
@enterprise 8.0

Application Development Guide

December 2017

Groiss Informatics GmbH

Groiss Informatics GmbH

Strutzmannstraße 10/4
9020 Klagenfurt
Austria

Tel: +43 463 504694 - 0
Fax: +43 463 504594 - 10
Email: support@groiss.com

Document Version 8.0.22989

Copyright © 2001 - 2017 Groiss Informatics GmbH.
All rights reserved.

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Groiss Informatics GmbH does not warrant that
this document is error-free.

No part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of Groiss Informatics GmbH.

@enterprise is a trademark of Groiss Informatics GmbH, other names may be trademarks of their
respective companies.

Contents

1 Overview 8

2 Servlet Methods 9
2.1 The Dispatcher Servlet . 10
2.2 Demo Package . 10
2.3 Page . 11
2.4 HTMLPage . 12
2.5 XHTML . 13
2.6 XForm . 16
2.7 Velocity Page . 20
2.8 File Upload . 21
2.9 Authorization . 22

3 Persistence Layer 26
3.1 Database Connection Pool . 26
3.2 Persistent Objects . 26
3.3 Lazy filling . 30
3.4 Optimistic Locking . 30
3.5 PersistentEventHandler . 30

4 Utilities and Data Structures 31
4.1 Data Structures . 31

4.1.1 KeyValuePair . 31
4.1.2 Pair . 31
4.1.3 MultiMap . 31
4.1.4 KeyedList . 31
4.1.5 CountedSemaphore . 32

4.2 StringUtil and FileUtil . 32
4.3 Date/Time Handling . 32

4.3.1 CalUtil . 32
4.3.2 Holidays . 32
4.3.3 Application dependent calendar-events 33

4.4 ThreadContext . 34
4.5 Logging . 35
4.6 Timer . 35

3

CONTENTS

4.7 Beans . 37
4.8 Resource Files . 40
4.9 Error Handling . 40

5 Structure of Applications in @enterprise 42
5.1 Organization of Files . 42
5.2 The Configuration File . 43
5.3 The Application Class . 47
5.4 Documentation of Applications . 47
5.5 Internationalization of Applications . 47
5.6 Startup and Shutdown . 48
5.7 Installation . 49
5.8 Upgrading/Patching . 49

5.8.1 Creating patch archives . 49
5.9 Mapping of URLs to files or methods . 50

6 Organizational Data 54
6.1 Users, their Roles and Rights . 54
6.2 Dababase operations . 55
6.3 Password Policies . 56
6.4 Adding tab Additional Info . 56
6.5 Deleting master data with references . 57

7 HTML Components 58

8 The Workflow Engine 60
8.1 Process definition and execution . 60

8.1.1 Structure of run-time data . 63
8.2 Forms . 64
8.3 The @enterprise workflow API . 66

8.3.1 Create a process instance . 67
8.3.2 Find process instances . 67
8.3.3 Get information about a process instance 68
8.3.4 Manipulation of process instances 68
8.3.5 Getting the context . 69
8.3.6 Methods for process instances . 69

9 Using the Workflow API 70
9.1 Application Methods Called by the Engine 70

9.1.1 Usage of script-language GROOVY 71
9.1.2 XPath-Conditions . 73

9.2 Interactive Functions . 75
9.3 Application Adapter . 76
9.4 The Form Event Handler . 77

9.4.1 Using Form Event Handler with XHTML forms and XForms 78
9.5 The Form Table Handler . 79
9.6 Utilities for building an HTML interface 79

4

CONTENTS

9.6.1 Show the worklist . 79
9.6.2 Show the form . 79

9.7 Object Selection . 80
9.8 Task-Functions in forms . 81
9.9 Batch Processing . 81
9.10 Event Mechanism . 87

9.10.1 WDL extensions . 87
9.10.2 The Event API . 87
9.10.3 Event Processing . 88
9.10.4 Cluster . 90
9.10.5 Administration . 90

9.11 Examples . 90
9.11.1 Start a Process . 90
9.11.2 Find running Processes . 92

10 Configuring the Worklist Client 94
10.1 Introduction . 94
10.2 The Elements of the Configuration File . 94

10.2.1 Replacing the HTML templates 95
10.2.2 Restricting access to clients . 95
10.2.3 Tree Nodes . 96
10.2.4 Default-page . 105
10.2.5 Internationalization . 105
10.2.6 Adding HTML Code Between the Links 106
10.2.7 Configure user parameters . 106
10.2.8 Change style and logos . 107

10.3 Customizing the Worklist . 107
10.3.1 Link to forms and documents . 109

10.4 Displaying Additional Data . 109

11 Document Management 113
11.1 Objects of the DMS . 113
11.2 Life Cycle of a DMSObject . 114
11.3 Storage and Versioning . 115
11.4 The @enterprise DMS API . 116

11.4.1 Create DMS objects . 117
11.4.2 Managing Relations . 117
11.4.3 Manipulate DMS Objects . 118
11.4.4 Navigate within the DMS . 119
11.4.5 Permissions in DMS . 119
11.4.6 Utility Methods . 120

11.5 Using the DMS API . 121
11.5.1 Utilities for DMS related HTML Interface 121
11.5.2 Adding a Document to a Process 123
11.5.3 Adapting Folder and Table View 124
11.5.4 Build your own DMS Pages . 129

5

CONTENTS

12 Communication with other Systems 132
12.1 E-Mail . 132
12.2 Remote Method Invocation . 134
12.3 Wf-XML 2.0 . 134

12.3.1 ASAP Overview . 134
12.3.2 Wf-XML Overview . 135
12.3.3 Administration . 142
12.3.4 Wf-XML Web client . 144

12.4 LDAP . 147
12.4.1 Basic Aspects of the Synchronization Mechanism 147
12.4.2 Default Schema Mapping . 148
12.4.3 Customizing the Synchronization 152

13 XWDL 154
13.1 Introduction . 154
13.2 Usage . 154

13.2.1 HTML-Client . 154
13.3 API . 155
13.4 The basic DTD . 155
13.5 An Example . 155

13.5.1 WDL . 156
13.5.2 XDWL . 157

13.6 The extension model . 161
13.6.1 The extension DTD . 161
13.6.2 An Example . 163

13.7 Extension API . 166

14 Web services 168
14.1 Components . 168

14.1.1 WS-Framework . 168
14.1.2 EP-Context . 168
14.1.3 Partner Links . 169

14.2 Providing web services . 169
14.2.1 Contract-first with Axis2 . 169

14.3 Web service security . 170
14.3.1 WS-security with UserNameToken 170
14.3.2 WS-security with SAMLToken . 170

14.4 Demos . 170

15 AJAX and JavaScript in HTML pages 173
15.1 The @enterprise JavaScript library . 173
15.2 Using DOJO in @enterprise . 175

15.2.1 Add DOJO to a page . 175
15.3 Usage of customized DOJO controls . 176

15.3.1 Date control - ep.widget.DateField 176
15.3.2 Object selection - ep.widget.ObjectSelect 177

6

CONTENTS

16 Mobile GUI Client 179
16.1 WorklistAdapter Example . 179

7

1 Overview

This guide explains how to write workflow applications with @enterprise. @enterprise
offers a set of demos combined in the file demos.zip of doc folder. Within this compressed
file a text-file called README.txt is available which gives a short description about the demo
programs.

This guide contains following chapters:

• Chapter 2 describes how servlet methods can be written.

• Chapter 3 describes the layer for persistent objects.

• Data structures and some useful utilities are described in chapter 4.

• Chapter 5 describes the structure of @enterprise applications.

• Chapter 6 describes the organizational data.

• In chapter 7 components for writing HTML interfaces are described.

• The workflow engine and its API is described in chapter 8.

• The usage of the workflow API is shown in chapter 9.

• Chapter 10 describes the configuration of the HTML-Client and the implementation
of a customized worklist.

• Chapters 11 introduce the document management component and its API.

• Chapter 12 describes the usage of various communication mechanisms like email,
RMI, Wf-XML and LDAP in @enterprise.

• The process definition representation XWDL is described in Chapter 13.

