

• onBehalfOf: The original agent before representant has taken it containing the same
information as attribute agent

• description: The description of the current activity instance

In the new GUI the worklist is cached on the client and the changes are sent selectively.
There are 3 situations how worklists can be refreshed and shown again:

1. Worklist refresh is needed, because activity instances were changed (e.g. after process
start). An example (variant 2) is shown in the demo function
com.groiss.demo.StartJob.start:

JSONObject result = ClientUtil.getChangesAsJSON("demo.wl", true);
return new ActionPage("parent.require(['ep/Utils'],function(Utils) {" +

"Utils.refreshWorklists(" + result + ",true);});");

2. Worklist refresh is needed, but activity instances were not changed (e.g. form
field has been changed which is displayed in worklist as column value). In this
case the first step is to add the changed activity instances as changes by using
the com.groiss.wfe.WfEngine method propagateChange. The second step is
the same as described in point 1. An example is shown in the demo function
com.groiss.demo.DemoFunctions.approve.

3. Show the worklist only, because nothing has been changed. An example (variant 3) is
shown in the demo function com.groiss.demo.StartJob.start:

return new ActionPage("parent.require(['ep/Utils'],function(Utils) {" +
"Utils.showWorklist('demo.wl');});");

Information about the server-side function ClientUtil.getChangesAsJson is available in
@enterprise APIDoc. The client-side functions refreshWorklists and showWorklist are
described in section Utility widget of chapter Implementing own widgets.

Functions

Functions in smartclient should be developed as DOJO widget on client side. For this purpose
the @enterprise widget ep/widget/smartclient/_Action must be extended by writing
an own widget. This widget must be entered in @enterprise administration at
Applications/<appl>/Functions/<function-object>/Tab "General"/Client action, if used as
(task) function or it is possible to define the widget in GUI-Configuration (XML) like in
following example:

231

17.2. USING DOJO IN @ENTERPRISE

<action id="approve">
<name>@@@approve@@</name>
<onClick>ep/widget/smartclient/demo/Approve</onClick>
<apply>MULTI</apply>

</action>

Following an example for a client side function:

define(["dojo/_base/declare",
"ep/widget/smartclient/_Action",
"dojo/request",
"ep/widget/smartclient/wl-util",
"ep/config!"],

function(declare,
_Action,
request,
wlUtil,
serverProps) {

return declare([_Action], {
actionPerformed:function(evt) {

console.debug(serverProps["demo:client.property"]);

request.post("com.groiss.demo.DemoFunctions.approve2",{
handleAs: "json",
data:{

object: this.getSelectedIds(),
nodeid: this.nodeid

}
}).then(function(result) {

wlUtil.refreshWorklists(result);
});

},
isEnabled:function() {

var selection = this.getSelection();
if(selection.length==0) {
return false;

}
for (var i = 0; i< selection.length; i++) {
if (selection[i].pd.id != "demo_order") {

return false;
}

}
return true;

}
});
});

In the example above the id’s of selected worklist entries are submitted to the server-side
function com.groiss.demo.DemoFunctions.approve2 for processing. This example is
also available in @enterprise Demo package.

232

17.2. USING DOJO IN @ENTERPRISE

17.2.4 Smartclient notification API

The new notification API allows to send and receive arbitrary events to/at HTML-based
smartclients. The @enterprise notification API is based on CometD which is a scalable
HTTP-based event routing bus that uses a AJAX push technology pattern. More information
about CometD can be found on http://cometd.org/

The server / resp. server nodes in a cluster configuration can receive NotificationItems
which are distributed within the cluster nodes and to the clients.
The components of a NotificationItem are the destination (this is a combination of appli-
cation, org-unit and agent) and the payload (the serializable java object). @enterprise offers
the notification class com.groiss.notification.BasicNotificationItem which is able
to be extended. For NotificationItems for smartclients two method implementations are
needed

• a topic which allows to further differentiate the items at reception,

• a method getJsonPayload which transforms the payload into a JSONObject.

In order to send such NotificationItems, the facade
com.groiss.notification.NotificationSuite is provided. The most important method
there is:

public static void publish(NotificationItem ni, short type);

This method publishes a NotificationItem. The parameter type can be used to de-
note, if an item is inserted, updated or deleted. Use the statics provided in the class
com.groiss.Notification.Names for the values of this parameter.

Hint: The event is not published until after the transaction has been successfully committed.
In case of rollback, the items are silently discarded.

At a smartclient which wants to receive such notifications, the following steps are needed:

• Require / include the dojox/cometd

• Initialization of the CometD framework

• Subscription to the items topic (usually starting with "/service/ep/appl/" or "/ep/appl/")

• Implementation of a method to call when an item is received

Since a smartclient makes use of "internal" notifications, it executes all the relevant steps,
so it is recommended to integrate the functionality. Nevertheless, a mostly self contained
demo client is provided to allow to experiment with the functionality. The demo client can
be started via:

../servlet.method/com.groiss.demo.DemoNotificationClient.show

The JAVA sources for the client can be found in the demo package at
demos/java/com/groiss/demo/DemoNotification*.java and the corresponding HTML
masks at demos/classes/demo/masks/notification/*.*

233

17.3. STYLING

Authorization for notification

When your specific notification functionality is integrated in the smartclient, no special
steps for authorization are needed. The HTTP session is automatically used to initiate the
handshake with CometD and to establish proper credentials for the CometD session.
Also when a proprietary client is being used, and this client does make use of the usual HTTP
session mechanism via the session cookie, no special action is needed, the CometD session
will still be authorized for the user of the HTTP session.
But when a client is being used with its own session handling mechanism, which does not
rely on the HTTP session cookie, special handling is needed. An authenticated HTTP session
must be established and the id of this session must be provided during the initial CometD
handshake. In your client, use:

var credentials = {
"com.groiss.auth": {

// value provided to your client via your authentication mechanism
http_session_id: "<http_session_id>"

}
};

cometd.handshake(credentials);

17.3 Styling

Sometimes it is desirable to use own styles for an application instead of standard @enterprise
styles. For this purpos,e it is possible to place a file styles.less in the application class
path as described in section Organization of Files.

Hint: For compatibility reasons we also support the name styles.css. If a styles.less
and a styles.css file exists, the first one will be loaded.

To provide a consistent naming convention and to avoid confusion with existing selectors,
@enterprise uses prefixed CSS class names. For example, the classes assigned to form-based-
icons have the following structure scForm-<formid> scForm-version-<version>. The
CSS class structure is created as following:

General

• Main page

– <XMLID> - always assigned to the <html> tag

• Toolbar

– <XMLID>.<action> - assigned to a button in the toolbar and its icon node .
All @enterprise standard actions that are defined in admin.xml are therefore
expanded with this prefix.
class="... admin.insert scHasIcon scHasContent dijitButton"

234

17.3. STYLING

– taskfunction:<taskfunction-ID> - assigned to the button and icon node of
task-functions.
class="... taskfunction:create_selfsigned_usercert scHasNoIcon"

– scHasIcon, scHasContent - assigned to the button node if an icon is defined
for the button

• Functions (Dropdown menu items)

– taskfunction:<taskfunction-ID> - analog to taskfunction in toolbar

• Start process (Dropdown menu items)

– scProcess-<processid>, scProcess-version-<version>,
scApplication-<applicationid> - assigned to the icon node.

• Navigation

– <XMLID>.<nodeID> + <nodeID> - assigned to the top level nodes in the navi-
gation menu.
class="... dijitIcon standard.tasks tasks"

– scNavigationNode - assigned to all nodes in the navigation menu.
class="... scNavigationNode standard.wl dojoDndContainer"

– <XMLID>.<nodeID> - assigned to a respective elements.

DMS

• Table rows

– scForm-<formID>, scForm-version-<version> - assigned to a row in the
DMS table.
class="... scDmsForm scForm-Standarddokument scForm-version-1"

• Form Icons in DMS table row

– scDmsDocument, scDms<extension>, scDmsMime<mimetypepart1>,
scDmsMime<mimetypepart2>, scDmsForm, scForm-<formid>,
scForm-version-<version> - assigned to a icon node or to the children of the
icon node.
<div class="dijitInline scIcon scDmsDocument scDmsxml scDmsMimetext

cDmsMimexml scDmsForm scForm-Standarddokument scForm-version-1">
</div>
XMLitsm
.xml

– Form Icons in DMS new function

* scForm-<formid>, scForm-version-<version> - assigned to a icon
node or the children of the icon node.

Worklist

235

17.3. STYLING

• Worklist rows

– scPriority-<priority>

– scProcess-<processid>

– scProcess-version-<version>

– scApplication-<applicationid>

– scTask-<taskid>

– scTask-version-<version>

– scHasNotes - assigned to a process with a note.

– scHasDocuments - assigned to a process with documents.

– scOverdue - assigned if due date is exceeded.

– scUnseen - assigned to new processes.
class="scPriority-0 scProcess-AdHoc scProcess-version-1

scApplication-default scTask-adhoc scTask-version-1
scHasNotes scHasDocuments"

• Form icons in worklist rows

– scForm-<formid>

– scForm-version-<version>

– scFormShortcut scActivityForm-<formid>

... class="scFormShortcut scActivityForm-form" title="Form">
<div class="dijitInline scIcon scDmsForm scForm-test_form
scForm-version-1"></div>

• Process details

– scProcessDetails

– scProcess-<processid>

– scProcess-version-<version>

– scApplication-<applicationid>

– scTask-<taskid>

– scTask-version-<version>

– scPriority-<priority>

• Miscellaneous

– scInfoPane - top level class assigned to a info pane.

– scDocumentsPane - assigned to a Documents tab.

– scNotesPane - assigned to a Notes tab.

– scProcessImagePane - assigned to a Process graph tab.

– scProcHistoryGridPane - assigned to a History tab.

– scMailPane - assigned to a Mail tab.

236

17.3. STYLING

Reporting

• Top level

– scReport - always assigned to a top level element of an report

– scReport-<reportid>

• Rows

– scReportingCell-<entity>-<attribute>

– scReportingType-<type> - assigned according to a report type.

class="...scReportingCell-processInstance-pi_started scReportingType-date"

Subform tables

• scColumn-<columnId> - assigned to the td of the respective column

17.3.1 Referencing icons

@enterprise uses icons from icomoon library (see https://icomoon.io/#preview-ultimate/).
These icons are available in file ep-icomoon-repackaged-*.jar in the lib-directory of
@enterprise and are usable in several variants:

• Webfont:
Used for all our standard icons. It requires a font-file, that is imported by default
(as long as com.groiss.gui.css.StyleConf.loadCSS is imported in the html-file).
To use such font-icons it is convenient to specify them in LESS:

.scIcon.scInfo:after {
content: @icon-bubble-notification;
color: orange;

}

For all available icons, we have created less-variables that allows you to use the icons
as shown above. The variable names are @icon-ICONID. The iconid can be found in
the icon-preview on icomoon.io if you drive with the mouse over the icons.

• Images:
All icons are also available as images, are included in ep-icomoon-repackaged-*.jar
and can be loaded via ../images/icomoon/iconid.svg. There are two formats of
the icons, they are included as SVG (advantage: scaling image without loosing quality)
and as PNG. Pictures can be set in LESS as background-image in the styles.less
file.

If you want to use your own icons, you have to put your icon in the class path, see section
Mapping of URLs to files or methods.

237

17.3. STYLING

17.3.2 Styling examples

Examples 1, 2, and 4 can be found in styles.less of the demo application.
Example 1: Add an icon to a menu item in the navigation tree.

.scMainAccordion .dijitAccordionTitle .dijitIcon.demoLinks:after {
content: @icon-link3;

}

The xml-node-id is set as icon class which allows to define custom icons.

Example 2: Icon for a toolbar function and an action configured in the XML.

.taskfunction\:demo_approve.dijitIcon:after,

.demo\.approve.dijitIcon:after {
content: @icon-checkmark;

}

Example 3: Add an icon to (process) entry in "Start process" drop-down.

.scProcess.scProcess-<myprocid>.dijitIcon:after {
content: @icon-<processStartIcon>;

}

Example 4: Set the font-size for the id-column in demo.wl worklist.

.demo\.wl .dgrid-content .dgrid-column-id {
font-size: 120%;

}

238

18 Mobile GUI Client

This chapter describes the possibilities to adapt the Mobile GUI client. The description how
to use the mobile client can be found in the User Manual.

After activating the button Logon the appropriate configuration file (XML) in the default
urls are searched with the suffix _mobile only. The default XML for the mobile client is
standard_mobile.xml.

It is also possible to define an own com.groiss.wf.html.Worklist implementation (see
@enterprise API), but the method listFilters is not relevant.