• The way how Web services can be used in @enterprise is described in Chapter 14.

• Chapter 15 describes how to handle with the intergrated DOJO component.

• The adaption of Mobile GUI Client is described in Chapter 16.

8

2 Servlet Methods

In this chapter we describe how to write methods for Web applications - receiving input from
the browser and writing out to it. Moreover the authorization mechanism is discussed and
some utilities for building HTML components are presented.
@enterprise is a Web-based system with an integrated Web-server. The interface between
the Web server and the rest of the system is a set of servlets.
For the application programmer there exists a convenient interface to write "servlet methods".
These methods must have one of the two following signatures:

public void methodX (HttpServletRequest req, HttpServletResponse res)
throws Exception;

public Page methodY (HttpServletRequest req) throws Exception;

HttpServletRequest and HttpServletResponse are interfaces from the package
javax.servlet.http (see the Documentation of the Java2 Enterprise Edition [1]). The
return value Page represents a page sent to the browser and is described below.
The methods are called from the dispatcher servlet of @enterprise via reflection. The URL
schema is as follows:

http://host:port/wf/servlet.method/appclass.appmethod?params

appclass is the fully qualified name of the class containing the method appmethod.
appmethod is a method having one of the two above signatures.
Why have we defined two interfaces for writing servlet methods? The first interface is the
more general, because you can write directly onto the output stream of the response. It is
the same as writing a doGet or doPost method of a servlet. However, the second method
signature has some advantages:

• It is explicit, that a return value (the page sent to the browser) is necessary.

• The page is sent to the browser, after the method has been completed, and a commit
has been performed (This prevents sending half pages when an error occurs.).

• Page is an interface, which can have several implementations with extended function-
ality, read below about HTMLPage, ActionPage, and XHTMLPage.

The limitation of this approach is that you cannot set Header-Fields of the HTTP-Response,
for example Cookies. Now, let us look a little deeper into how the Dispatcher works:

9

2.1. THE DISPATCHER SERVLET

2.1 The Dispatcher Servlet

The Dispatcher servlet handles all requests starting with "/<context-root>/servlet.method/",
<context-root> is the context where you have installed @enterprise when using an application
server, in standalone mode it is the constant wf. The Dispatcher performs the following
steps:

1. Load the session of this request.

2. If there is no session and the method is not public, call the sendLoginRequest method
of the authorization class.

3. Call the method specified in the URL by loading the class and calling the method
using reflection.

4. If the method terminates normal (without exception) the user transaction associated
with this thread is committed and the page together with a HTTP header is sent to the
browser.

If the method terminates with an exception, a rollback is performed on the user
transaction and an error page is sent to the browser.

The distinction of public and non public methods works via the interface
com.groiss.servlet.Public. If your class implements this interface, no authorization
is needed. Public is an empty interface, therefore all you have to do when implementing
the interface is to write implements Public in the class declaration. When using public
methods the internationalization is done with the settings of user guest.

2.2 Demo Package

With the @enterprise kit comes a demonstration file demos.zip containing some examples
for writing servlet methods. Load the demos using the "Install Application" link in the
@enterprise system administration. You can go to the index page by pointing your browser
to http://host:port/wf/demo/index.html.
The first of the four examples of the Java class HttpDemo simply writes out the current date
to the browser:

File classes/com/groiss/demo/HttpDemo.java

public void showDate(HttpServletRequest req, HttpServletResponse res)
throws IOException {

res.getWriter().println("<html>"+ new Date()+"</html>");
}

The second example uses a form to give some values to the servlet method. The form looks
as follows:

File classes/alllangs/demo/dateform.html

10

2.3. PAGE

<html><form action="/wf/servlet.method/com.groiss.demo.HttpDemo.showNLSDate1">
Language:
<select name=language>

<option value=de>German
<option value=en>English
<option value=es>Spanish
<option value=fr>French

</select>

Format
long: <input type=radio name=format value=long>
short: <input type=radio name=format value=short>

<input type=submit>
</form>
</html>

The form contains two form fields. The language field to select one of four languages, the
format field to select either a long or short date format. The form action is the method
showNLSDate1 of the class HttpDemo:

File classes/com/groiss/demo/HttpDemo.java

public void showNLSDate1(HttpServletRequest req, HttpServletResponse res)
throws Exception {

String language = req.getParameter("language");
String format = req.getParameter("format");
Locale l = new Locale(language,language);
SimpleDateFormat df = new SimpleDateFormat(

("long".equals(format) ? "EEEE, MMMM dd, yyyy" : "EEE, MMM dd, yyyy"),l);
res.getWriter().println("<html>Date in "+ format + " format in "+ language +

":
" + df.format(new Date())+"</html>");
}

The values from the form fields are retrieved with the method getParameter() of the
request object. The result is written to the writer of the response object.

2.3 Page

The interface Page describes a page sent to the browser, it has the following methods defined:

public String show() throws ApplicationException;

public String getContentType();

The method show returns a String representation of the page and is normally called by the
Dispatcher. The method getContentType() returns the mime-type of the page, for example
"text/html". The interface is implemented by three classes:

HTMLPage: Used for HTML pages, where a fixed template is loaded and the dynamic
parts are substituted from a Java method. See section 2.4 for details.

11

2.4. HTMLPAGE

ActionPage: The action page is used for HTML pages containing JavaScript code only, for
example a command for closing the browser window.

XHTMLPage: The XHTMLPage is used for XHTML and XForm pages. XHTML is a
reformulation of HTML in XML. The advantage of using XML is that substitutions
of XML structures are possible, see section 2.5. An example how an XHTMLPage is
used in XForms is shown in section 9.4.1.

VelocityPage: Implementation which can handle Velocity-templates. See section 2.7 for
details.

Of course, application programmers can define their own implementations of the Page
interface. If any page should use the JavaScript methods of @enterprise, following import
must be available within the HEAD-tags:

<script src="../servlet.method/
com.groiss.gui.JavascriptLoader.getScripts"></script>

2.4 HTMLPage

When showing HTML pages with dynamically generated content it is useful to separate the
fixed HTML code and the parts generated by the program.
Different approaches exist here. Most popular are Active Server Pages (ASP) from Microsoft
and Java Server Pages, part of the Java 2 Enterprise Edition. In both frameworks you have to
write the code into the HTML pages. Whereas this mechanism is nice for prototyping it has
some drawbacks:

• Long HTML/code pages are developed, where the design of the page is hard to see
and maintain.

• The placement of utility methods, constants or static variables is unclear.

• Development in an IDE.

• Internationalization of code and HTML text.

In @enterprise we use a different approach. The HTML pages contain placeholders, which
are replaces with actual data at run-time.
Replacements are done with the class HTMLPage, which provides the following constructors
and methods:
Constructors:

• public HTMLPage()

No parameters: An empty page is generated, set the content of the page with
setPage(String).

• public HTMLPage(String resource)

The parameter is the name of a resource, normally a file in the class path.

12

2.5. XHTML

Methods:

• substitute(String s1, String s2): The placeholder s1 is substituted by the
string s2.

• showPage() returns the page as string.

The class HTMLPage is normally used in the following steps:

1. Use the constructor to load the mask,

2. make multiple calls of substitute to replace the placeholders,

3. return the page to the Dispatcher.

Example: The method showNLSDate can be rewritten using HTMLPage.
HTML-mask:

File classes/com/groiss/demo/date.html

<html><body>
Date in %format% format in %language%:

%date%
</body>
</html>

Placeholders start and end with a "%" character. The Java-method now looks like:

File classes/com/groiss/demo/HttpDemo.java

public Page showNLSDate2(HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
String format = req.getParameter("format");
Locale l = new Locale(language,language);
HTMLPage p = new HTMLPage("/com/groiss/demo/Date.html");
SimpleDateFormat df = new SimpleDateFormat(

("long".equals(format) ?
"EEEE, MMMM dd, yyyy" : "EEE, MMM dd, yyyy"), l);

p.substitute("format", format);
p.substitute("language", language);
p.substitute("date", df.format(new Date()));
return p;

}

2.5 XHTML

XHTML is a reformulation of HTML in XML, it has been defined and published by the
W3C (World Wide Web Consortium), see their Web page [2] for details.
Analogous to the HTMLPage we have defined a class XHTMLPage based on XHTML with
extended functionality:

• Every XML element with an "id" can be substituted. Therefore, whole parts of the
page can be substituted, for example a table element. Making an element invisible is
performed by substituting with null.

13

2.5. XHTML

• It is possible to change elements by setting attributes, for example the background
color or the value in an input field.

• It is possible to make the substitutions more than once or not at all. In the page
there is a default value (element). A substitution is done when necessary. Multiple
substitutions can be performed, because the result of the substitution is again a XML
tree.

However, the usage of the XML components has some drawbacks. Only XML elements can
be substituted or changed: It is not possible to substitute a part of an URL (for example to fill
in an object’s oid). Note, that the templates must be syntactically correct XML. For example,
a "<" (less) character in a JavaScript must be written as <.

Hint: Since @enterprise 8.0 it is not possible anymore to write HTML code directly on a
page, but sometimes it is necessary that html code should be interpreted. For this purpose
the class ProcessingInstruction can be used like in following example:

XHTML-mask snippet:

<table class="simple" width="100%">
<tr><td width="120px">Name: </td><td></td></tr>
<tr><td valign="top">Description: </td><td></td></tr>

</table>

Java method snippet:

XHTMLPage page = new XHTMLPage("mask/MyXHTMLPage.xhtml");
page.get("name").setContent("MyText");
ArrayList l = new ArrayList();
l.add(new org.jdom.ProcessingInstruction(

Result.PI_DISABLE_OUTPUT_ESCAPING,""));
l.add("This text should be displayed in bold letters");
l.add(new org.jdom.ProcessingInstruction(

Result.PI_ENABLE_OUTPUT_ESCAPING,""));
page.get("descr").setContent(l);

Forms with Subtables

@enterprise allows the definition of master-detail relations between forms. Master-detail
(or 1:n) relations are common in many application areas. Consider the relation of an "order"
and the order items as an example.
To model such an relation using @enterprise forms you define first the "detail" form (the
"order item" in the previous example) and load it into @enterprise . Next, you define the
master-form with a reference to the detail-form.
This reference is defined with the HTML-Tag tablefield, which has the following at-
tributes:

• class or formtype: The name of the Java class of the subform.

14

2.5. XHTML

• id or subformid: An integer value as identification of the subform. There can be more
than one subform in a form and they must have different numbers.

• mode: The mode defines how the subforms are edited, two modes are available:

– subform: The main form contains a table where each line contains a link to a
detail mask. An "Add" button is placed under the table. This mode is the default.

– editable: The main form contains the button "Edit Table". It opens a new window,
which allows to edit all lines of the table. You can add and delete lines in this
window, too. This mode is useful to edit small tables with only a few columns.
This mode is not applicable for:

* subforms in subforms

* XForms

* Forms with object-select fields, e.g. user selection

• buttonlabel: This attribute is optional and is for changing the name of the subform–
button (default New Table Entry)

Example for a tablefield entry:

<tablefield class="com.dec.avw.appl.shoppingitem_1" id="1" mode="editable">

The subform is a form with the id shoppingitem and version 1, mode is editable.

The parameter epblock in XHTML-Forms

Beside input and textarea fields, it is possible to hide div blocks with the parameter epblock.
All div tags, which have a special attribute, will be displayed in the mask Visibility of Forms.
If a div tag contains some fields, which have the attribute rw/ro, and the div tag visibility
attribute is invisible, the whole div (including all fields) will not be displayed. The visibility
attribute rw/ro affects fields only, but not the div tag.

The ID of the div tag is necessary for unique identification. The attribute epblock indicates
the div tag for field-management (Visibility of forms) and appears at the allocation of access-
rights. It is important that IDs are unique, i.e. a div tag cannot have the same ID as a input tag.

Example:

<div id="thefield_div" epblock="true">
<table>
<tr>
<td class="tdb"><label for="thefield">FieldName:</label></td>
<td><input type="text" id="thefield" name="thefield" dbtype="VARCHAR"

maxlength="30" size="20" /></td>
</tr>
</table>

</div>

15

2.6. XFORM

2.6 XForm

XForm is a standard defined by the W3C consortium for the definition of web forms. In
@enterprise XForms can be used as an alternative to HTML forms. The advantages of
XForms make this technology an excellent choice for all further web form implementations.
This section describes how XForms can be used in @enterprise.

Following the functional principle for displaying a XForm is described:

• The XForm template is loaded and parsed

• Within the model element an instance element with instance- and context-data is added.
The form fields are accessible via the path data/form/fieldname

• The bind element with visibilities is added to the model

• Depending on the kind of representation the appropriate submit-buttons and their
actions are added

• The XForm is converted to a HTML page: Each XForm control is converted to a
HTML equivalent which is filled with the data of the model and displayed with the
appropriate visibility.

The following example shows the model of a form with the form fields name, country and
amount:

<xf:model>
<xf:instance>
<data xmlns="">
<form object="com.dec.avw.appl.wiztest_1:1000074412" task="1000074417">
<transactionId>73</transactionId>
<avwcreatedby>roland eisenberg</avwcreatedby>
<avwcreatedat>2009-04-06T07:05:22Z</avwcreatedat>
<avwchangedby>roland eisenberg</avwchangedby>
<avwchangedat>2009-04-07T08:28:22Z</avwchangedat>
<name>a</name>
<country>GB</country>
<amount>40011</amount>

</form>
<context>
<viewmode>view_text</viewmode>
<activityinstance oid="1000042420">Process 158</activityinstance>
<processinstance oid="1000042417">158</processinstance>
<task oid="1000000185" id="businesstrip_request">Request</task>
<processdefinition oid="1000000090" id="hr_businesstrip">Business trip
</processdefinition>
...

</context>
</data>

16

2.6. XFORM

</xf:instance>
<xf:bind nodeset="/data/form/name" required="false()" type="string" />
<xf:bind nodeset="/data/form/country" required="false()" type="string" />
<xf:bind nodeset="/data/form/amount" required="false()" type="decimal" />
<xf:submission action="com.groiss.storegui.FormWrapper.updateNoAction"

replace="instance" validate="false" id="submit0" method="post" />
<xf:submission action="com.groiss.storegui.FormWrapper.updateAndAction?

javaAction=finish&afterSubmit=top.right.location=comingFrom"
method="post" id="submit1" />

<xf:submission action="com.groiss.storegui.FormWrapper.updateAndAction?
afterSubmit=parent.parent.changeTab()" validate="false"
method="post" id="submit2" />

</xf:model>

In addition to the form fields the following context data are included:

• activityinstance: The oid and toString of the current activity

• processinstance: The oid and Id of the process instance

• task: The oid, Id and the name of the task

• processdefinition: The oid, Id and the name of the process definition

• viewmode: The view mode with one of the following values: update, insert, search,
view, view_version, view_text

Hint: On loglevel 3 the whole XForm is written into log (before converting into HTML).

In the following some examples should illustrate the usage of XForms.

Example 1: Setting a field to read-only: The fields curefrom and cureto are editable only, if
the field reason is set to value cure.

<xf:bind nodeset="/data/form/curefrom"
readonly="/data/form/reason != ’cure’"/>

<xf:bind nodeset="/data/form/cureto"
readonly="/data/form/reason != ’cure’"/>

Example 2: Usage of value lists: The different types of a vacation are stored in a value list.
XForms use an own model element for value lists.