The detail page of a worklist entry can be modified by setting a
ep/widget/smartclient/wl/ProcessDetailsHandler for your process definition in ad-
ministration. You’ll have to implement getMobileDetails:function(object,props)
and return either a

• dojox/mobile/View or

• a dojo/Deferred which resolves to a dojox/mobile/View

18.1 Worklist Example

This example shows how to use an own com.groiss.wf.html.Worklist implementation .
First we need a Worklist class like in following example:

public class MobileWLAdapter implements Worklist {

@Override
/* If subject of a task is empty, show <No subject> */
public void modifyTableLine(ActivityInstance ai,

Map<String,Object> line) {
Object o = line.get("subject");
if(o instanceof String) {

if(StringUtil.isEmpty((String)o))
line.put("subject", "<No subject>");

}
}

239

18.1. WORKLIST EXAMPLE

@Override
/* Get title of worklist */
public String getTitle() {

return "My Mobile Worklist";
}

@Override
/* Get list of all ais which are in itsm-application. If no itsm
* application is installed, show default worklist*/

public List<ActivityInstance> getList(List<ActivityInstance> l) {
WfEngine wfe = WfEngine.getInstance();
OrgData org = OrgData.getInstance();
Application appl = org.getById(Application.class, "itsm");
if(appl != null)

return wfe.getWorklist(appl, true);
else
return null;

}

@Override
/* Set new line style for RM processes - placeholder %linestyle% */
public String lineStyle(ActivityInstance ai, String style) {

WfEngine wfe = WfEngine.getInstance();
ProcessInstance pi = wfe.getMainProcess(ai);
if(pi.getProcessDefinition().getName().equalsIgnoreCase("RM")) {

return "rm_linestyle";
}
return null;

}
}

This class displays <No subject> if there’s no subject available. The getList method oper-
ates like a worklist-filter, which displays tasks of a particular application only. Furthermore
the line-style of a worklist-entry is changed, if a task of a particular process is displayed in
the worklist.

After creating a worklist implementation, the configuration file (XML) must be prepared as
in the following example. For this purpose open the GUI configuration in Administration
of @enterprise and make a copy of the entry with id standard_mobile. Rename it and edit
the entry by adding the worklist class MobileWLAdapter to the worklist-node. For more
information about GUI Configuration please take a look into System Administration Guide -
chapter GUI Configuration.

Snippet of configuration file:

...
<worklist id="wl">

<name>@@@ep:worklist@@</name>

240

18.2. DOJO CLIENT

<type>USER</type>
<default>true</default>
<onClick>ep/widget/smartclient/mobile/Worklist</onClick>
<widget>ep/widget/smartclient/mobile/WorklistListItem</widget>
<showInlineDetailsAt>column:id</showInlineDetailsAt>
<tableHandler>com.groiss.demo.MobileWLAdapter</tableHandler>
<actions>

<action id="untake" />
<action id="finish_mobile" />
<action id="goBack_mobile" />
<action id="seeLater_mobile" />
<action id="setAgent_mobile" />

</actions>
<columns>

<row>
<column id="id" name="@@@ep:id@@" visible="true" rowSpan="2" />
<column id="orgUnit" name="@@@ep:deptshort@@" visible="true" />

</row>
<row>

<column id="subject" name="@@@ep:subject@@" visible="true" />
</row>

</columns>
<defaultSortColumn>-taken</defaultSortColumn>

</worklist>
...

Make sure you use the appropriate *_mobile-Actions in your mobile-ready GUI-config.

18.2 DOJO Client

The mobile @enterprise smartclient is built upon the mobile DOJO components (dojox/mobile).
The following global variable can be used:

• currentView: Gets updated everytime a transition is performed and contains the
view currently on top.

Following are the modules that can be used to implement a mobile interface for an application:

18.2.1 Mobile Grid Renderer Action

The ep/widget/smartclient/mobile/MobileGridRendererAction should be used to
create and show a view with a grid similar to the worklist.
To configure some behavior, the following flags can be used:

• isSearchable: The visibility of the search button in the toolbar can be configured
(magnifier icon).

• viewPropertiesVisible: true per default, when set to false, the button used to
configure the view properties is never shown.

The following functions can be implemented:

241

18.2. DOJO CLIENT

• _addBeforeGrid(): Function gets executed before the grid is added to the view.

• _configGrid(grid): When additional configuration of the grid is necessary, this
function has to be implemented. It gets executed after the grid object has been created.

• _createStore(): Gets called from postscript function. The default implementa-
tion creates a ep/widget/smartclient/dstore/RequestMemory store which target
is the JsonLoader with the node id as the path.

• _getActions(): For the returned actions toolbar buttons get created which perform
the appropriate action when tapped.

• _getColumns(): Returns the column which the grid has to show. The default imple-
mentation returns the columns field of the node object (those are given in the columns
element of the table element in the GUI configuration). The returned columns have to
be an array or a promise which resolves into an array.

The returned array can also have arrays as its elements (like a two dimensional array).
In this case, the cells themselves get arranged in a grid-like fashion where each entry
can have multiple rows. It should be considered that there must not be any unoccupied
positions when using colSpan and rowSpan.

• _getGridConfig(): The returned object gets mixed into the configuration of the grid.
The default implementation returns an object containing among others the selection
mode and the node object.

• _getViewConfig(): The returned object gets mixed into the configuration of the
view.

• _onSelect(row, col, evt): Gets executed when some grid entry gets tapped.
This is done before the potential default action gets executed.

• _setupColumn(col): The column objects get created using this function. The default
implementation creates an object of the type described by col.jsClass if this field is
defined. _ColumnBase gets used otherwise.

An implementation of such a mobile grid renderer action could roughly look like the
following example:

...
declare([MobileGridRendererAction],{

_createStore: function(){
this.store = ...;

},

_getColumns: function(){
return [

{
id: "demo",
name: "Demo",
...

},

242

18.2. DOJO CLIENT

...
]

},

_getGridConfig: function(){
var config = this.inherited(arguments);

var myConf = {
sort: [{

property: "demo",
descending: true

}],
...

};

dojo.mixin(config, myConf);
return config;

},

_getViewConfig: function(){
return {

label: "demo"
...

};
},

_onSelect: function(row, col, evt){
msgUtil.alert(row.data.demo);
...

},

...
});
...

18.2.2 View

The mobile client follows the principle of so called views.
In @enterprise the default base module is ep/widget/smartclient/mobile/View which
is an extension of dojox/mobile/View.
The following functions of the @enterprise View module can be overridden:

• onStartupCompleted(): Gets called when the startup function has been executed.
When the function gets executed multiple times, only the first time the actual startup
procedure and this function get executed.

The following fields can be set:

• isDisposable: false on default. When true, view destroys itself when moved to
view positioned before the one to destroy.

• emitSelectTopic: undefined on default. When true, the corresponding item in

243

18.2. DOJO CLIENT

the navigation view gets highlighted. Recommended for views which get shown
directly on click on navigation entry.

The following functions can be executed (as methods):

• addAction(toolbarButton, overflow, before, notClearable): Adds the given
toolbar button to the heading of the view. overflow is true per default and shows
that the toolbar button can be hidden in the overflow section of the heading (shown
as tree dots when there are too many buttons). before describes a dom element of
another button after which the given toolbar button should be inserted. notClearable
is false on default and prevents the heading from removing the toolbar button when
the clear function gets executed when set to true.

• goToStartView(): Show start view of current view when available.

18.2.3 ScrollableView

ep/widget/smartclient/mobile/ScrollableView with heading where the content is
scrollable. Extends the View module described in chapter View and dojox/mobile/ScollableView.
Gets used in @enterprise for the process details view.

18.2.4 _ShowViewAction

This (ep/widget/smartclient/mobile/_ShowViewAction) is an extension of
ep/widget/smartclient/_Action specialized in showing a view to the user on actionPerformed.
As this module does not do much on its own, the extension has to offer an implementation
of the getView function which returns a View object or a promise to one. The following
example shows how this could be implemented:

var action = new _ShowViewAction({
getView: function(startview){

return new View({
isDisposable: true,
label: "Demo View",
moveTo: startview,
...

});
}

});

The actionPerformed method could be called multiple times. When the view gets destroyed
or the field is set to null inbetween executions of actionPerformed, getView gets executed
again and the returned view is used afterwards.

18.2.5 waitingOverlay-util

The functions showOverlay and hideOverlay of
ep/widget/smartclient/mobile/waitingOverlay-util can be called without instanti-
ation and show and hide the loading overlay respectively.

244

18.2. DOJO CLIENT

18.2.6 ToolBarButton

The ep/widget/smartclient/mobile/ToolBarButton inherits from
dojox/mobile/ToolBarButton and adds support for actions. Label, icon and behaviour
on click are taken from the action when provided. Even nested actions are supported and
can be shown by pressing and holding the toolbar button. The existence of nested actions is
shown by a small arrow pointing downward below the icon of the toolbar button.

18.2.7 ListItem

ep/widget/smartclient/mobile/ListItem extends dojox/mobile/ListItem and adds
support for @enterprise actions. Label, icon and behaviour on click are taken from the
action when provided. It can be used instead of dojox/mobile/ListItem (e.g. for entries
in dojox/mobile/RoundRectList objects).

18.2.8 Dialog

ep/widget/smartclient/mobile/Dialog extends dojox/mobile/SimpleDialog. The
dialog gets hidden when the overlay in the back gets clicked and support for defining a
content element is added. The additional properties can be used as follows:

• content: Initial content of the dialog. Can be a widget or a DOM element. The
default value is null.

• disposable: Describes if the dialog should destroy itself when hidden. Is set to true
on default.

• hideOnCoverClick: Sets whether the dialog should hide itself when the cover behind
it gets pressed. true is considered as the default value.

An example of such a dialog could be:

var myContentNode = ...;
var dlg = new Dialog({

content: myContentNode
});
dlg.show();

18.2.9 msg-util

The functions alert and confirm of ep/widget/smartclient/mobile/msg-util pro-
vide functionalities for showing and handling the related dialogs.

• alert(message): Show the message to the user. Returned Deferred object gets
resolved when the button of dialog is pressed.

• confirm(message, config): Should be used when the user has to accept or deny
something. The returned Deferred object gets resolved when the user pressed the
first button and rejected when the second button gets pressed. The labels of the buttons
can be configured by setting the fields labelOk and labelCancel of config.

245

18.2. DOJO CLIENT

18.2.10 mobile-util

ep/widget/smartclient/mobile/mobile-util provides following methods:

• showView(destinationView, direction, fromView, transition, callback,
def, doNotTriggerRouter): Show given view or view with given id to the user.

– destinationView (dojox/mobile/View or String Id of View Widget) is the view
(or the id thereof) to show.

– direction (int) describes the direction from which the new view should appear (1
per default; view appears from the right side).

– fromView (dojox/mobile/View) is the view from which the transition gets
performed. window.currentView is taken when fromView is not given.

– transition (String) is the effect used and "slide" is taken as the default for non
menu drawer views.

– The given callback function is executed after the new view has been shown.

– def is the Deferred object returned by this function. When def is not given, a
new one gets created. It gets resolved after the new view has been shown.

– doNotTriggerRouter (boolean): when true, no additional fragment (hash) gets
created.
These fragments are used for navigating @enterprise using the browser naviga-
tion.

• addAndShowView(...): Does the same as the function described above but also
places the given destination view and starts it up.

18.2.11 dms-show-util

ep/widget/smartclient/mobile/dms/dms-show-util provides following methods:

• showExplorer(folderObjectId, dmsNodeId): Show an explorer view for given
folder.

– folderObjectId classname:oid of folder to show. When not given, root folder is
used.

– dmsNodeId id of DMS node (as defined in GUI configuration). When not given,
DMS node is taken automatically.

• showForm(formObject, dmsNodeId): Show a given form in a new view.

– formObject classname:oid of form to show or form object gotten from the
explorer.

– dmsNodeId id of DMS node (as defined in GUI configuration). When not given,
DMS node is taken automatically.

246

18.3. MOBILE FORMS

18.2.12 ObjectSelect

This ep/widget/smartclient/mobile/ObjectSelect widget works similar to the one of
the non-mobile client. A text field on the left side of the widget shows its value and a button
on the right side symbolizes that this is an object select widget. Pressing on the widget opens
a grid view presenting the possible values to the user.

• gridConfig: An optional object containing fields to mix into the
MobileGridRendererAction object which gets created to show the grid for choosing
an option. See chapter Mobile Grid Renderer Action for further information.

18.2.13 Column

The module ep/widget/smartclient/mobile/grid/Column extends
ep/widget/smartclient/grid/Column with the convenience of tap handling. The col-
umn has to be shown in a mobile grid or an extension of it (which is the case when using
MobileGridRendererAction) to make use of this feature.

• onTap gets called every time a cell of the column is tapped. By default onTap is null
and has to be implemented to add functionality.

– object the object describing the current row data (which is also the first parameter
of renderCell).

18.3 Mobile Forms

The mobile client could serve a different purpose as the non-mobile one. As the mobile and
non-mobile devices get used in a completely different way, the use of mobile forms seems
justified.
@enterprise does not support creating mobile forms, but it does support presenting one to
the user when available. To use such a mobile form, a mask has to be created with the same
name as the original one but having the suffix _mobile before the dot separating the name
from the extension. When the form on a mobile device is to be shown and such a mobile
version of the mask file exists, @enterprise will choose it over the non-mobile version.

18.4 LESS for mobile GUI Configurations

The LESS file used for the mobile client works the same way as the one for the non-mobile
one. It uses the style sheet styles.less given with the @enterprise application. See chapter
Styling for further information. The <html> node of the mobile client does always have
the LESS class mobile set on it. As the Less CSS preprocessor gets used in @enterprise,
nested LESS selectors are possible. To avoid any side effects from the mobile LESS styles in
other GUI Configurations, mobile-only styles should be defined within a selector like the
following one:

html.mobile.myGuiConfig{
...

}

247

18.5. SHOWING MOBILE VIEWS

18.5 Showing Mobile Views

The class com.groiss.smartclient.mobile.MobileView contains methods for showing
mobile views without the context of the mobile @enterprise client. The implemented show
method has been overloaded several times: It can be used as a servlet method where the
request contains a parameter modules with the module path as its content. On the other hand
it can be called with the following arguments:

• title the title shown in the browser tab (optional, server name and user shown as
default)

• module the action module to show (required)

• args some arguments given to the action instance as JSONObject (optional)

• debug can be forced by providing true as the last argument. Otherwise the value of
the configuration will be used.

248

19 Decision Support

19.1 Decision Trees

A decision tree algorithm has been implemented in @enterprise. Although there are quite
some libraries out there supporting this task, they are either not delivering the desired
functionality (e.g. pruning, access to certain fields, splitting behavior) or are published under
an incompatible license.

19.1.1 Splitting

Splitting is done based on the difference of impurity resulting from the split.

• Impurity Measures There exist different methods on how to determine which attribute
to chose for splitting the current data set.

• Entropy This approach is based on the entropy in information. It describes how much
information is stored on average to represent the current situation.

Entropy(t) = −
c−1∑
i=0

p(i|t) ∗ log2 p(i|t) (19.1)

• Gini Index

The gini index describes the probability that a random instance of the current dataset
is labeled incorrectly.

Gini(t) = 1−
c−1∑
i=0

p(i|t)2 (19.2)

• Classification Error This approach represents the probability that a sample of the
data set is not labeled with the most probable label.

ClassificationError(t) = 1−max
i

[p(i|t)] (19.3)

249

19.1. DECISION TREES

19.1.2 Attributes

Two types of supported attributes can be distinguished. On one hand there are nominal
attributes where the value of this field in an instance is part of a given set. On the other hand
there are numeric attributes where the values are of a given number set.

Nominal Attributes

Nominal attributes get split using multiway splits. This means that for every possible value a
child node is generated.

Numeric Attributes

Numeric attributes get split using binary splits only. There are exactly two child nodes.
One represents values which are equal or smaller than a given split point and the other one
represents values which are strictly greater than the given split point.
It is known that the split point is greater than or equal as the minimum value for the particular
attribute and less than or equal as the maximum value for the particular attribute.
Numeric attributes may be used more than one time in a path to some leaf node.

19.1.3 Pruning

When leaving the decision tree as it is generated by the above mentioned algorithm, it is
most likely subject to overfitting. This means that it also takes outliers into account quite
heavily. Also, the tree can get bigger than it needs to be.

Post Pruning

Pruning, which is done after the decision tree has been built is called post pruning.

• Pessimistic Post Pruning In pessimistic post pruning, the number of leaf nodes gets
penalized. Is the unpruned version of the tree better even when taking the penalty into
account, it will not be pruned. The heavier the penalty multiplier is chosen, the more
pruning will be done.

n+ penalty ∗ |leafNodes|
N

(19.4)

[13] describes this pruning method with a fixed penalty of 1
2 .

• Reduced Error Pruning For reduced error pruning (REP), the training set gets split
into a growing and a pruning set. The growing set is used like the training set would be
used otherwise for training the decision tree model. The pruning set is used afterwards
where the instances of this set get classified by the decision tree built using the growing
set. Is the error smaller or equal when classifying the pruning set, the subtree gets
pruned. When one subtree does not get pruned, no parent node will get pruned (concept
of safe nodes). [11]

250

19.2. INTEGRATION IN @ENTERPRISE

• Minimal Error Pruning There are two kinds of estimates implemented in the minimal
error pruning implementation: m-estimate and Laplace-estimate.

The m-estimate takes some knowledge of an expert into account.

ny + py ∗m
N +m

(19.5)

For the m-estimate, the formula described in 19.5 is used where N describes the
amount of instances in the used data set, py the a priori probability that the label y is
assigned to an instance, ny the amount of instances which have class label y in the
data set and m the parameter chosen by an expert.

The Laplace-estimate does not take any expert knowledge into account. It is assumed
that the distribution of the a-priori probabilities for each class label is uniform.

ny + 1

N + k
(19.6)

Special functionality can not be achieved by only using the functions provided by the graphi-
cal interface. Additional classes can be implemented for classifying, giving information or
pruning in the special case of a decision tree.

19.2 Integration in @enterprise

In @enterprise decision trees are used to perform classifications based on some input,
typically process related data. In this chapter we will describe the base API classes used to
perform such classifications and how you as an API programmer can use those classes and
also can provide customizations/extensions.

19.2.1 ClassificationService

com.groiss.ml.classifier.ClassificationService provides the main entry point for
API programmers who want to interact with the decisions support via API. It provides 3
groups of related utility methods (for more details see the API documentation):

• management: These methods provide the possibilities to build a classifier (i.e. to
calculate the decision tree based on input and output configuration) and to evaluate
the performance of such classifiers (i.e. measures like the percentage of correctly
classified instances, precision, recall, f-measure etc. [12]).

– evaluate(String, ProcessDefinition)

– build(String, ProcessDefinition)

Note: Evaluation is also used when building a classifier to rate the quality of the
building process. For this case also cross validation is supported to find the best result
of that process. (Usage of cross validation can be activated in the decision support
related server configuration section.)

251

19.2. INTEGRATION IN @ENTERPRISE

• classification: Once a classifier is build it can be used to perform classification
predictions. The following methods either return such predictions so that the API
programmer can handle the result by himself, or they execute the classifiers and store
the most probable classification into the configured output filed as long as it fullfils the
specified minimum probability.

– classify(String, ActivityInstance)

– classifications(String, ActivityInstance))

– executeClassification(String, ActivityInstance, double)

– executeClassifications(ActivityInstance, double)

• extension: It is also possible to implement and integrate custom classifiers and field
configurations. More details on how to do this is the described in the following
sections.

– registerClassifier(Class<? extends Classifier>)

– registerField(Class<? extends ProcessField>)

So if you are just interested in using standard classifiers and their assignments to processes
done via the administration UI the only additionally notable class is

com.groiss.ml.classifier.ClassificationAction
which is described in section Tab: Decision Support of the Administration Manual.
Otherwise, i.e. you want to write and provide custom classifiers, the following sections will
provide information about the relevant classes and interfaces and how to use them.

19.2.2 Classifier

A classifier is represented by the interface com.groiss.ml.classifier.Classifier
which provides methods to perform its operations on com.groiss.ml.ds.Instance objects.
Those methods are:

• ClassificationResult<Integer> classify(Instance instance)
This method will the most probable classification for the passed instance.

• List<ClassificationResult<Integer» classifications(Instance instance)
A list of all found classifications ordered by their probability in descending order.

The com.groiss.ml.classifier.ClassificationResult holds a classification and its
probability. The classification is an integer value which represents either the concrete value
for the classification (in case of a Numeric Attribute) or the index of the concrete value
(in case of a Nominal Attribute).

19.2.3 Attributes, Instances and Data Sets

An attribute represents a column in a data set. It is implemented as the generic abstract
class com.groiss.ml.ds.Attribute for which the following concrete implementations
are provided:

252

19.2. INTEGRATION IN @ENTERPRISE

• com.groiss.ml.ds.NominalAttribute: Nominal attributes represent a set of val-
ues a field in the particular column of the data set can be set to.
BooleanAttribute is a subclass of NominalAttribute of type Boolean and has
the values true and false already added to it.

• com.groiss.ml.ds.NumericAttribute: A field in the particular column of the data
set can be set to a numeric value.
DateAttribute is a subclass of NumericAttribute of type Long specialized for
describing dates.

A data set (com.groiss.ml.ds.DataSet) set describes a set of instances (Instance) and
has a set of attributes describing it’s columns.

sepallength sepalwidth petallength petalwidth class
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
7.0 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
5.5 2.3 4.0 1.3 Iris-versicolor
6.5 2.8 4.6 1.5 Iris-versicolor
6.3 3.3 6.0 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3.0 5.9 2.1 Iris-virginica
6.3 2.9 5.6 1.8 Iris-virginica
6.5 3.0 5.8 2.2 Iris-virginica
.

Table 19.1: Excerpt from the iris data set [14]

Table 19.1 shows some parts of the iris data set [14]. The structure can be interpreted as
follows: each instance is represented by a row in the table while each attribute is shown
as a column. In this case the sepal and petal lengths and widths are measured and a label
describing which type of iris is given.
The sepal and petal lengths and widths are given as numeric attributes. Each cell can become
any real numeric value. The class attribute is a nominal attribute and cells can therefore only
hold a value contained in a given set. In this case it would be {Iris-setosa, Iris-versicolor,
Iris-virginica}.

19.2.4 Connect Classifiers and Processes

In @enterprise we use classifiers in context of processes. We build them with process related
data as input and we also want to use the output in context of the process data. To do so the
following interfaces are provided:

• com.groiss.ml.classifier.ClassifierAssignment: represents a record added
via tab ’Decision Support’ in the detail view of a process in the administration UI. It

253

19.2. INTEGRATION IN @ENTERPRISE

defines the inputs needed for building and predictions as well as the output (for more
details see section Tab: Decision Support in the Administration Manual.

• com.groiss.ml.classifier.ClassifierOption: To allow parameterisation of
classifiers it is possible to pass options to specified classifier. Each option has a name
which is prefixed with a hyphen and zero or more arguments which must not be
prefixed with a hyphen.

• com.groiss.ml.classifier.FormClassifier: an extension of the Classifier
which gets the ClassifierAssignment injected so that it knows on which data it has
to operate.

• com.groiss.ml.classifier.Buildable: extends the Classifier to provide a
method with which a classifier can be build (i.e. can calculate its decision tree based
on the passed com.groiss.ml.ds.DataSet).

• com.groiss.ml.field.Field: Specifies the data source for an attribute, which is a
process form field in this context. Such a source is used to retrieve the value for an
attribute or to store that value (but only if isAllowedAsOutputField() returns true
for the field instance).

19.2.5 Custom enhancements

Adding a new classifier

To add a custom classifier you have to implement the com.groiss.ml.classifier.Classifier
interface and you have to register that class via method registerClassifier(Class<?
extends Classifier>) of class com.groiss.ml.classifier.ClassificationService.
As registering must only run one time, it is recommended to put this call in the startup
method of the application class. This classifier becomes available to all classifier assignments.
Note: if your custom classifier needs access to its ClassifierAssignment it must extend
com.groiss.ml.classifier.FormClassifier.
com.groiss.demo.ml.classifier.ZeroR in the demo package is an implementation of
the zero rule classifier which often is used as a baseline classifier. This classifier does not
look at any values of the instances, but only does classify every given instance to the label
to which the majority of training instances conform. As this classifier also implements
the Buildable interface, the method buildClassifier(DataSet) has to be implemented.
During classification, the distributionForInstance(Instance) method gets called. In
this implementation, it always returns the stored label at the first position.

Adding generated Fields

It is also possible to add custom fields by extending com.groiss.ml.field.ProcessField.
Such an implementation can be registered via method registerField(Class<? extends
ProcessField>) of class com.groiss.ml.classifier.ClassificationService. Also
here registering must only run one time, so again it is recommended to put this call in the
startup method of the application class. This field then becomes available to all classifier
assignments.

254

19.2. INTEGRATION IN @ENTERPRISE

Such a subclass needs to implement the abstract method insertValue(Instance, DataSet,
ProcessInstance). When building the related Instance objects, this method gets called
for each of them.
com.groiss.demo.ml.classifier.DemoInputField in the demo package describes an
implementation of a generated input field. The attribute describing the field is a
BooleanAttribute, which is a nominal attribute (in this case, values can either be true
or false). It can be seen from the implementation of insertValue(Instance, DataSet,
ProcessInstance) that the value for the related attribute in each dataset entry is set to
whether there are notes belonging to the given process instance or not. When building a
classifier which leverages this field, for each instance an additional value gets calculated and
set.

255

20 Using the Reporting API

The following chapter shall give an overview about the possibilities to customize the reporting
component.

20.1 Hidden Configuration

Reporting uses 2 hidden parameters in configuration file.

• itext.pdf.font: Path to font file to use in pdf files. If report includes Unicode characters,
this font has to be a TrueType font.

• avw.reporting.schemaxml: Path to the system schema XML file. Needed to ensure
compatibility to version 7.0 when reporting.XML was edited to fit application require-
ments. If possible don’t overwrite schema XML but use the new merging of system
schema XML and application schemas.

20.2 XML Configuration

The reporting uses XML-documents to declare the choosable data on the one hand and the
chosen query on the other hand. To understand, how to customize the reporting, a closer
look at the XML specification is needed.

20.2.1 Schema

The schema file contains all needed information about the pool of data, which can be used in
reports. Reporting merges the configured schema file with any file named ”reporting.xml” in
the configured application paths.

<!ELEMENT Schema (mapping*,entity+,relation*)>
<!ATTLIST Schema xmlid ID #REQUIRED

name CDATA #IMPLIED
furtherHops CDATA #IMPLIED
defaultTimemodel CDATA #IMPLIED
defaultTimeUnit CDATA #IMPLIED
addForms (TRUE | FALSE) "FALSE">

256

20.2. XML CONFIGURATION

Example:

<Schema xmlid="avw" name="@@@reporting@@"
furtherHops="2"
defaultTimeUnit="hours"
defaultTimemodel="com.groiss.reporting.data.impl.TimeInterval"
addForms="TRUE">

....
</Schema>

Mappings

Mappings are used to translate data into their natural meaning, e.g. ActivityInstance Status
is a number and each number means a status. The reporting user does not want to know the
number but the status name. So this translation is made with a mapping. Mappings are defined
once and can be referenced often by their id. Mappings are used to define which exporter,
charts and timemodels shall be available for users. Even the possible implementation of an
HasSubClass Persistent are defined by a mapping.