<xf:model id="valuelist">
<xf:instance src="com.groiss.wf.html.ValueList.show?id=holidaytype"/>

</xf:model>

17

2.6. XFORM

For the src attribute the represented URL must be entered. The attribute id references the Id
of the value list. If more than one value list should be used, the id’s must be separated by
commas. The body of a XForm contains an element with reference to the value list:

<xf:select1 ref="/data/form/type"><xf:label>Vacation type</xf:label>
<xf:itemset model="valuelist"

nodeset="/valuelists/list[@id=’holidaytype’]/item">
<xf:label ref="label"/>
<xf:value ref="value"/>
</xf:itemset>

</xf:select1>

Example 3: Configuration data: The form should use the currency symbol defined in the
configuration (of an application). If configuration parameter should be used within the
XForm, the configuration element is needed which defines all parameters as property element
with their names. The name consists of the application-id as prefix and the parameter-name.
@enterprise parameters do not need a prefix. The values are inserted at runtime:

<xf:instance>
<data xmlns="">
<configuration>
<property name="myappl:currency.symbol" />

</configuration>
</data>

</xf:instance>
...
<xf:bind id="currency"

nodeset="//property[@name=’myappl:currency.symbol’]"/>

Example 4: Usage of subtable (subform): The element xf:repeat is needed. Within this
element the formtype of subform and a subformid must be specified:

<xf:repeat formtype="com.dec.avw.appl.subform_1" subformid="1">
<xf:label class="label100">Subtable</xf:label>

</xf:repeat>

Example 5: Calculate sum from subforms: A billing form contains a subform which
represents the items. The main form should display the sum of the items. For this purpose a
bind element can be used which computes the sum with the attribute calculate:

<xf:bind nodeset="/data/form/totalamount"
calculate="sum(/data/form/subform/form/total)"/>

18

2.6. XFORM

Example 6: Embedded subtable: With XForms it is possible to embed subtables with the
element repeat or the attribute repeat-nodeset (for any element). The attribute value (called
nodeset for element repeat) is a XPath expression which selects the subforms. The content
of the repeat element is repeated for each subform. The buttons Delete and Insert are
XForm triggers which resolve the XForm actions "delete" and "insert". It is necessary for
@enterprise to add a subformid and formtype to the repeat element:

<div class="group">

<table class="simple" style="width:90%">
<colgroup>

<col style="width:125px"/>
<col style="width:80px"/>
<col style="width:80px"/>
<col style="width:80px"/>
<col style="width:*" />
<col style="width:80px;text-align:right" />

</colgroup>
<colgroup align="right"></colgroup>
<tr>

<th>@@@itemdate@@</th>
<th>@@@timefrom@@</th>
<th>@@@timeto@@</th>
<th>@@@lunchbreak@@</th>
<th>@@@description@@</th>
<th>@@@costcenter@@</th>
<th>@@@time@@</th>

</tr>
<tbody subformid="1" formtype="hr_timeitem_1"
xf:repeat-nodeset="/data/form/subform[@id=’1’]/form[position()!=last()]">
<tr>
<td>
<xf:input ref="itemdate" />

</td>
<td>
<xf:input style="width:60px" ref="timefrom"></xf:input>

</td>
<td>
<xf:input style="width:60px" ref="timeto"></xf:input>

</td>
<td>
<xf:select ref="lunchbreak" appearance="full">
<xf:item><xf:label></xf:label><xf:value>true</xf:value></xf:item>

</xf:select>
</td>
<td>
<xf:input ref="description" style="width:100%"/>

19

2.7. VELOCITY PAGE

</td>
<td>
<xf:input ref="costcenter"

url="com.groiss.hrproc.TimeReport.selectCostCenter"/>
</td>
<td><xf:output ref="timehours" /></td>
</tr>

</tbody>
</table>
<xf:trigger ref="/data/form/subform[@id=’1’]/form">

<xf:label>@@@ep:new_line@@</xf:label>
<xf:insert ev:event="DOMActivate" position="after"

nodeset="/data/form/subform[@id=’1’]/form" at="index(’subform_1’)"/>
</xf:trigger>
<xf:trigger ref="/data/form/subform[@id=’1’]/form">

<xf:label>@@@ep:delete@@</xf:label>
<xf:delete ev:event="DOMActivate"

nodeset="/data/form/subform[@id=’1’]/form" at="index(’subform_1’)"/>
</xf:trigger>

</div>

2.7 Velocity Page

Velocity is a Java-based template engine. It permits web page designers to reference methods
defined in Java code. Web designers can work in parallel with Java programmers to develop
web sites according to the Model-View-Controller (MVC) model, meaning that web page
designers can focus solely on creating a well-designed site, and programmers can focus
solely on writing top-notch code. For more details take a look on page
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

For this purpose @enterprise provides a class com.groiss.gui.VelocityPage. More details
about the usage of VelocityPage can be found in @enterprise JavaDoc.

Example:
This example shows how to use and set variables in a velocity page.

First a html-page (template) should be created (it is also possible to use ordinary text-files):

...
<h4>Current Threaduser of reserved variable and set by JAVA</h4>
Threaduser: $user / $username_by_java

<p/>

20

2.8. FILE UPLOAD

<h4>List all users of @enterprise</h4>
#foreach($u in $users)

$u

#end

<p/>

<h4>Simple IF-selection for variable str</h4>
#if($str != ’str’)

$str
#end

<p/>

<h4>Read request parameter</h4>
$request.getParameter(’vpparam’)

<p/>

<h4>Read configuration parameter</h4>
$Configuration.get().getProperty(’avw.license’)
...

After creating a template, a JAVA method must be written to fill template variables:

public Page getVelocityPage(HttpServletRequest req) throws Exception {
VelocityPage vp = new VelocityPage("masks/velocitypage.html");
//set current thread user
vp.set("username_by_java", ThreadContext.getThreadPrincipal());
//list all @enterprise users
vp.set("users",ServiceLocator.getStore().list(User.class));
//set variable
vp.set("str","MyString");
return vp;

}

Finally call the JAVA method by entering following URL:

http://’host’:’port’/’ctx’/servlet.method/
’class’.getVelocityPage?vpparm=myreqparam

2.8 File Upload

On the client side, the client’s browser must support form-based upload (Most modern
browsers do). The form looks like:

<form enctype="multipart/form-data"

21

2.9. AUTHORIZATION

method="POST" action="/wf/servlet.method/com.groiss.demo.HttpDemo.viewFile">
<input type="file" name="mptest">
<input type="submit" value="upload">
</form>

The input type "file" brings up a button for a file select box on the browser together with a
text field that takes the file name once selected.
When the user clicks the "Upload" button, the client browser locates the local file and sends
it using HTTP POST, encoded using the MIME-type multipart/form-data. When it reaches
your servlet, your servlet must process the POST data in order to extract the encoded file.
You can learn all about this format in RFC 1867, [3].
There is no method in the Servlet API to do this. The @enterprise API provides the class
MultipartRequest to handle multipart/form-data requests.
The file(s) are stored in temporary files in the file system of the server. The following method
shows how to access to these files:

File demo/com/groiss/demo/HttpDemo.java

public void viewFile(HttpServletRequest req, HttpServletResponse res)
throws Exception {

MultipartRequest r = MultipartRequest.createInstance(req);
File tmpfile = r.getFile("mptest");
String str = FileUtil.getContent(tmpfile);
int i = 1;
PrintWriter w = res.getWriter();
w.println("<html><pre>");
for (StringTokenizer st = new StringTokenizer(str,"\r\n"); st.hasMoreTokens();)

w.println(Integer.toString(i++) + st.nextToken());
w.println("</pre></html>");

}

The method writes the content of the file to the browser together with a line number.
The class MultipartRequest is a wrapper around the HttpServletRequest and provides
some other useful methods:

public abstract void addParameter(String name, String value);
public abstract void removeParameter(String name);
public abstract Cookie getCookie(String id);

addParameter adds a parameter name-value pair to the request; this can be used when calling
servlet methods from other servlet methods. removeParameter removes a parameter.
getCookie allows direct access to a cookie without iterating over the cookie array.
Note, that you must call the createInstance method of MultipartRequest before you
call any method of the ServletRequest that reads the parameters or content of the request.

2.9 Authorization

@enterprise allows the implementation of customer defined authorization schemes. The
authorization class must implement the following interface:

22

2.9. AUTHORIZATION

public interface HttpAuth {
public void sendLoginRequest(HttpServletRequest req,

HttpServletResponse res) throws Exception;
public Principal checkUser(String user, String passwd,

String clientAddr) throws Exception;
}

Fig. 2.1 shows the interaction during the authorization phase.

Figure 2.1: Authorization

As described in Section 2.1, the Dispatcher calls the sendLoginRequest method of the
authorization class. This class either sends a login page to the browser or performs another
action for finding out the user of the client. After it found out the user it should call the
method authorizeBrowser of AuthUtil which sends the session cookie to the browser.
The following examples show two implementations of the interface. The first one -
BasicPasswdAuth - uses the basic Authorization of the HTTP protocol:

File com/groiss/demo/BasicPasswdAuth.java

package com.groiss.demo;

import java.security.Principal;
import javax.servlet.http.*;
import com.groiss.org.*;
import com.groiss.servlet.HttpAuth;
import com.groiss.util.Base64;

/** Check the password using BasicPasswdAuth
*/
public class BasicPasswdAuth implements HttpAuth {

23

2.9. AUTHORIZATION

public void sendLoginRequest(HttpServletRequest req, HttpServletResponse res)
throws Exception {

String auth= req.getHeader("Authorization");
if (auth != null && auth.startsWith("Basic ")) {

auth = auth.substring(6);
auth = new String(Base64.decode(auth));
String userId = auth.substring(0,auth.indexOf(’:’));
String passwd = auth.substring(auth.indexOf(’:’)+1);
try {

User u = (User)checkUser(userId,passwd,req.getRemoteAddr());
AuthUtil.authorizeBrowser(req, res, u, req.getRequestURI() +"?"+

req.getQueryString());
return;

} catch (Exception e) {
com.groiss.util.Settings.logError(e);

}
}
res.setStatus(401);
res.addHeader("WWW-Authenticate", "Basic realm=\"@enterprise\"");
res.getWriter().println();

}

public Principal checkUser(String userId, String passwd, String clientAddr)
throws Exception {

return AuthUtil.checkUser(userId,passwd, clientAddr);
}

}

The method sendLoginRequest sends the status 401 (Not Authorized) to the client, which
will open a login window and sends the login information to the server (base64 encoded
user name and password). This information is used for checking the user and generating the
session cookie.
The second example uses the login mask from the default PasswdAuth class but rewrites the
user checking mechanism. The method checkWinPassword connects to a host with a FTP
server and tries to login there. If it succeeds, the user is also authorized in @enterprise.
The class is a subclass of the default Authorization class com.groiss.org.PasswdAuth.
File com/groiss/demo/WinPasswdAuth.java

package com.groiss.demo;

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;
import java.security.Principal;

import com.groiss.component.Configuration;
import com.groiss.org.AuthUtil;
import com.groiss.org.PasswdAuth;
import com.groiss.org.User;
import com.groiss.util.ApplicationException;
import com.groiss.wf.ServiceLocator;

24

2.9. AUTHORIZATION

/** Check the password against windows domain controller using the
* ftp service.
*/
public class WinPasswdAuth extends PasswdAuth {

static String winhost = "cuzco";

public Principal checkUser(String userId, String passwd, String clientAddr)
throws Exception {

User user;
// don’t connect to the database when sysadm
if (userId.equals("sysadm")) {

return AuthUtil.checkUser(userId, passwd, clientAddr);
} else {

user = (User)ServiceLocator.getOrgData().getById(
com.groiss.org.User.class, userId);

if (user == null) {
throw new ApplicationException(null,56);

}
checkWinPassword(userId, passwd);

}
return user;

}

/** Try to make a ftp connection to auth host
*/
private void checkWinPassword(String userId, String passwd) throws Exception {

try {
URL url = new URL("ftp://"+userId+":"+passwd+"@"+winhost+"/");
URLConnection urlc = url.openConnection();
InputStream is = urlc.getInputStream();
is.close();

} catch (Exception e) {
throw new ApplicationException(

"Authentification on host "+winhost+" failed for user "+userId);
}

}
}

25

3 Persistence Layer

The persistence layer of @enterprise has been defined to hide the complexities of reading and
updating objects in a relational database. The underlying mechanism uses the Java Database
Connection, the standard interface between Java and Relational Database Management
Systems.
The classes and interfaces described in this chapter belong to the package com.groiss.store.

3.1 Database Connection Pool

The management of the database connections is done by the class DBConnPool. On startup
the system initializes a pool of connections to the relational database. The number of
connections and some other settings are specified in the system configuration.
Normally you don’t have to deal explicitly with database connections. When an API call
needs a database connection, it reserves one for the thread. As long as the transaction lasts,
this connection is used.
If you want to get a database connection to perform JDBC operations directly, you get one
with the method call DBConnPool.getConnection(). Multiple calls of this method in the
same transaction will return the same connection.
Some words about transactions: Every servlet method in @enterprise is executed in a
transaction context. Before the method is called a transaction is started and after the method
has completed, the transaction is committed - on error a rollback is performed. When
methods perform database operations, operations in the same thread use the same transaction
and the same database connection.

3.2 Persistent Objects

For making Java objects persistent we have defined the interface Persistent and the
corresponding abstract class PersistentObject implementing the interface. A member of
a class implementing this interface has a corresponding tuple in a database table. The fields
of the class have a corresponding column value in the database tuple. For reading objects
from and writing to the database the service Store is used. This is an interface, with the call
ServiceLocator.getStore() you get an instance of it.
Let’s first take a closer look at the Persistent interface:

26

3.2. PERSISTENT OBJECTS

public interface Persistent {

public long getOid();
public void setOid(long oid);

public void setFilled(boolean f);
public boolean isFilled();

public Store getStore();
public void setStore(Store s);

public String getTableName();

public List<Field> dbFields();

public void onInsert();
public void onUpdate();
public void onDelete();
public void onRead();

}

Every object has a unique object id (oid), the getter getOid() retrieves this oid. The setter
setOid should be used by the persistence mechanism only.
The object is filled, when the field values are set to the corresponding values in the database.
Each object knows its store and the store can be set. This is not necessary, if your program
uses one database.
The method getTableName returns the name of the database table. This is the only method
not implemented by PersistentObject, therefore you have to implement it in your class.
The method dbFields returns a list of Field objects, containing the class’ fields which have
corresponding fields in the database. The default implementation returns all fields which are
neither static, volatile, nor transient.
The columns of the database table must have the same names as the fields of the Java class
and the types must be compatible. The column oid is used for the object identifier. Its type is
decimal(20) and it should be defined as primary key.
Compatible types are shown in the following table:

SQL Type Java Type
char String
varchar String
decimal(x) int,long
decimal(x,y) float,double
longvarchar String, char[]
longvarbinary byte[]
date Date
time Date
timestamp Date
decimal(20) Persistent

27

3.2. PERSISTENT OBJECTS

The entry in the last row shows that you can define fields which refer to other persistent
objects. The type of the field must be a class or interface implementing (or extending) the
Persistent interface. If the objects for this field are not all from the same class, you must add
a database field for the name of the objects class. This field is named like the Java class field
with "_class" appended.
The store uses the following rule to decide whether a "_class" field is present: If the type is
an interface or is an abstract class or implements the interface HasSubclasses, a "_class"
field is expected.
The methods onInsert, onUpdate, onDelete, and onRead are called when the respective
database operations are performed. They allow to add custom code to these operations.
The store interface provides, among others, the following methods for manipulation of
persistent objects:

• void insert(Persistent o): inserts the object into the database, assigns a unique
oid,

• void update(Persistent o): stores the (changed) object in the database,

• void delete(Persistent o): deletes the object from the database,

• Persistent get(Class c, long oid): reads an object from the database, where
the oid is known.

• Persistent get(Class c, String cond): The cond String is an SQL expression,
the method returns the object matching the query where the cond argument is used as
where clause.

• Persistent fill(Persistent o): fills the object with the values from the database,
the oid must be already set.

• List<P> list(Class c): return all members of the class stored in the database.

• List<P> list(Class c, String cond): cond is again a where clause, the method
returns all matching objects.

• List<P> list(Class c, String cond, String order): like above, the second
argument contains one or more order attributes (separated by commas).

• List<P> list(Class c, String cond, String order, Object[] bindVars):
The additional object array contains bind variables, each question mark in the condition
string is substituted by a value from this array.