<!ELEMENT mapping (mapentry+)>
<!ATTLIST mapping xmlid ID #REQUIRED>

<!ELEMENT mapentry EMPTY>
<!ATTLIST mapentry

key CDATA #REQUIRED
value CDATA #REQUIRED>

Example 1: Mapping for Translating status keys

<mapping
xmlid ="aiStatus">
<mapentry key="0" value="@@@started@@" />
<mapentry key="1" value="@@@suspended@@"/>
<mapentry key="2" value="@@@finished@@"/>
<mapentry key="4" value="@@@aborted@@"/>
<mapentry key="5" value="@@@active@@"/>
<mapentry key="6" value="@@@waiting@@"/>
<mapentry key="7" value="@@@compensated@@"/>

</mapping>

Example 2: Mapping for Subclasses of Agent

<mapping xmlid="agentSubclasses">
<mapentry key="c1" value="com.groiss.org.User" />
<mapentry key="c2" value="com.groiss.org.Role" />
</mapping>

Entity

Entities are representing selections of tables in the database. One table can be defined as
several entities if needed. In the system scheme the avw_stepinstance table is defined once
as ProcessInstance (with selection type=22) and once as ActivityInstance (with selection
type=20). Entities contains at least one attribute and several selections.

257

20.2. XML CONFIGURATION

<!ELEMENT entity (attribute*,selection*)>
<!ATTLIST entity xmlid ID #REQUIRED

table CDATA #REQUIRED
class CDATA #REQUIRED
name CDATA #IMPLIED
tablealias CDATA #REQUIRE>D

<!ELEMENT selection EMPTY>
<!ATTLIST selection

attribute CDATA #REQUIRED
operator CDATA #REQUIRED
value CDATA #REQUIRED>

Example: Entity of Processdefinition
<entity

xmlid="process"
name="@@@objectname_processdefinition@@"
class="com.groiss.wf.ProcessDefinition"
table="avw_procdefinition"
tablealias="pd">

....
</entity>

Attribute

Attributes can be attached to the query as select attribute or as condition. The way a attribute
is stored in report result, is defined in an implementation of the ReportingData Interface.
Attributes may contain several selects to gain data from the database (e.g. a TimeInterval
needs at least two timestamps).

<!ELEMENT attribute (select*)>
<!ATTLIST attribute

xmlid CDATA #REQUIRED
name CDATA #IMPLIED
mapping IDREF #IMPLIED
aggrs CDATA #IMPLIED
class CDATA #IMPLIED>

<!ELEMENT select (#PCDATA)>
<!ATTLIST select entity CDATA #IMPLIED

tablealias CDATA #IMPLIED>

Relations

Relations define how entities can be joined. A relation has a name (which is displayed in
join select mask) and two joinparts. Additionally a outer join can be specified.

<!ELEMENT relation (joinpart,joinpart)>
<!ATTLIST relation name CDATA #IMPLIED

outer (LEFT | RIGHT | NONE) "NONE">
<!ELEMENT joinpart EMPTY>

<!ATTLIST joinpart entity CDATA #REQUIRED
attribute CDATA #REQUIRED>

258

20.2. XML CONFIGURATION

20.2.2 Query

Queries are defined in XML documents, too. This XML tree is generated while configuring
the query options at the Report designer mask. But you can even write it manually. A query
consists of 3 parts: The select attributes, a condition tree and the joins. Joins have to be
declared because the reporting engine provides the possibility to join entities over several
ways.

<!ELEMENT query (attribute*,conditions?,join*,export?)>
<!ATTLIST query xmlid ID #REQUIRED
unit CDATA #IMPLIED
minunit CDATA #IMPLIED
timemodel CDATA #IMPLIED
timezone CDATA #IMPLIED
locale CDATA #IMPLIED
parammask CDATA #IMPLIED
lockoperator (TRUE|FALSE) "FALSE"
distinct (TRUE|FALSE) "FALSE"
addarchive (TRUE|FALSE) "FALSE"
addrownumber (TRUE|FALSE) "FALSE">

Parameter

Parameters are used as child nodes of attributes and exporters. Its a key value pair which
may be used to store additional data.

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter xmlid ID #IMPLIED

key CDATA #REQUIRED
value CDATA #REQUIRED>

Attributes

Attributes in Query-XML refer to attributes in the schema.

<!ELEMENT attribute (parameter*)>
<!ATTLIST attribute

xmlid ID #IMPLIED
displayname CDATA #IMPLIED
entity CDATA #IMPLIED
tablealias CDATA #IMPLIED
attribute CDATA #REQUIRED
aggregation CDATA #IMPLIED
type CDATA #IMPLIED
dateformat CDATA #IMPLIED
select CDATA #IMPLIED
others CDATA #IMPLIED
sorting (ASC |DESC |NONE) "NONE">

259

20.2. XML CONFIGURATION

Conditions

The conditions of the query are defined as a tree of condition-elements, connectors and
parentheses. The defined root element is the Conditions-element, which contains one or no
condition or parentheses element and several pairs of connectors and conditions/parentheses.

<!ELEMENT conditions ((condition|parentheses)?,
(connector,(condition|parentheses))*)>

<!ATTLIST conditions
xmlid ID #IMPLIED>

<!ELEMENT parentheses ((condition|parentheses)?,
(connector,(condition|parentheses))*)>

<!ATTLIST parentheses
xmlid ID #IMPLIED>

<!ELEMENT connector EMPTY>
<!ATTLIST connector

xmlid ID #IMPLIED
type (AND | OR) "AND">

<!ELEMENT condition EMPTY>
<!ATTLIST condition xmlid ID #IMPLIED

entity CDATA #REQUIRED
tablealias CDATA #REQUIRED
attribute CDATA #REQUIRED
displayname CDATA #IMPLIED
operator CDATA #IMPLIED
value CDATA #IMPLIED
type CDATA #IMPLIED
paramatexec (TRUE|FALSE) "FALSE"
others CDATA #IMPLIED>

Join

The selected join paths for the usage in report are stored in the XML. The joins have to
build a graph so that every entity is connected to an other entity. A join can include several
relations, which can include entities which are not referenced at the attributes or conditions
of the report, too. Every relation is used to do the correct join. If the entity of a joinpart is
not used in the report, the standard alias defined in schema is used.

<!ATTLIST join
xmlid ID #IMPLIED
ent1 CDATA #REQUIRED
ent2 CDATA #REQUIRED
alias1 CDATA #REQUIRED
alias2 CDATA #REQUIRED>

<!ELEMENT relation (joinpart,joinpart)>
<!ATTLIST relation

xmlid ID #IMPLIED
outer (LEFT | RIGHT | NONE) "NONE">

<!ELEMENT joinpart EMPTY>
<!ATTLIST joinpart entity CDATA #REQUIRED

xmlid ID #IMPLIED
attribute CDATA #REQUIRED>

260

20.3. API

Export

The export options are stored in xml, too. The export element can have several parameters
(key-value pairs) to configure export options and drill-down functions. The type attribute
includes the classname, if no package is defined the default package will be used.

<!ELEMENT export (parameter*)>
<!ATTLIST export type CDATA #REQUIRED

xmlid ID #IMPLIED>

20.3 API

Sometimes the engine has to be extended to fit application requirements. Therefore an API
was designed to enable project specific reports.

20.3.1 com.groiss.reporting.data.TimeModel

TimeModels are calculating TimeIntervals between 2 Date objects. Implement the getInterval
Method, which returns the interval in milliseconds as a long value.

public interface TimeModel {

public long getInterval(Date start,Date end);
public String getModelName();

}

Register your TimeModel in reporting schema in the mapping timemodels to mark it as
selectable in reporting designer.

Example: DemoTimeModel Calculates the milliseconds between two date objects.

public long getInterval (Date start, Date end) {

long time1 = start.getTime();
long time2 = end.getTime();
return (time2-time1);

}
public String getModelName() {

return "DefaultTimeModel" ;
}

20.3.2 com.groiss.reporting.data.ReportingExportable

Exporters of reporting must handle objects implementing this interface. The getValue Method
returns the valueholder object, toJson() the JSON representation used when getting rendered
in the browser and toText a text representation to use for CSV or Excelexport.

public interface ReportingExportable extends Comparable {
public String toText();
public JSONObject toJson();
public Object getValue();
public String getColumnRenderer();

}

261

20.3. API

Example will be given in Chapter com.groiss.reporting.data.ReportingData.

20.3.3 com.groiss.reporting.data.ReportingData

This interface extends the ReportingExportable and provides methods to overwrite the
attribute’s behavior when added to a report. We recommend to extend default implementation
com.groiss.reporting.data.impl.DefaultReportingData.

public interface ReportingData extends ReportingExportable {

public Attribute getAttribute();
public void setAttribute(Attribute a);
public Entity getEntity();
public void setEntity(Entity e);
public void addSelectAttributeToQuery(Query q, Element select);
public void addConditionToQuery(Query q, Element c);
public void setValue (ResultSet rs, Element selectAttribute,Query q);
public default void addClientConditionWidgetOptions(

JSONObject json, boolean isParamAtExec, Element condition)
public List<Pair<String,String>> getOperatorList(boolean comesFromParamMask);
public Collection<ReportingExportable> completeSeries(

Set<ReportingExportable> series, Query q);
}

getAttribute,setAttribute,getEntity,setEntity set and return the entity and attribute object
of relating scheme which are referenced this ReportingData Object.

addSelectAttributeToQuery has to implement, how an attribute is added to the select
statement of a SQL Query. Has to call com.groiss.reporting.Query.addSelect and
com.groiss.reporting.Query.addSelectIndexOfAttrib(Element, int) to register
the attribute!

addConditionToQuery has to implement the logic how attribute is added to the conditions
of a SQL Query. Has to call com.groiss.reporting.Query.addCondition.

setValue gains the data from ResultSet and stores it.

addClientConditionWidgetOptions adds condition widget information to the attribute
store. The implementing widget is stored as condwidget attribute to the JSON-object. Any
additional Data will be passed to the widget at instantiation.

getOperatorList returns a pairlist of selectable operators. The key is the XML representa-
tion of the operator, the value of the I18N string of the operator.

completeSeries invokes matrix-style reports to be able to add missing entries in the given
series. returns the full series (e.g. for dates all dates from t1-t2, for persistent all elements of
a certain type etc.)

262

20.3. API

Example: com.groiss.demo.ProgressReportingData The Goal is to add a selectable at-
tribute to reporting schema, which indicates the average progress of all order items Therefore
you have to add the following attribute to reporting schema in the entity "demo_order_1"
The output shall be the average progress with a ’%’ sign afterward. If it is HTML it shall be
a link which does a JavaScript alert.
We want the engine to allow a field which calculates the product of amount and price at
execution time of the report. Therefore you have to add following attribute to reporting
schema in the entity "demo_order_1":

<attribute xmlid="averageprocess" name="@@@averageprocess@@"
class="com.groiss.demo.ProgressReportingData">
<select entity="demo_orderitem_1" tablealias="avg_oderitem_1">

avg(avg_oderitem_1.amount)
</select>

</attribute>

The output shall be the product with a Dollar sign afterwards. His HTML representation shall
be a Link with a Javascript alert showing the product, which is handled by the implementing
DOJO widget . Because we are extending DefaultReportingData we do not need to
implement every method.
You will find an implementation in the demo package of @enterprise.
(see: com.groiss.demo.reporting.ProgressReportingData)

20.3.4 com.groiss.reporting.data.NumericValue

ReportingData Objects have to implement this interface, if the value is aggregateable but
does not fit to the standard dataobjects.

public interface NumericValue extends ReportingData {
public NumericValue add(NumericValue v2);
public NumericValue avg(long count);

}

20.3.5 ReportingExporter

Reporting Engine returns a Tablemodel containing ReportingExportable objects as result
of a report. The output format of this Tablemodel can be modified by implementing an
own Exporter. To mark exporter as selectable in reporting designer, add it to the mapping
"exporter" in reporting.xml.

public interface ReportingExporter {
public String getExportName() ;
public JSONArray getExportOptionsJSON() throws JSONException;
public void export(HttpServletResponse res, Query q,

TableModel tm) throws Exception;
}

getExportName returns the Name of this Exporter. Is displayed in export option page to
select exporter.

263

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

getExportOptionsJSON enables exporter to add option fields to the export option page.
Return a jsonarray which contains jsonobjects which have at least an id, a label and an
implementing widget.

export Iterate over the tablemodel and manipulate data like needed for export.
You will find an implementation in the demo package of @enterprise.
(see com.groiss.demo.reporting.FileSystemExporter)

20.3.6 ClientSideExporter

Due to the new GUI of @enterprise 11.0 a subinterface of ReportingExporter has been
introduced. Implement this interface if you need to overwrite the exporting functions of a
report.

public interface ClientSideExporter extends ReportingExporter{
public String getClientSideRenderer();
public List<Map<String,Object>> toJson(
Query q, ReportingTableModel tm) throws JSONException;

public JSONArray getResultDetailsJson(
Query q, int count) throws JSONException;

}

getClientSideRenderer Returns the path to a renderer widget, which has to display the
result.

toJson Transfers the Tablemodel data to a JSON Object which will be passed to the
ClientSideRenderer

getResultDetailsJson Returns a JSON Array which holds all information displayed as
report details. Every label and value pair is handled as a JSON Array.

20.4 Implementing your own Search Mask

To implement your own search mask, just design a form with the needed input fields. When
submitting the search, instantiate an ep/widget/smartclient/reporting/ReportingResult
object and put it in the designated target. The ReportingResult object executes the report
the passed report (passed in parameter query.qxml or query.id and adds the form data given
in parameter postParams to the sql condition. The naming and handling of parameters is
described in the following section.
The recommended way is to build a stored report in Report designer, which includes
parameter-at-execution conditions for each field of the search mask. In the search mask for
each condition a value-field, an operator-field and in some cases an others-field are needed
to complete conditions. The engine expects post parameters called value0, operator0 and
others0 for explicit parameter substitution. 0 stands for the index of the condition in the
conditions tree starting with 0. So if the first and the third condition of the report need explicit
parameter input, the fields value0, operator0, others0, value2, operator2 and other2 are

264

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

expected. If needed you may name the condition with a parameter tag (key=”paramname”),
so that you may reference the parameter with paramname_value, paramname_operator and
paramname_others. Since @enterprise 11.0 you can specify the parameter name in the
reporting mask of conditions too. Add a field comesFromParamMask with value "1" to the
search mask, so that engine expects the parameter in the post parameters.

265

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the schema
name The name of the schema, can be localized
furtherhops To determine the pool of possible Joins for 2 entities, the shortest

join path is searched! This parameter delimits the amount of
selectable joins to all joins, which need not more join hops than
the shortest path plus this parametervalue

defaultTimemodel The default timemodel, which should be used for re-
ports to calculate Timeintervals. Must implement the
com.groiss.reporting.data.TimeModel interface.

defaultTimemodel The default timeunit of timeintervals
addForms Forms are not declared in the schema file by default. They are

added automatically during the parsing, if this flag is set to true!

Table 20.1: Description of element Schema

Attribute Description
xmlid The Id of the map is used to reference it in the attributes.
key The key of this entry. If Mapping is used for translation, the key is

the value in the database.
value The string representing the database value or the full classname of

the exporter, charttype or timemodel.

Table 20.2: Description of element mapping

Attribute Description
xmlid The Id of the entity is used to reference it in the query XML tree.
table The name of the database table.
class The persistent implementation representing this table in @enter-

prise. This is needed to get information about the field types.
name The name of this entity. May include I18N keys, so each string

starting with @@@ and ending with @@ is replaced.
tablealias The default tablealias for this entity. It can be overwritten by the

query XML document.
selection The selection defines a condition to restrict the data tuples of

this entity. The selection consists of an (database-)attribute name,
an operator and a value. (e.g: ActivityInstance: selection: at-
tribute="type";operator="=";value="20")

Table 20.3: Description of element entity

266

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the attribute is used to reference it in the query XML

tree.
name The name of this attribute. May include I18N keys, so every string

starting with @@@ and ending with @@ is replaced.
class The implementation of com.groiss.reporting.data.ReportingData

interface. If not specified the Default-Implementation is used.
mapping The id of the referenced mapping to translate data or to know the

possible implantations of HasSubclasses Persistents.
aggrs The selectable aggregations for this attribute. If not specified,

the aggregations are calculated depending on the field type. But
sometimes it does not make sense to calculate an average of a
numeric data (e.g. Process:Version).

select The select Attribute contains the name of the database field. If
a select is needed from an other entity, the attributes entity and
tablealias are specified to gain this additional information. (e.g.:
StepDuration needs start and end time of ActivityInstance)

Table 20.4: Description of element attribute in schema

Attribute Description
entity The entity id of this joinpart.
attribute A DB-field which is used to join.

Table 20.5: Description of element relation

267

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the query
unit The maximum timeunit of timeintervals. Possible values: ”sec-

onds",”minutes",”hours",”days",”weeks"
minunit The minimum timeunit of timeintervals.
timemodel The timemodel, which should be used for this re-

port to calculate Timeintervals. Has to implement the
com.groiss.reporting.data.TimeModel!

locale If a Report should be executed in a specific language, the short-
name locale is defined here! (e.g. en_US)

timezone If the report should be executed in a specific timezone, the id of
the timezone is defined here

parammask The path to an alternativ paramask. Customized Parameter mask
has to fit all naming conventions.

lockoperator If this flag is set to TRUE, the operator selectlist in parameter
at execution mask are displayed readonly. This affects standard
parameter mask but not a customized one.

distinct If this flag is set to true, only equal tuples in the result-set are not
displayed.

addarchive This flag has to be true, if the report shall include avw_stepinstance
records from the archive schema!

addrownumber This flag has to be true, if the report shall include rownumbers in
the first column. (Note that this needs a special treatment when
implementing an Exporter!)

Table 20.6: Description of element query

268

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid An optional field, which has to declare an unique id for this at-

tribute. If not specified, the engine set a unique id automatically.
The id is used for referencing the attribute at the edit mode.

displayname The name of this column. If not specified, the default attribute
name from schema is the column name. Can include I18N keys

entity The id of the referenced entity, which contains the referenced
attribute in schema. If its a user-defined attribute, the tablename in
the database is stored in the entity field.

tablealias The tablealias for this entity. Entity-Id and tablealias are the
unique id of an entity in the query. For each entity a join has to be
declared.

attribute The id of the referenced attribute of the schema. If its an user-
defined attribute, its set to ”userdefined"!

select A sql-syntax fitting expression, which is copied in the select state-
ment.

type If select expression returns not the default type of the attribute,
which is declared in schema, define full-qualified class name here.
If its com.groiss.reporting.data.impl.TimeInterval 2
date type are suggested.

aggregation The aggregation for this attribute. Aggregations are grouped by
all non aggregated attributes in the result. If the select includes an
sql aggregation, specify here ”sqlaggr".

sorting Can be ”ASC” for ascending, ”DESC” for descending or none
for no sorting. Sorting is done as the attribute are ordered, so the
sorting of the first attribute has an higher priority than the second
one.

others This is optional wildcard attribute. It can be used for different
things. The default data types interpret the others attribute as an
user-defined selection due to the entity

Table 20.7: Description of element attribute in query

269

20.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid An optional field, which has to declare an unique id for this at-

tribute. If not specified, the engine will set an unique id auto-
matically. The id is used for referencing the element at the edit
mode.

connector: type Type of boolean operation. Can be AND or OR, AND is default!
entity The id of the referenced entity, which contains the referenced

attribute in schema. If its a user-defined attribute, the tablename in
the database is stored in the entity field.

tablealias The tablealias for this entity. Entity-Id and tablealias are the
unique id of an entity in the query. For each entity a join has to be
declared.

attribute The id of the referenced attribute of the schema. If it is an user-
defined attribute, it will be set to ”userdefined"!

displayname A description of this condition. May include I18N keys.
operator The operator of this condition, for example in, like, = or >! If it is

an user-defined SQL Condition, operator contains the expression,
which may be written in PreparedStatement syntax.

value Value for prepared Statements. Several values can be separated by
a comma.

type The type of the value string for parsing it to the fitting object.
others This is optional wildcard attribute. It can be used for different

things. DateReportingData Objects for example suggest unit here
if a relative date condition is specified. Text condition store the
ignorecase option here.

paramatexec True if parameter at execution is needed. In this case the operator
and the value is used as default parameters.

Table 20.8: Description of elements of conditions tree

Attribute Description
ent1 The entity id of the source entity of the join
alias1 The tablealias of the source entity of the join
ent2 The entity id of the target entity of the join
alias2 The tablealias of the target entity of the join
other fields see 20.2.1

Table 20.9: Description of element join

270

21 RESTful API

@enterprise provides a RESTful API which is specified using the OpenAPI1 Specification.
A specification file defines the whole set of supported operations as well as a description of
the API and can be gotten from a running @enterprise server via one of the following URLs:

• <ep-host>:<ep-port>/<context-root>/ep-rest/v1/openapi.yaml

• <ep-host>:<ep-port>/<context-root>/ep-rest/v1/openapi.json

Alternatively you can explore the RESTful API in a browser using the integrated Swagger
UI which is available under this URL:
<ep-host>:<ep-port>/<context-root>/swagger-ui/index.html

This UI provides a more convenient entry point to the descriptions of the RESTful API as
well as executing the first API request.

Hint: The RESTful API must be activated to make the mentioned URLs work. Please refer
to the configuration section in the installation manual for activating the API. How to activate
Basic-Auth for this API can also be found in that section. Please note that Basic Auth should
only be used when using HTTPS or in development or test environments.

21.1 Authorization with Keycloak

As an alternative to authorization via Basic Auth @enterprise can be extended to support
a bearer token based authorization using Keycloak. To be able to use this authorization
mechanism you need to install the optional (and not free of charge) @enterprise application
’Keycloak Integration’ and follow the installation instructions described in the manuals of
that application.
After this you need to perform the following additional configuration changes in ’Configura-
tion/Web components’:

• add the following line to ’Init Parameter for Additional Filter’: urlpattern=/ep-rest/v1

• add the following line to ’URI Patterns to exclude from Additional Filter’: /ep-
rest/v1/openapi.yaml

1Formerly known as Swagger

271

A Database Schema Overview

A.1 Introduction to the Database Schema

This appendix briefly describes the database tables of @enterprise. The file sql/schema.sql
in the epimpl.jar file contains the table definitions. Note, that you cannot use the file di-
rectly to create the schema, because we use placeholders for database dependent data types1.
Most tables are mapped directly to a Java class -
see the description of com.groiss.store.Persistent for details of this mapping.
In the following diagrams, the essential and most complex parts of the schema are depicted.
The used notation is a variant of the UML class diagram. Figure A.1 explains the used
notation.
When referencing relationships are depicted, the line ends are annotated with the name of
the table column which holds the referenced value. This is usually the primary key of a table,
which is almost always the column oid. For the sake of brevity, we will neither explicitly
include the oid column nor depict the referencing column (e.g. application in figure A.1).
A corresponding join between Role and Application would be expressed either as:

select * from avw_role r, avw_application a where r.application=a.oid

or, using a more modern SQL syntax, as:

select * from avw_role r join avw_application a on r.appliction=a.oid

In the following, the schema is presented in a modular way organized by module or functional
area. Within each section, the tables are ordered alphabetically. For the sake of brevity, not
all tables are also included in a schema drawing. Each table is described via its name, a Java
class name, an optional Java interface name and a brief description.

1Using the following URL, an administrator can obtain a schema definition suitable for the DBMS being
used:
../wf/servlet.method/com.dec.avw.config.HTMLConfig.scriptToNative?

filename=sql/schema.sql&database=com.dec.gi.sql.<Translator>

Possible values for <Translator> are: DBDerby, DBDB2, DBH2, DBMSSql2005, DBOracle, DBOracleLOB,
DBPostgreSQL

272

A.2. ORGANIZATIONAL SCHEMA

avw_role
c.g.o.Role

 id
 name
 description
 type: *

avw_application
c.g.o.Application

 id
 name
 description
 applClass
 applDirectory
 version
 startupsequence

1..1 application

0..n

Tablename

Class/Interface

Columns/Attributes (subset)

Connectivities

min/max

Name of connecting column

Figure A.1: Notation for schema diagrams

A.2 Organizational Schema

The following tables describe the principal organizational data, like the users, their roles, and
the organizational (departmental) structure. The diagram in Fig. A.2 depicts the essential
tables and their relationship.

Table: avw_application
Description: Applications group together roles, rights, process definitions, etc.
Interface: com.groiss.org.Application
Class: com.dec.avw.core.Application

Table: avw_dirserver
Description: Source or destination LDAP servers for organizational data.
Class: com.groiss.ldap.DirectoryServer

Table: avw_deferredchange
Description: The set of pending changes (to be carried out in the future).
Class: com.dec.gi.sql.DeferredChange

Table: avw_dept
Description: The organizational units.
Interface: com.groiss.org.OrgUnit
Class: com.dec.avw.core.Dept

Table: avw_depthierarchy
Description: The hierarchy of organizational units.
Class: com.dec.avw.core.DeptHierarchy

Table: avw_depthistory
Description: Historical departmental relationships (splits and mergers).
Class: com.dec.avw.core.DeptHistory

Table: avw_depttree
Description: Defines an organization tree.

273

A.2. ORGANIZATIONAL SCHEMA

@enterprise 11.0: Organizational Schema

avw_user
c.g.o.User

 id
 description
 firstName
 surName
 title
 email
 telNr
 password2
 locale
 gender

avw_role
c.g.o.Role

 id
 name
 description
 type: *

avw_userrole
c.g.o.UserRole

1..1 role

0..n

1..1 userid

0..n

avw_dept
c.g.o.OrgUnit

 id
 name
 description
 address
 email
 telNr
 orgType: *

0..1

 dept

0..n

 reference

0..1

0..n

avw_depthierarchy
c.d.a.c.DeptHierarchy

 superdept

0..n

0..1

 subdept

0..n

0..1

avw_depttree
c.g.o.OrgTree

 id
 name

avw_orgclass
c.g.o.OrgClass

 id
 name
 description

 depttree

0..n 1..1

1..1

 application

0..n

Agent
c.g.o.Agent

avw_rolesubstitute
c.d.a.c.RoleSubstitute

 fromDate
 toDate
 isCurrent: *

 userrole

0..n

1..1

 substitute

0..n

1..1

avw_usersubstitute
c.d.a.c.UserSubstitute

 fromDate
 toDate
 isCurrent: *
 reprType: *

1..1 userid

0..n

1..1

 substitute

0..n

avw_application
c.g.o.Application

 id
 name
 description
 applClass
 applDirectory
 version
 startupsequence

0..1 orgclass

0..n

 application

0..n

1..1

Figure A.2: Organizational Schema

Interface: com.groiss.org.OrgTree
Class: com.dec.avw.core.DeptTree

Table: avw_flatdepttree
Description: Transitive closure of the avw_depthierarchy table.
Class: com.dec.avw.core.FlatDeptTree

Table: avw_log
Description: Changes of logged objects and versioning.
Interface: com.groiss.org.LogEntry,com.groiss.org.PersistentVersion
Class: com.dec.gi.sql.Log

274

A.3. SCHEMA FOR PROCESS DEFINITIONS

Table: avw_objectextension
Description: Relates extension objects to their base objects.
Class: com.dec.avw.core.ObjectExtension

Table: avw_orgclass
Description: Categorization of organizational units.
Interface: com.groiss.org.OrgClass
Class: com.dec.avw.core.OrgClass

Table: avw_role
Description: The definition of roles.
Interface: com.groiss.org.Role
Class: com.dec.avw.core.Role

Table: avw_rolesubstitute
Description: The relation of role assignments to the substitutes.
Class: com.dec.avw.core.RoleSubstitute

Table: avw_user
Description: User accounts.
Interface: com.groiss.org.User
Class: com.dec.avw.core.User

Table: avw_userrole
Description: Assignments of users to roles.
Interface: com.groiss.org.UserRole
Class: com.dec.avw.core.UserRole

Table: avw_usersubstitute
Description: Relates users to their substitutes.
Class: com.dec.avw.core.UserSubstitute

A.3 Schema for Process Definitions

The following tables contain the data for process definitions and dependent objects necessary
for defining workflows (forms, tasks, etc.).
The diagram in fig. A.3 depicts the schema and also shows the most essential run time data
schema elements.