Example: For a reservation system we define the class Item, which contains some informa-
tion about reservable items:

public class Item extends PersistentObject {
private String name;
private String description;
private int maxuse;

public String getTableName() { return "res_item"; }

28

3.2. PERSISTENT OBJECTS

The class contains some fields for storing details about the item and the method getTableName,
which returns the name of the database table.
The table must be generated using an SQL statement like this (in Oracle syntax):

create table demo_address (
oid decimal(20) primary key,
name varchar(100),
description varchar(100),
maxuse decimal(10)

);

A second class, ItemRelation, describes the user-reserves-item relation:

public class ItemRelation extends PersistentObject {
private Item item;
private User userid;
private Date fromDate;
private Date toDate;

public ItemRelation() {}

public ItemRelation(Item res, User user, Date from, Date to) {
this.item = res;
this.userid = user;
this.fromDate = from;
this.toDate = to;

}

public Item getItem() { return item; }

public User getUser() { return userid; }

public Date getFromDate() { return fromDate; }

public Date getToDate() { return toDate; }

public String getTableName() { return "res_itemrel";}
}

The database table for this class:

create table res_itemrel (
oid decimal(20) primary key,
item decimal(20),
userid decimal(20),
userid_class varchar(100),
fromDate date,
toDate date

);

29

3.3. LAZY FILLING

Note that the fields item and userid hold the oids of an item object and a user object
respectively. Because the field userid is of type com.groiss.org.User and this is an
interface, we need the additional table column userid_class.

3.3 Lazy filling

When reading an object from the database, using one of the get or list methods of the store,
the fields of the objects are filled with the values from the database. For fields containing
persistent objects, the objects are created with the given oid, but the other fields have default
values and the method isFilled() will return false.
If, for example, we read an object of the class ItemRelation from the database, the method
getItem() applied to this object would return an object containing the oid but other fields
will have their default values (0 or null). Calling fill on this object will set the values.
This behavior is important if you have nested object hierarchies. If you navigate through
the objects you have to fill them after calling getter methods. However, it belongs to the
developer to insert the fill methods into the getters, like in the following example:

public String toString() {
try {

ServiceLocator.getStore().fill(this);
} catch(ApplicationException e) {

throw new ApplicationRtException(e);
}
return name;

}

The toString method returns the name and ensures that the object is filled.

3.4 Optimistic Locking

If two threads want to change an object at the same time, one thread will overwrite the change
the other thread made. To prevent these "lost updates", we implemented the optimistic
locking mechanism: With each object a transactionid is stored, every update increases this
transactionid and checks if it has the correct transactionid. If it does not have the correct id,
an update occurred since it read the object from the database. In this case an error is thrown.
For using optimistic locking with your objects you must do two things: First, your class must
implement the interface OptimisticLocking, secondly your database table must contain
the decimal field transactionid.

3.5 PersistentEventHandler

This interface provides a hook for some action when an object is inserted, updated or deleted.
The methods onInsert, onUpdate, and onDelete are called before the database operation is
performed but after the corresponding methods of Persistent are called. Register your event
handler using StoreUtil.addEventHandler.

30

4 Utilities and Data Structures

@enterprise provides some utility classes for working with files, strings or date objects as
well as some data structures.

4.1 Data Structures

The data structures belong to the package com.groiss.ds.

4.1.1 KeyValuePair

The interface KeyValuePair is implemented by some classes like PersistantObject,
which have a unique key (object id) and a value - the object itself or a string representation.
We use it, for example, for representing objects in select lists.

4.1.2 Pair

The Pair is a simple class containing two objects. The class also implements the interface
KeyValuePair, where the first object is returned with getKey, the second with getValue.

4.1.3 MultiMap

MultiMap is like a HashMap but can map a key to more than one value.

4.1.4 KeyedList

This class implements an ordered map. A list of keys is mapped to a list of values. The values
can be accessed by the key or the position in the list. A small example should demonstrate
the usage:

List l1 = Arrays.asList(new String[]{"a","b","c"});
List l2 = Arrays.asList(new String[]{"v1","v2","v3"});
KeyedList kl = new KeyedList(l1,l2);
// get the second value v2
Object x = kl.get(1);
// or get v2 by its key
Object y = kl.get("b");

31

4.2. STRINGUTIL AND FILEUTIL

4.1.5 CountedSemaphore

A counted Semaphore is used for controlling the number of threads entering a critical section.
When constructing the semaphore object you specify two bounds: The first value defines how
many threads can enter the critical section concurrently, the second value defines how many
threads will wait for the resource until an exception is thrown (QueueFullException).
The clients call two methods: the method P for entering the critical section and the method V
for leaving it. The waiting threads are handled in FIFO order.
Example:

// create a semaphore for two concurrent threads and three waiting threads.
static CountedSemaphore s = new CountedSemaphore(2,3);

public void foo() throws Exception {
s.P();
try {
// make some complicated computations

} finally {
s.V(); // call V in finally guarantees that it is called

}
}

4.2 StringUtil and FileUtil

The class StringUtil provides some convenient methods for Strings and the class FileUtil
for files. See the API for details.

4.3 Date/Time Handling

4.3.1 CalUtil

Whenever the system reads and writes a date, the class com.groiss.cal.CalUtil is used. The
format for conversions is defined in the system administration. Two formats exist: one for
date only, one for date and time. The method parse converts a String to a Date object, trying
both formats. The method showDate shows the date, showDateTime the date and time of
the given Date object.
The class CalUtil allows you to get instances of SimpleDateFormat or the class defined
in @enterprise configuration (Configuration → Localization → Dateformat Class). These
instances are cached per Thread, are localized and adapted to ThreadContext-timezone
(excepting some default patterns, e.g. ISO, RFC, etc.). For further information about patterns
see http://www.icu-project.org/apiref/icu4j/com/ibm/icu/text/SimpleDateFormat.html

4.3.2 Holidays

In the system administration a class specifying the holidays can be defined. It must implement
the following interface:

32

4.3. DATE/TIME HANDLING

public interface com.groiss.cal.Holidays {
public String isHoliday(GregorianCalendar d);

}

The method isHoliday returns null when the day represented by the Calendar object is a
holiday, otherwise it returns the name of the holiday, for example "Easter Sunday".
The implementing class is used in the CalUtil methods addWorkdays, isHoliday, and
workdaysBetween. Additionally, it is used in calendar used for entering dates, for example
when setting a deadline.
The distribution contains the class com.groiss.cal.impl.AustrianHolidays with the
following implementation of isHoliday:

public String isHoliday(GregorianCalendar d) {
int day = d.get(d.DAY_OF_YEAR);
int year = d.get(d.YEAR);
switch (d.isLeapYear(year) ? day - 1 : day) {

case 121: return "Staatsfeiertag";
case 227: return "Maria Himmelfahrt";
case 299: return "Nationalfeiertag";
case 305: return "Allerheiligen";
case 306: return "Allerseelen";
case 342: return "Maria Empfängnis";
case 359: return "Christtag";
case 360: return "Stephanitag";

}
int easter = CalUtil.easterDay(year);
if (day == easter) return "Ostersonntag";
else if (day == easter + 1) return "Ostermontag";
else if (day == easter + 39) return "Ch. Himmelfahrt";
else if (day == easter + 49) return "Pfingsten";
else if (day == easter + 50) return "Pfingsmontag";
else if (day == easter + 60) return "Fronleichnam";
else if (day == 1) return "Neujahr";
else if (day == 6) return "Hl. 3 Könige";
return null;

}

The floating holidays depend on the date of Easter, the method easterDay in CalUtil
can be used here. We use the formula from Gauss, note that the result doesn’t match the
Greek-orthodox Easter.
For Germany use the implementation com.groiss.cal.impl.GermanHolidays.