Table: avw_activityform
Description: Form variable declarations.The relation between a process definition (or task)
and the form types.
Class: com.dec.avw.core.ActivityForm

275

A.3. SCHEMA FOR PROCESS DEFINITIONS

@enterprise 11.0: Process Definition and Runtime

avw_procdefinition
c.g.wf.ProcessDefinition

 application
 id
 name
 version
 description
 subject

avw_task
c.g.wf.Task

 application
 id
 name
 version
 avwproc
 postCondition

avw_step
c.d.a.c.Step

 stepid
 stepLabel
 activityName
 expression
 type*
 kind*
 x
 y

Activity
c.d.a.c.Activity

avw_escalationobj
c.d.a.c.EscalationObject

 type*
 eventType*
 description
 delay

avw_stepinstance
c.g.wf.ActivityInstance,
c.g.wf.ProcessInstance

 application
 id
 started
 finished
 duedate
 status*
 type*
 procPrio

Agent
c.g.o.Agent

avw_taskfuncrel
c.d.a.c.TaskFunctionRel

avw_taskfunction
c.d.a.c.TaskFunction

 application
 id
 name
 applyTo
 forAllTasks
 show...

avw_functiongroup
c.d.a.c.FunctionGroup

 application
 id
 name
 orderAttr
+nested

 task

0..n

1..1

 taskFunction

0..n

1..1

 functionGroup

0..n

1..1

avw_agent
c.d.a.c.AgentDescription

 pos
 agentString
 type*

avw_dept
c.g.o.OrgUnit

avw_flow
c.d.a.c.Flow

 type*

 agent

0..n

1..1

 dept

0..n

0..1

1..1

 src

0..n

1..1

 dest

0..n step*

0..n

0..1

 step*

0..n
0..1

0..1

 activity

0..n

0..1

 activity

0..n

1..1

 process

0..n

avw_activityform
c.d.a.c.ActivityForm

 fid
 fname
 baseform
 pos

avw_formtype
c.g.dms.FormType

 application
 id
 name
 version
 description
 className
 xhtmlpage
 baseformkey

avw_formfield
c.d.a.c.FormField

 fieldName
 description
 columnName
 type*
 xmltype*
 genindex
 genrefconstraint

avw_formfieldmode2
c.d.a.c.FormFieldMode2

 fieldMode*
 subformids

avw_stepform
c.d.a.c.StepForm

 pos

 ftyp

0..n

1..1

 activity

0..n

1..1

 formtype

0..n

1..1

 field

0..n

 fieldName

1..1

 stepform

0..n

1..1

1..1 form

0..n

1..1

 step

0..n

0..1

 stepagent

0..n

0..1

 agent

0..n

1..1

 dept

0..n

0..1

 childof

0..n

1..1
 process

0..n

1..1

 step

0..n

avw_forminstance
c.g.wf.FormInstance

1..1 fid

0..n

1..1

 process

0..n

<<c.g.dms.DMSForm>>

form_<ftypid_ftypversion>
com.groiss.forms.<ftypid_ftypversion>
com.dec.avw.appl.<ftypid_ftypversion>

 form

0..1

1..1

0..1

 task

0..n

avw_follows
c.d.a.c.InstanceFlow

1..1

 dest

0..n

1..1

 src

0..n

RuntimeDefinition

 step*

0..n

0..1

 escalationStep

0..n
0..1

 step*

0..n

0..1

0..1

 process

0..n

avw_formrelation
c.g.dms.SubFormRelation

 id

1..1

 src

0..n

1..1

 dest

0..1

Figure A.3: Process Definition and essential Run-Time Data

Table: avw_agent
Description: Description of agents of steps and step instances.
Class: com.dec.avw.core.AgentDescription

Table: avw_annotation
Description: Annotations in the process diagrams.

276

A.3. SCHEMA FOR PROCESS DEFINITIONS

Class: com.dec.avw.core.Annotation

Table: avw_escalationobj
Description: Definition of escalations in task and process timeouts.
Class: com.dec.avw.core.EscalationObject

Table: avw_flow
Description: The paths between steps. May be restricted to one process instance (ad-hoc
steps).
Class: com.dec.avw.core.Flow

Table: avw_formfield
Description: The fields of the forms.
Class: com.dec.avw.core.FormField

Table: avw_formfieldmode2
Description: The modes/visibilities of form fields in steps.
Class: com.dec.avw.core.FormFieldMode2

Table: avw_formtype
Description: The types of forms.
Interface: com.groiss.dms.FormType
Class: com.dec.avw.core.FormType

Table: avw_functiongroup
Description: Groups of functions.
Class: com.dec.avw.core.FunctionGroup

Table: avw_procdefinition
Description: The process definitions.
Interface: com.groiss.wf.ProcessDefinition
Class: com.dec.avw.core.ProcessDefinition

Table: avw_step
Description: Steps in the process definitions.
Class: com.dec.avw.core.Step

Table: avw_stepform
Description: Relates the steps to the form variables (which forms are used in which step).
Class: com.dec.avw.core.StepForm

Table: avw_task
Description: Manual activities within a process definition.
Interface: com.groiss.wf.Task
Class: com.dec.avw.core.Task

Table: avw_taskfunction

277

A.4. SCHEMA FOR RUN-TIME DATA

Description: Function definitions (esp. attached to tasks).
Interface: com.groiss.wf.Function
Class: com.dec.avw.core.TaskFunction

Table: avw_taskfuncrel
Description: The relation between functions and tasks.
Class: com.dec.avw.core.TaskFunctionRelation

A.4 Schema for Run-Time Data

A.4.1 Essential Process Run-Time Data

To get a more complete picture of the interrelations between run time data and process
definition schema elements, the most essential run time schema elements are depicted in
figure A.3. Less significant run time data schema elements will be dealt with in the next
section.

Table: avw_follows
Description: The paths between step instances.
Class: com.dec.avw.core.InstanceFlow

Table: avw_forminstance
Description: The relation between the forms and the process instance.
Interface: com.groiss.wf.FormInstance
Class: com.dec.avw.core.FormInstance

Table: avw_formrelation
Description: The relation between forms and subforms.
Interface: com.groiss.dms.SubformRelation
Class: com.dec.avw.core.FormRelation

Table: avw_stepinstance
Description: The instances of processes and steps.
Interface: com.groiss.wf.ActivityInstance,com.groiss.wf.ProcessInstance
Class: com.dec.avw.core.StepInstance

Table: form_<ftypid_ftypversion>
Description: The (generated) tables for the forms. One table per form type.
Interface: com.groiss.forms.<ftypid_ftypversion> or
com.dec.avw.appl.<ftypid_ftypversion>
Class: com.dec.avw.core.Form

278

A.4. SCHEMA FOR RUN-TIME DATA

A.4.2 Further Process Run-Time Data Schema

Table: avw_archivedproc
Description: May be used to record traces of archived processes.
Class: com.groiss.archive.ArchivedProcess

Table: avw_basicevent
Description: Records persistent events.
Interface: com.groiss.event.Event
Class: com.groiss.event.BasicEvent

Table: avw_batchjob
Description: Captures state information about batch job process step instances.
Class: com.groiss.wf.batch.impl.BatchJob

Table: avw_currenteditor
Description: In installations with autotake activated, records which agent is currently editing
which form.
Class: com.dec.avw.core.CurrentEditor

Table: avw_escalationfire
Description: Contains state of fired escalations.
Class: com.dec.avw.core.EscalationFired

Table: avw_eventregistry
Description: Records event registrations.
Interface: com.groiss.event.EventRegistry
Class: com.groiss.event.impl.EventRegistryImpl

Table: avw_procfieldvals
Description: Values of important fields of process instances; needed for full-text searches.
Class: com.dec.avw.core.ProcessFieldValues

Table: avw_procrelation
Description: Can record arbitrary relationships between process instances.
Class: com.groiss.wf.ProcessRelation

Table: avw_suspension
Description: Records suspension intervals of step instances.
Interface: com.groiss.wf.Suspension
Class: com.dec.avw.core.Suspension

Table: avw_seenobject
Description: This table records which user has seen which step instance.
Class: com.dec.avw.core.SeenObject

Table: avw_seenobject2

279

A.5. SCHEMA OF PERMISSION SYSTEM

Description: Offers possibility to record which user has seen which arbitrary persistent
object.
Class: com.dec.avw.core.SeenObject2

Table: avw_sequence
Description: Contains the counters e.g. for process ids (id=processid).
Class: -

A.5 Schema of Permission system

The picture in fig. A.4 shows the schema elements dealing with permissions.

@enterprise 11.0: Permissions

avw_objectclass
c.d.a.c.IObjectClass

 name
 classname
 application

avw_classrightrel
c.d.a.c.ObjectClassRightRel

 objectclass

0..n

1..1

avw_aclentry
c.g.o.Permission

 objScope*
 orgScope*
 positive
 ignoreSubst
 fromDate
 toDate
 isCurrent

avw_right
c.g.o.Right

 id
 name
 description

 avwright

0..n

1..1

 avwusage

0..n

0..1

<<interface>>

Persistent
c.g.s.Persistent

 target*

0..n

1..1

 avwright

0..n

1..1

avw_acl
c.g.o.PermissionList

 name

avw_defaultacl
c.g.o.PermissionList

 objectclass

0..n

1..1

 acl

0..n

1..1

avw_aclpattern
c.d.a.acl.ACLPattern

 name

avw_objectaclrel
c.d.a.acl.ObjectACLRel

 acl

0..n

1..1

Agent
c.g.o.Agent

avw_dept
c.g.o.Orgunit

 ...

 agent

0..n

1..1

 dept

0..n

1..1

 dept

0..n

1..1

 target*

0..n

1..1

 target

0..n

1..1

avw_user
c.g.o.User

 ...

 owner

0..n

1..1

Figure A.4: Permission Schema

280

A.5. SCHEMA OF PERMISSION SYSTEM

Table: avw_acl
Description: Defines access control lists (ACLs).
Interface: com.groiss.org.PermissionList
Class: com.dec.avw.core.ACL

Table: avw_aclentry
Description: The relation between agents (user or role), rights, and objects.
Interface: com.groiss.org.Permission
Class: com.dec.avw.acl.ACLEntry

Table: avw_aclpattern
Description: Prototype ACLs of users.
Class: com.dec.avw.acl.ACLPattern

Table: avw_classrightrel
Description: Defines the relation between object classes and the rights that can be applied.
Class: com.dec.avw.core.ObjectClassRightRel

Table: avw_defaultacl
Description: The relation between object classes and their default access control list.
Class: com.dec.avw.core.DefaultACL

Table: avw_objectaclrel
Description: The relation between objects and ACLs.
Class: com.dec.avw.core.ObjectACLRel

Table: avw_objectclass
Description: Object classes.
Interface: com.dec.avw.core.IObjectClass
Class: com.dec.avw.core.ObjectClass, com.dec.avw.core.FormType

Table: avw_right
Description: The definition of rights.
Interface: com.groiss.org.Right
Class: com.dec.avw.core.Right

Table: avw_steppermission
Description: Defines rights on documents within the context of a process step.
Class: com.groiss.accesscontrol.StepPermission

281

A.6. SCHEMA FOR DOCUMENT MANAGEMENT

A.6 Schema for Document Management

A.6.1 Main tables in DMS

Fig. A.5 shows the central schema of the document management.

@enterprise 11.0: Documents and Forms

<<interface>>

DMSObject
c.g.d.DMSObject

<<interface>>

DMSFolder
c.g.d.DMSFolder

<<interface>>

DMSForm
c.g.d.DMSForm

avw_documentlink
c.g.d.DMSLink

avw_dmsfldritemrel
c.g.d.DMSFolderItemRel

 folder

0..n

1..1

 item

1..1

1..1

 linkedObject

0..n

1..1

<<interface>>

DMSDocForm
c.g.d.DMSDocForm

avw_stepinstance
c.g.wf.ActivityInstance

 ...

form_<ftypid_ftypversion>
c.g.d.FolderForm

 process
 dept

form_<ftypid_ftypversion>
c.g.d.DocForm

 avwcontentsize
 avwextension
 avwstatus

<<interface>>

DMSFolderForm
c.g.d.DMSFolderForm

form_<ftypid_ftypversion>

c.g.d.Form

 task
 avwcreatedat
 avwcreatedby
 avwchangedat
 avwchangedby

avw_standardfldr
com.groiss.dms.impl.

StandardFolder

 name

<<interface>>

DMSLink
c.g.d.DMSLink

folderform tables...

avw_formrelation
c.g.dms.SubFormRelation

 id

1..1

 src

0..n

1..1

 dest

0..1

... avw_standarddoc
com.groiss.dms.impl.
StandardDocument

 name

documentform tables...

...avw_doccontent
com.groiss.dms.store.

DocumentContent

 content
 extension

1..1

 id

0..1

Figure A.5: Schema of Documents

Table: avw_dmsfldritemrel
Description: Relates folders and their contents; is also used for the relation between process
instances and their documents because process instances are folders, too.
Class: com.groiss.dms.impl.DMSFolderItemRel

282

A.6. SCHEMA FOR DOCUMENT MANAGEMENT

Table: avw_doccontent
Description: Content of documents.
Class: com.groiss.dms.store.DocumentContent

Table: avw_documentlink
Description: Links to documents (internal in @enterprise).
Interface: com.groiss.dms.DMSLink
Class: com.groiss.dms.impl.DMSObjectLink

Table: avw_standarddoc
Description: Standard documents.
Interface: com.groiss.dms.DMSDocForm
Class: com.groiss.dms.impl.StandardDocument

Table: avw_standardfldr
Description: Standard folders for documents.
Interface: com.groiss.dms.DMSFolderForm
Class: com.groiss.dms.impl.StandardFolder

A.6.2 Additional Tables for Document Management

Table: avw_dockeywordrel
Description: Relation between DMSObjects and attached keywords.
Class: com.groiss.dms.impl.DocKeywordRel

Table: avw_email
Description: Document form for emails.
Interface: com.groiss.dms.DMSDocForm
Class: com.groiss.dms.impl.Email

Table: avw_folderprops
Description: Properties of folders (columns,actions,restrictions,paging).
Class: com.groiss.dms.impl.FolderProperties

Table: avw_formfieldvals
Description: Field values of specific form objects; needed for full-text searches.
Class: com.dec.avw.core.FormFieldValues

Table: avw_keyword
Description: Keywords for documents. May be organized hierarchically.
Interface: com.groiss.dms.Keyword
Class: com.groiss.dms.impl.KeywordImpl

Table: avw_news
Description: News, messages of the day.
Interface: com.groiss.dms.DMSForm

283

A.7. MISCELLANEOUS

Class: com.groiss.dms.impl.News

Table: avw_note3
Description: Notes attached to process instances or documents.
Interface: com.groiss.dms.DMSNote
Class: com.groiss.dms.impl.Note3

Table: avw_recyclebin
Description: User specific recycle bins for documents.
Interface: com.groiss.dms.DMSFolderForm
Class: com.groiss.dms.impl.RecycleBin

Table: avw_recbinrelext
Description: Preserves original context of items in recycle bins.
Class: com.groiss.dms.impl.RecycleBinRelExtension

Table: avw_thumbnail
Description: Thumbnail representations of document contents
Class: com.groiss.smartclient.dms.Thumbnail

Table: avw_value
Description: Values for value lists.
Interface: com.groiss.dms.DMSForm
Class: com.groiss.dms.impl.Value

Table: avw_valuelist
Description: Value lists (enumeration types).
Interface: com.groiss.dms.DMSForm
Class: com.groiss.dms.impl.Valuelist

Table: avw_weblink
Description: External links.
Interface: com.groiss.dms.DMSWebLink
Class: com.groiss.dms.impl.WebLink

A.7 Miscellaneous

A.7.1 User related tables

Table: avw_connectedshare
Description: Relates users connections to shared folders
Class: com.dec.avw.core.ConnectedShare

Table: avw_dashboard
Description: Holds user defined dashboard information.

284

A.7. MISCELLANEOUS

Class: com.groiss.avw.html.DashboardDefinition

Table: avw_dashboarditem
Description: The individual items of the dashboards.
Class: com.groiss.avw.html.DashboardItem

Table: avw_documenttracker
Description: Records interest of users to follow document changes.
Class: com.groiss.messaging.impl.DocumentTracker

Table: avw_folderitemrel
Description: Relates Activityinstances to Userfolders and Processinstances to Referencefold-
ers.
Class: com.dec.avw.core.FolderItemRel

Table: avw_processtracker
Description: Records interest of users to follow process steps.
Class: com.dec.avw.core.ProcessTracker

Table: avw_profilepicture
Description: Pictures attached to users (profiles).
Class: com.groiss.dms.impl.ProfilePicture

Table: avw_recentlyused
Description: Record which objects have been used by a user (to build list of favorites).
Class: com.groiss.avw.RecentlyUsed

Table: avw_referencefldr
Description: Reference folders contain pointers to process instances (search results).
Class: com.dec.avw.core.ReferenceFolder

Table: avw_seenreference
Description: Which user has seen which process instance in a reference folder.
Class: com.dec.avw.core.SeenReference

Table: avw_server
Description: Represents an @enterprise installation.
Class: com.dec.avw.core.Server

Table: avw_unsuccesslogin
Description: Stores unsuccessful login attempts.
Class: com.dec.avw.core.UnsuccessfulLogins

Table: avw_userfilter2
Description: Stores user defined filters for table display in GUI.
Class: com.dec.avw.core.UserFilter2

285

A.7. MISCELLANEOUS

Table: avw_userfolder
Description: Definition of user folders (which contain ActivityInstances).
Interface: com.groiss.wf.UserFolder
Class: com.dec.avw.core.UserFolder

Table: avw_userkeystore
Description: Keystores of agents.
Class: com.dec.avw.core.AgentKeystore

Table: avw_userprop
Description: User properties.
Class: com.dec.avw.core.UserProperty

Table: avw_usersession
Description: Login sessions of users.
Interface: com.groiss.org.IUserSession
Class: com.groiss.org.impl.UserSession

Table: avw_usersessionrole
Description: Relates usersessions to (temporarily granted) roles.
Class: com.dec.avw.core.UserSessionRole

A.7.2 Reporting

Table: avw_contextescalationfire
Description: Records fired escalations for stored queries for process instances.
Class: com.dec.avw.core.ContextEscalationFired

Table: avw_storedquery2
Description: Query definitions for reports (may be related to function groups).
Class: com.groiss.reporting.StoredQuery

A.7.3 Schema for messaging (e-mail)

Table: avw_mailbox
Description: Mail account and processing information.
Interface: com.groiss.mail.MailBox
Class: com.groiss.mail.MailBoxImpl

Table: avw_mailqueueitem
Description: Queues unsent mail items.
Class: com.groiss.mail.MailQueueItem

Table: avw_messagejournal
Description: Records sent messages.

286

A.7. MISCELLANEOUS

Class: com.groiss.mail.MessageJournal

Table: avw_msgrecipient
Description: Recipient definitions for message templates.
Class: com.groiss.messaging.Recipient

Table: avw_messagetemplate
Description: Templates for messages.
Interface: com.groiss.messaging.MessageTemplate
Class: com.groiss.messaging.MessageTemplateImpl

A.7.4 Schema for Timers

Table: avw_timerentry
Description: The timer entries.
Interface: com.groiss.timer.TimerEntry
Class: com.groiss.timer.impl.TimerEntry

Table: avw_timerrun
Description: Persistent planned essential timer runs.
Class: com.groiss.timer.impl.TimerRun

A.7.5 Schema for GUI configurations

Table: avw_defaulturl
Description: Relates default GUI entry points to agents.
Class: com.groiss.avw.DefaultURL

Table: avw_guiconfig
Description: Stores information about available GUI configurations.
Class: com.groiss.avw.GuiConfig

A.7.6 System State

Table: avw_clusterlock
Description: Cluster wide lock info for determining the distinguished cluster timer node.
Class: -

Table: avw_config
Description: Optional storage for configuration files.
Class: -

Table: avw_lock
Description: Table for obtaining a (cluster-wide) lock.

287

A.7. MISCELLANEOUS

Class: com.groiss.store.Lock

Table: avw_oid
Description: Records next free oid value.
Class: -

Table: avw_runningnode
Description: Stores state of nodes in a clustered installation.
Class: com.groiss.server.RunningNode

Table: avw_sysevent
Description: Stores system events (startup,shutdown, . . .).
Class: com.groiss.avw.SysEvent

Table: avw_version
Description: Records the version of @enterprise.
Class: -

A.7.7 Calendar Schema

The following tables comprise the schema part of the calendar functions.

Table: avw_calattendee
Description: Relates attendees and calendar events.
Class: com.groiss.calendar.pers.Attendee

Table: avw_calevent
Description: Calendar events.
Interface: com.groiss.calendar.pers.CalEventImpl
Class: com.groiss.cal.CalEvent

Table: avw_caleventfired
Description: Records fired calendar events.
Class: com.groiss.calendar.pers.CalEventReminded

Table: avw_calview
Description: Stores sets of users and resources.
Class: com.groiss.calendar.pers.CalView

Table: avw_calviewobject
Description: Relates views and contained objects.
Class: com.groiss.calendar.pers.ViewedObject

Table: avw_calviewsrc
Description: Maps calender views to source data.

288

A.7. MISCELLANEOUS

Class: com.groiss.calendar.pers.ViewedSource

Table: avw_externalcal
Description: Addresses of external calendars for users.
Class: com.groiss.calendar.pers.ExternalCalendar

Table: avw_resource
Description: Schedulable resources.
Class: com.groiss.calendar.pers.Resource

A.7.8 Schema for Webservices

The following tables are used for web service definition and details about invoking them in
process steps.

Table: avw_ws_activity
Description: Referenced by web service steps (receive, reply, invoke). Points to a web
service operation.
Interface: com.dec.avw.core.Activity
Class: com.groiss.ws.wf.WebserviceActivity

Table: avw_ws_parameter
Description: Parameters for web service operations.
Class: com.groiss.ws.Parameter

Table: avw_ws_parameter_mapping
Description: Mapping between web service activities and parameters.
Class: com.groiss.ws.wf.ParameterMapping

Table: avw_webservice
Description: Definitions of Web services.
Class: com.groiss.ws.WebService

Table: avw_webservice_operation
Description: Individual operations for Web services.
Class: com.groiss.ws.WebserviceOperation

A.7.9 Schema for WfXML

These are the tables for communication via WfXML.

Table: avw_wfxml2accesslog
Description: Log entries about WfXMl operations.
Class: com.groiss.wfxml2.dataobject.AccessLogEntry

289

A.7. MISCELLANEOUS

Table: avw_wfxml2asynclistener
Description: Stores listeners for asynchronous callbacks.
Class: com.groiss.wfxml2.dataobject.InternalRequestListener

Table: avw_wfxml2intobservers
Description: Stores internal process instance observers.
Class: com.groiss.wfxml2.dataobject.InternalProcessStateObserver

Table: avw_wfxml2observers
Description: Stores external process instance observers.
Class: com.groiss.wfxml2.dataobject.ExternalProcessStateObserver

Table: avw_wfxml2pendingmsg
Description: Intermediate store foe pending outgoing messages.
Class: com.groiss.wfxml2.dataobject.PendingMessage

Table: avw_wfxml2pd
Description: Conceptual WfXML remote process definitions.
Class: com.groiss.wfxml2.engine.remote.registry.ProcessDefinition

Table: avw_wfxml2remoteinstance
Description: Stores data about remote process instances.
Class: com.groiss.wfxml2.dataobject.RemoteProcessInstance

Table: avw_wfxml2rpd
Description: Connects conceptual remote ProcessDefinitions with concrete partners.
Class: com.groiss.wfxml2.engine.remote.registry.RemoteProcessDefinition

Table: avw_wfxmlpartner
Description: Partner system descriptions for WfXML communication.
Class: com.groiss.wfxml.Partner

A.7.10 Schema for Plan Management

Tables for process time planing data.

Table: avw_milestone
Description: Marks special plan progress for some plan entries.
Class: com.groiss.planning.Milestone

Table: avw_planentry
Description: Relates process plans and steps of process definitions.
Class: com.groiss.planning.PlanEntry

Table: avw_planentryinstance
Description: Relates plan entries to process instances.

290

A.8. OBSOLETE SCHEMA ELEMENTS

Class: com.groiss.planning.PlanEntryInstance

Table: avw_processplan
Description: Relates process definitions and process plan types.
Class: com.groiss.planning.ProcessPlan

Table: avw_plantype
Description: Plan types.
Class: com.groiss.planning.PlanType

A.7.11 Tables for Process Debugging

Table: avw_testcase
Description: Testcases for Process Debugger.
Class: com.groiss.proctest.TestCase

Table: avw_teststep
Description: Steps for testcases for Process Debugger.
Class: com.groiss.proctest.TestStep

A.7.12 Tables used for decision support

Table: avw_classifier_assignment
Description: Which classifier belongs to which field.
Class: com.groiss.ml.classifier.impl.ClassifierAssignmentImpl

Table: avw_classifier_assignment_task
Description: Describes which tasks can be used at which classifier assignment.
Class: com.groiss.ml.classifier.impl.ClassifierAssignmentTask

A.8 Obsolete schema elements

The following tables are not used any more by @enterprise itself. Nevertheless, they remain
in the schema, because applications may still be using them.