4.3.3 Application dependent calendar-events

The @enterprise calendar-component can be extended to fetch events from custom sources.
To specify your own calendar source, provide the configuration-parameter cal.applications
in your system-configuration file. This property contains a comma separated list of classes

33

4.4. THREADCONTEXT

implementing the com.groiss.cal.CalInfo-interface. Please note that it’s recommended to
extend com.groiss.cal.CalInfoAdapter.
The following default implementations are shipped with @enterprise:

• com.groiss.calendar.CalendarAppl: returns custom events inserted by a user

• com.groiss.calendar.wf.DueTasks: returns all tasks which have to be finished at the
given date

• com.groiss.calendar.wf.FinishedTasks: returns all finished workflow tasks

If you want to register your CalInfo-implementations programmatically, use
com.groiss.cal.CalRegistry.

4.4 ThreadContext

The ThreadContext class contains some ThreadLocal variables, which are set by the
Dispatcher servlet and can be retrieved from any method:

• getThreadPrincipal() returns the user of this thread. The method returns a
java.security.Principal object, which can be casted to a com.groiss.org.User
object.

• getThreadLocale() returns the locale of the thread: This is either the locale of the
user, or if the thread is not assigned to a user, the default locale defined in the system
configuration.

• getSessionId() returns the id of the user session.

• isPrivileged() returns true if the session is privileged. Privileged sessions are
allowed to open additional database connections, if all connections are used. A thread
belonging to the user sysadm is privileged.

• getThreadRequest() returns the HttpServletRequest object from the thread.

• The methods setAttribute, getAttribute, removeAttribute, and
getAttributeKeys can be used to add arbitrary attributes to the ThreadContext
object.

• The method getSessionType returns the type of the session, either HTTP, RMI, or
internal.

• Client Certificates: The ThreadContext holds the client certificates, if the RMI com-
munication requires a client authentication. The certificates of the client are set
automatically and can be read from the attributes with the key
java.security.cert.X509Certificate (returns an array of X509Certificates).

The following method from HttpDemo can be called to check the environment:

File classes/com/groiss/demo/HttpDemo.java

34

4.5. LOGGING

public void showThreadContext(HttpServletRequest req, HttpServletResponse res)
throws Exception {

PrintWriter w = res.getWriter();
w.println("<html><pre>"+

"\nUser: " + ThreadContext.getThreadPrincipal() +
"\nLocale: " + ThreadContext.getThreadLocale() +
"\nSession: " + ThreadContext.getSessionId() +
"\nPrivileged: " + ThreadContext.isPrivileged() +
"\nRequest: " + ThreadContext.getThreadRequest() +
"</pre></html>");

}

4.5 Logging

@enterprise writes logging output to a log file. An interface com.groiss.log.ILogger
defines the methods of the logging mechanism and allows you to write your own logging
mechanism. The default implementation is com.groiss.log.Logger.
Most important is the following method:

log(String message,int level)

It writes the message string to the log file, if the given level is equal or less than the log level
of the Logger. In the system configuration you can define the logger class and the logging
properties.
It is inconvenient to first get the logger object and then call the log method on it, therefore
we defined the static log method in the Settings class (package com.groiss.util). It has
the same signature than the log method above.
The format of each output line is as follows:

• log level

• thread name

• date

• time

• your message

Example:

1 http-5 2000-08-04 14:15:19.962 10.205.112.10 - GET /pr/images/d.gif

4.6 Timer

One of the services @enterprise provides is the timer service. You can schedule your tasks
and specify the interval, thread, etc.

35

4.6. TIMER

Your timer task must implement the TimerTask interface. It contains the two methods run
and abort. The run method is called when the timer task should be executed, abort is
never called and for future use.
The following example shows a timer which restarts the log-file periodically and zips the old
files.

import java.io.*;
import java.util.zip.*;
import javax.servlet.http.*;

import com.groiss.timer.*;
import com.groiss.util.*;
import com.groiss.log.*;

/** A timer for restarting the logger.
*/
public class LogTimer implements TimerTask {

public void run(TimerEntry te, String args) {
try {

Settings.getLogger().restart();
} catch (Exception e) {

Settings.logError(e);
}

}

public void abort () {}

}

A logger which zips the old entries:

import java.io.*;
import java.util.*;
import java.text.*;
import java.util.zip.*;
import javax.servlet.http.*;

import com.groiss.timer.*;
import com.groiss.util.*;
import com.groiss.log.*;

/** A logger class which zips the old log files
*/
public class ZipLogger extends Logger {

SimpleDateFormat fm = new SimpleDateFormat("yyyyMMddHHmm");

36

4.7. BEANS

public void restart() {
try {

// restart the parent
super.restart();
// the current and previous log file
File f = getLogFile();
File f2 = new File(f +".1");
if (!f2.exists())

return;
// Create a buffer for reading the file
byte[] buf = new byte[1024];

// Create the ZIP file
String outFilename = f + fm.format(new Date()) + ".zip";
ZipOutputStream out = new ZipOutputStream(

new FileOutputStream(outFilename));
FileInputStream in = new FileInputStream(f2);

// Add ZIP entry to output stream.
out.putNextEntry(new ZipEntry(f+".1"));

// Transfer bytes from the file to the ZIP file
int len;
while ((len = in.read(buf)) > 0) {

out.write(buf, 0, len);
}

// Complete the entry
out.closeEntry();
in.close();
// Complete the ZIP file
out.close();
f2.delete();

} catch (Exception e) {
Settings.logError(e);

}
}

}

We extend the standard Logger and rewrite the restart method. The restart method of the
parent is called and will copy the old log to a file named logfilename.1. We zip this file, add
a timestamp to the filename and delete the unzipped file.

4.7 Beans

In @enterprise it is possible to implement Beans which are handled by
com.groiss.component.BeanManager. The Bean must implement the interface

37

4.7. BEANS

javax.ejb.SessionSynchronization. Following 3 steps are necessary for the integration and
usage in @enterprise:

1. Write your own Bean: Following DemoBean has a method to store DMS docu-
ments in a temporary folder. At the end of transaction (could be initiated by the call
BeanManager.commit()) the methods beforeCompletion() and afterCompletion() are
called. In our DemoBean we delete all files created in temporary folder after successful
transaction.

import java.io.File;
import java.io.FileOutputStream;
import java.rmi.RemoteException;

import javax.ejb.EJBException;
import javax.ejb.SessionSynchronization;

import com.groiss.dms.DMSDocForm;
import com.groiss.util.ApplicationException;
import com.groiss.util.Settings;

public class DemoBean implements SessionSynchronization{

private String TMP_FOLDER_PATH = Settings.getBaseDir() + "/files";

/**
* Method to store document in temporary folder
* @param doc the DMS document to store
* @throws Exception
*/

public void storeDocument(DMSDocForm doc) throws Exception {
File folder = new File(TMP_FOLDER_PATH);
if(!folder.exists()) {

folder.mkdir();
}

String filename = doc.getName() + "." + doc.getExtension();
Settings.log("DemoBean.storeDocument: " + filename , 0);

File f = new File(TMP_FOLDER_PATH, filename);
if(!f.createNewFile()) {

throw new ApplicationException("File " +
filename + " could not be created!");

}
FileOutputStream out = new FileOutputStream(f);
out.write(doc.getContent());
out.close();

}

38

4.7. BEANS

@Override
public void beforeCompletion()

throws EJBException, RemoteException { /* empty */ }

@Override
public void afterBegin()

throws EJBException, RemoteException { /* empty */ }

/**
* Delete all files which were created in temporary folder
*/

@Override
public void afterCompletion(boolean arg0)

throws EJBException,RemoteException {
Settings.log("DemoBean.afterCompletion", 0);
File folder = new File(TMP_FOLDER_PATH);
File [] files = folder.listFiles();
for(int i = 0; i < files.length; i++) {

files[i].delete();
}

}

}

2. Register the Bean: This could be done e.g. at application startup (see section 9.3
for more details) by using following call:

BeanManager.addBean("DemoBean", DemoBean.class);

3. Use the Bean: Our DemoBean has the method storeDocument() which allows to
store a DMS document on file system. Before we could call this method we have to
get the Bean with the BeanManager like in following way. A possibility to finish a
transcation is the usage of BeanManager.commit():

DemoBean db = (DemoBean)BeanManager.getBean("DemoBean");

//code to get DMS document(s)
...
db.storeDocument(doc); //store document on file system
...

try {

39

4.8. RESOURCE FILES

//code to handle file(s)
...
BeanManager.commit(); //calls beforeCompletion() and afterCompletion()

} catch (Exception ex) {
BeanManager.rollback();

}

More details about the BeanManager could be found in the @enterprise API!