Table: avw_document
Description: Used for documents (pre 4.0).
Class: com.dec.avw.core.Document

Table: avw_document2
Description: Meta-data attached to documents (until 6.0).
Class: com.dec.avw.core.Document2

291

A.8. OBSOLETE SCHEMA ELEMENTS

Table: avw_doctype
Description: Classification of documents (until 4.0).
Class: com.dec.avw.core.DocumentType

Table: avw_docversion
Description: Version of the documents (until 6.4).
Class: com.groiss.dms.impl.DocumentVersion

Table: avw_docversionrel
Description: Relation between documents versions and documents (until 6.4).
Class: com.groiss.dms.impl.DocumentVersionRel

Table: avw_folderrestrict
Description: Content restriction for DMS folders.
Class: com.dec.avw.core.FolderRestriction

Table: avw_formfieldmode
Description: The modes of form fields in activities (until 6.1).
Class: com.dec.avw.core.FormFieldMode

Table: avw_formversion
Description: Relates forms to their versions (until 6.4).
Class: com.dec.avw.core.FormVersion

Table: avw_lastupdate
Description: Holds maximum oid of last synchronization of (replicated) master data.
Class: -

Table: avw_note
Description: Notes attached to process (until 4.0).
Class: com.dec.avw.core.Note

Table: avw_procdocument
Description: Relation between process instance and documents (until 6.0).
Class: com.dec.avw.core.ProcessDocument

Table: avw_processobject
Description: Relation between process instance and note (until 4.0).
Class: com.dec.avw.core.ProcessObject

Table: avw_queryattr
Description: Attribute details of reports (until 7.0).
Class: com.dec.avw.core.ProcessObject

Table: avw_querycond
Description: Condition details of reports (until 7.0).
Class: com.dec.avw.core.ProcessObject

292

A.8. OBSOLETE SCHEMA ELEMENTS

Table: avw_storedquery
Description: Table containing the stored queries (until 6.4).
Class: com.dec.avw.monitoring.StoredQuery

Table: form_standarddoc_1
Description: Standard document types (until 6.0).
Class: com.dec.avw.appl.Standarddokument_1

293

Bibliography

[1] Java 2 Platform, Enterprise Edition (J2EE),
https://www.oracle.com/java/technologies/appmodel.html

[2] World Wide Web Consortium: XHTML 1.0, http://www.w3c.org

[3] Internet Engineering Task Force: RFC 1867, http://www.ietf.org/rfc/rfc1867.txt

[4] Workflow Management Coalition: Workflow Standard - Interoperability, Wf-XML
Binding Version 1.1, http://www.wfmc.org

[5] Modularization of XHTML; http://www.w3.org/TR/xhtml-modularization/

[6] http://www.jdom.org/

[7] Axis2 Web Service framework; http://ws.apache.org/axis2/

[8] Apache Axis2 Tools http://ws.apache.org/axis2/tools/index.html

[9] Apache Axis2 Codegen Tool
http://ws.apache.org/axis2/tools/1_4_1/CodegenToolReference.html

[10] Business Process Modeling and Notation (BPMN) V 2.0.2. OMG Document Number
formal/2013-12-09
http://www.omg.org./spec/BPMN

[11] An analysis of reduced error pruning - Elomaa, Tapio and Kaariainen, Matti in Journal
of Artificial Intelligence Research, 2001

[12] Sensitivity and specificity, Wikipedia contributors
https://en.wikipedia.org/wiki/Sensitivity_and_specificity (accessed
March 2019)

[13] Simplifying decision trees, Quinlan, J. Ross in International journal of man-machine
studies, Elsevier 1987

[14] The use of multiple measurements in taxonomic problems, Fisher, Ronald A in Annals
of eugenics, 1936 Wiley Online Library

294

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

	1 Overview
	2 Servlet Methods
	2.1 The Dispatcher Servlet
	2.2 Mapping of URLs to files or methods
	2.3 Page
	2.4 HTMLPage
	2.5 XHTMLPage
	2.6 Velocity Page
	2.7 File Upload
	2.8 Authorization
	2.9 Demo Package

	3 Persistence Layer
	3.1 Database Connection Pool
	3.2 Persistent Objects
	3.3 Lazy filling
	3.4 Optimistic Locking
	3.5 PersistentEventHandler
	3.6 Additional aspects
	3.6.1 PermissionMapping
	3.6.2 DeferredChanges
	3.6.3 HasPermissionList
	3.6.4 HasLog
	3.6.5 PersistentAspect

	4 Utilities and Data Structures
	4.1 Data Structures
	4.1.1 KeyValuePair
	4.1.2 Pair
	4.1.3 MultiMap
	4.1.4 KeyedList
	4.1.5 CountedSemaphore
	4.1.6 Caching

	4.2 StringUtil and FileUtil
	4.3 Date/Time Handling
	4.3.1 CalUtil
	4.3.2 Holidays
	4.3.3 Application dependent calendar-events

	4.4 ThreadContext
	4.5 Logging
	4.6 Timer
	4.7 BeanManager
	4.7.1 Callback registration
	4.7.2 Beans

	4.8 Resource Files
	4.9 Error Handling

	5 Structure of Applications in @enterprise
	5.1 Organization of Files
	5.2 The Configuration File
	5.3 The Application Class
	5.4 Documentation of Applications
	5.4.1 Using context sensitive help in applications

	5.5 Internationalization of Applications
	5.6 Startup and Shutdown
	5.7 Installation
	5.8 Upgrading
	5.9 Making the web application secure
	5.9.1 Defining the access mode
	5.9.2 Checking rights
	5.9.3 Common security pitfalls

	6 Organizational Data
	6.1 Users, their Roles and Rights
	6.2 Database operations
	6.3 Password Policies
	6.4 Adding tab Additional Info

	7 HTML Components
	8 Document Management
	8.1 Objects of the DMS
	8.2 Life Cycle of a DMSObject
	8.3 Storage and Versioning
	8.4 The @enterprise DMS API
	8.4.1 Create DMS objects
	8.4.2 Managing Relations
	8.4.3 Manipulate DMS Objects
	8.4.4 Navigate within the DMS
	8.4.5 Permissions in DMS
	8.4.6 Utility Methods

	8.5 Using the DMS API
	8.5.1 Utilities for DMS related HTML Interface
	8.5.2 Adding a Document to a Process
	8.5.3 Adapting Folder and Table View
	8.5.4 Further Examples

	8.6 Office Templates
	8.6.1 Requirements
	8.6.2 Placeholder elements
	8.6.3 Creating documents from templates
	8.6.4 Example

	9 Forms
	9.1 General
	9.2 The Form Event Handler
	9.3 The Form Table Handler
	9.4 XForms
	9.5 The XForms API
	9.5.1 Using the form event handler
	9.5.2 View a form
	9.5.3 Implement the submit action
	9.5.4 XForms buttons in the form
	9.5.5 Client side event handling
	9.5.6 Subform handling
	9.5.7 Evaluate the bindings

	9.6 XHTML forms
	9.6.1 XHTML forms with Sub-tables
	9.6.2 The attribute epblock in XHTML-Forms

	10 The Workflow Engine
	10.1 Process definition and execution
	10.1.1 Structure of run-time data

	10.2 The @enterprise workflow API
	10.2.1 Create a process instance
	10.2.2 Find process instances
	10.2.3 Get information about a process instance
	10.2.4 Manipulation of process instances
	10.2.5 Getting the context
	10.2.6 Methods for process instances

	11 Using the Workflow API
	11.1 Application Methods Called by the Engine
	11.1.1 Usage of script-language GROOVY
	11.1.2 XPath-Conditions
	11.1.3 Adding methods to the system step editor

	11.2 Interactive Functions
	11.3 Application Adapter
	11.4 Utilities for building an HTML interface
	11.4.1 Show the form
	11.4.2 Show a form table
	11.4.3 Link to forms and documents
	11.4.4 Object Selection

	11.5 Task-Functions in forms
	11.6 Batch Processing
	11.6.1 Batch jobs and concurrency

	11.7 Event Mechanism
	11.7.1 WDL event elements
	11.7.2 The Event API
	11.7.3 Event Processing
	11.7.4 Cluster
	11.7.5 Administration

	11.8 Examples
	11.8.1 Start a Process
	11.8.2 Find running Processes

	12 Configuring the Worklist Client
	12.1 Introduction
	12.2 The Elements of the Configuration File
	12.2.1 Own layout of main page in smartclient
	12.2.2 Tree Nodes
	12.2.3 Non tree nodes (<nodes>)
	12.2.4 Internationalization
	12.2.5 Adding HTML Code Between the Links
	12.2.6 Configure user parameters
	12.2.7 Change style and logos/icons

	12.3 Customizing the Worklist
	12.4 Displaying Additional Data

	13 Communication with other Systems
	13.1 E-Mail
	13.1.1 Sending E-Mails
	13.1.2 Receiving E-Mails
	13.1.3 Tab Emails

	13.2 Remote Method Invocation
	13.3 Wf-XML 2.0
	13.3.1 ASAP Overview
	13.3.2 Wf-XML Overview
	13.3.3 Administration
	13.3.4 Wf-XML Web client

	13.4 LDAP
	13.4.1 Basic Aspects of the Synchronization Mechanism
	13.4.2 Default Schema Mapping
	13.4.3 Customizing the Synchronization

	13.5 Accessing external databases
	13.5.1 External database setup
	13.5.2 Basic assumptions and underlying principles
	13.5.3 Getting an XStore
	13.5.4 Transactional operations of an XStore
	13.5.5 Data manipulation operation
	13.5.6 Data access operations
	13.5.7 DataRow interface

	14 Web services
	14.1 Components
	14.1.1 WS-Framework
	14.1.2 EP-Context
	14.1.3 Partner Links

	14.2 Providing web services
	14.2.1 Contract-first with Axis2

	14.3 Demos

	15 XWDL
	15.1 Introduction
	15.2 Usage
	15.2.1 HTML-Client

	15.3 API
	15.4 The basic DTD
	15.5 An Example
	15.5.1 WDL
	15.5.2 XDWL

	15.6 The extension model
	15.6.1 The extension DTD
	15.6.2 An Example

	15.7 Extension API

	16 BPMN
	16.1 Introduction
	16.2 Common elements
	16.2.1 Basic layout
	16.2.2 Principal definitions
	16.2.3 Form types
	16.2.4 Signals
	16.2.5 Messages
	16.2.6 Interfaces and Operations
	16.2.7 Resource Definitions
	16.2.8 Expressions
	16.2.9 Omissions and Aspects for further enhancement

	16.3 Mapping of @enterprise constructs
	16.3.1 Process definition and form declarations
	16.3.2 Annotations
	16.3.3 Flows
	16.3.4 Common step structure
	16.3.5 Activities
	16.3.6 Control structures
	16.3.7 Events
	16.3.8 Web services

	17 Usage of DOJO and JavaScripts
	17.1 The @enterprise JavaScript library
	17.2 Using DOJO in @enterprise
	17.2.1 Add DOJO to a page/form
	17.2.2 Usage of customized DOJO controls
	17.2.3 Implementing own widgets
	17.2.4 Smartclient notification API

	17.3 Styling
	17.3.1 Referencing icons
	17.3.2 Styling examples

	18 Mobile GUI Client
	18.1 Worklist Example
	18.2 DOJO Client
	18.2.1 Mobile Grid Renderer Action
	18.2.2 View
	18.2.3 ScrollableView
	18.2.4 _ShowViewAction
	18.2.5 waitingOverlay-util
	18.2.6 ToolBarButton
	18.2.7 ListItem
	18.2.8 Dialog
	18.2.9 msg-util
	18.2.10 mobile-util
	18.2.11 dms-show-util
	18.2.12 ObjectSelect
	18.2.13 Column

	18.3 Mobile Forms
	18.4 LESS for mobile GUI Configurations
	18.5 Showing Mobile Views

	19 Decision Support
	19.1 Decision Trees
	19.1.1 Splitting
	19.1.2 Attributes
	19.1.3 Pruning

	19.2 Integration in @enterprise
	19.2.1 ClassificationService
	19.2.2 Classifier
	19.2.3 Attributes, Instances and Data Sets
	19.2.4 Connect Classifiers and Processes
	19.2.5 Custom enhancements

	20 Using the Reporting API
	20.1 Hidden Configuration
	20.2 XML Configuration
	20.2.1 Schema
	20.2.2 Query

	20.3 API
	20.3.1 com.groiss.reporting.data.TimeModel
	20.3.2 com.groiss.reporting.data.ReportingExportable
	20.3.3 com.groiss.reporting.data.ReportingData
	20.3.4 com.groiss.reporting.data.NumericValue
	20.3.5 ReportingExporter
	20.3.6 ClientSideExporter

	20.4 Implementing your own Search Mask

	21 RESTful API
	21.1 Authorization with Keycloak

	A Database Schema Overview
	A.1 Introduction to the Database Schema
	A.2 Organizational Schema
	A.3 Schema for Process Definitions
	A.4 Schema for Run-Time Data
	A.4.1 Essential Process Run-Time Data
	A.4.2 Further Process Run-Time Data Schema

	A.5 Schema of Permission system
	A.6 Schema for Document Management
	A.6.1 Main tables in DMS
	A.6.2 Additional Tables for Document Management

	A.7 Miscellaneous
	A.7.1 User related tables
	A.7.2 Reporting
	A.7.3 Schema for messaging (e-mail)
	A.7.4 Schema for Timers
	A.7.5 Schema for GUI configurations
	A.7.6 System State
	A.7.7 Calendar Schema
	A.7.8 Schema for Webservices
	A.7.9 Schema for WfXML
	A.7.10 Schema for Plan Management
	A.7.11 Tables for Process Debugging
	A.7.12 Tables used for decision support

	A.8 Obsolete schema elements