4.8 Resource Files

It is possible to change the labels and messages of @enterprise by writing your own resource
files. @enterprise uses the mechanism of "ResourceBundles" of Java for translating language-
dependent texts. See the Java documentation of java.util.ResourceBundle for details on how
this works.
@enterprise uses two ResourceBundles

<ephome>/classes/com/dec/avw/resource/Errors for error messages and
<ephome>/classes/com/dec/avw/resource/Strings for label, messages

and other texts.

The default versions contain the texts in English, the german versions, with the suffix "_de"
contain the german texts. Other language dependent resource files may follow.
You can define resource files for country dependent locales, for example a file Strings_de_AT
and overwrite selectively the labels you want to change.
Example:

finish=Senden
take=Übernehmen

This file overwrites the labels for finish and take, it has an effect for all users with Locale
de_AT. You have to put the file in the class path of @enterprise, for example:

<ephome>/classes/com/dec/avw/resource/Strings_de_AT.properties

4.9 Error Handling

If your servlet code throws an Exception or Error, an error page will be displayed. This page
contains the following message:

• the message from the exception itself, if the exception is an instance of
com.groiss.util.TopLevelException.

• The standard message "An internal error occurred. Please contact the system adminis-
trator!" is shown otherwise.

40

4.9. ERROR HANDLING

Two classes implement the TopLevelException interface. The first, ApplicationException, is
a subclass of Exception, the second, ApplicationRtException, is a subclass of RuntimeEx-
ception.
All @enterprise errors have an error number as key, the key for the standard message is
"unknown". You can change the text by defining a resource file for the Errors bundle for
your Locale (see section above).
If you want to change the error page as a whole, you can implement an ErrorFormatter
(package com.groiss.gui):

public interface ErrorFormatter {
public Page format(java.lang.Throwable e);

}

This interface defines how to format the exceptions. The default implementation is the
DefaultErrorFormatter in the same package. You can set the ErrorFormatter in the
configuration (Classes page), default is the DefaultErrorFormatter. The class Applica-
tionException has a the method setErrorFormatter where you can set your own formatter
class for a single exception.

41

5 Structure of Applications in
@enterprise

The integration of applications is one of the main tasks of workflow systems. In this
chapter we show how @enterprise applications should be structured to make installation and
maintenance easy.
Our design goals were:

• Simple installation/un-installation of applications

• Support for upgrade of applications

• Independence of applications and @enterprise versions

• Support of startup and shutdown functions

5.1 Organization of Files

Application programs should not reside in the same directory as the @enterprise installation.
A typical structure can be as follows:

/app/ep_Vx
/app/ep_Vy
/app/ep-appl1
/app/ep-appl2

Under the directory app there are two versions of @enterprise (ep_Vx and ep61_Vy) and
two directories containing applications (ep-appl1, ep-appl2).
Equally important is the internal structure of application files. Typically, an application
contains:

• jar files for application classes and additional libraries,

• static HTML pages, probably language dependent,

• HTML masks, loaded from the code,

• configuration file(s),

42

5.2. THE CONFIGURATION FILE

• other: export files, documentation, database scripts.

We suggest the following internal structure for applications:

appli/lib/ jar files
appli/classes/ Java-classes
appli/classes/alllangs/ language independent files (HTML, ..)
appli/classes/lang/<language>/ language dependent files and images
appli/classes/appli/properties.xml property-file for application- and user-parameter
appli/classes/appli/import.xml import-definition for file importer (see System Admin-

istration Guide - section File Import)
appli/classes/appli/reporting.xml reporting definition containing needed information

about the pool of data which can be used in reports
(see Reporting manual - section Schema in chapter
Developers Guide)

appli/classes/appli/styles.css The @enterprise styleloader loads the file (depend-
ing on startup sequence of the application) and ap-
pends it to avwbasic.css

appli/appl.prop configuration file

HTML masks used in servlet functions are loaded from the classpath and are located either
in the lib or the classes directory. In the classloader the jar-files are sorted alphabetically
for each path.
When you specify the application path in the corresponding field of the application entry
in the system configuration, the classes directory and the jar files in the lib directory are
added to the classpath. The classes directory is in the classpath before the jar files, so you
can shadow classes in the jar files.
We recommend to build a jar file containing application classes and HTML masks and
putting this jar file in the lib directory of your application. Thus, future application updates
can be done by simply exchanging one single file. The classes directory is useful during
application development, because you don’t need to build and replace a jar file every time
you compile your code.

5.2 The Configuration File

The configuration file appl.prop contains key-value pairs in the syntax of a Java property
file. The configuration file contains two kinds of parameters: First, @enterprise reads some
parameters when an application is installed. The second group of parameters is only used
within the application. The first group of parameters contains:

avw.application.id: The id of the application,

avw.application.name: A name for the application,

avw.application.docu: Location of application documentation (see section 5.4 for details).

avw.export.file: The name of the export file (e.g. export.xml).

43

5.2. THE CONFIGURATION FILE

On startup, @enterprise reads the configuration file and keeps it in memory. With the
configuration API the parameters can be read and set (package com.groiss.component). A
Configuration object holds the parameter values of an application. To get this object call:

Configuration conf = Configuration.get("appl-id");

The parameter values are then retrieved and set with the following calls:

conf.getProperty(name);

conf.setProperty(name, value);

If parameter values have been changed in file appl.prop without using the GUI, the func-
tion Reload Configuration (can be found under Administration → Admin-Tasks → Server
→ Server Control) allows to load the changes and transfer the changed values into the
Configuration object. After loading the method reconfigure() is called for each service
(and each application where application class implements the interface
com.groiss.component.Service). The name of the changed properties can be retrieved
by using the method ThreadContext.getAttribute("changedParams") which returns a list of
strings.

For further information of the methods of Configuration class see the API description.

The second group of parameters can be pre-defined in a XML-file called properties.xml.
This file contains the properties, which are displayed in Configuration or (User-)Settings
of @enterprise. The values of Configuration are stored in appl.prop, the user-settings in
database-table avw_userprops.

Hint: For editing the file properties.xml please use the property-editor of @enterprise.
This editor can be found as own tab of the application-object (see System Administration
Guide - section Applications).

Example for properties.xml:

<application>
<parametergroup name="ITSM">

<property label="Start Org.unit" type="String"
name="start.dept" needsrestart="true">
</property>
<property label="Start process" type="String"
name="mail.start_process" defaultvalue="incident_management"
needsrestart="true">
</property>
<property label="Mail sender" type="String"
name="mail.sender" needsrestart="true">
</property>
<property label="Mail subject prefix"
type="String" name="mail.subject.prefix"

44

5.2. THE CONFIGURATION FILE

needsrestart="true">
</property>
<property label="BCC recipient" type="String"
name="bcc.recipient" needsrestart="true">
</property>
<property label="Mail notification text"
name="mail.notification.text" needsrestart="true">
<components type="textarea" />

</property>
<property label="Mail receipt text"
name="mail.receipt.text" needsrestart="true">
<components type="textarea" />

</property>
<property label="Release info text"
name="release.info.text" needsrestart="true">
<components type="textarea" />

</property>
<property label="Auto receipt"
name="auto.receipt" type="Boolean"
needsrestart="true">
</property>
<property label="Trusted domains"
name="trusted.domains" needsrestart="true">
<components type="textarea" />

</property>
</parametergroup>
<userprops>

<property label="Signature" name="signature" needsrestart="false">
<components type="textarea" />
</property>

</userprops>
<resource strings="" errors=""></resource>

</application>

The property-file starts and ends with an application-tag. Between this tags you can define

• parametergroup (displayed as section in Administration → Configuration)

• userprops (displayed as group in Worklist → Extras → Settings)

• resources (plus error-resources)

A parametergroup should contain a name-attribute which represents the link in the navigation-
tree of Configuration. Within the parametergroup and userprops the property-tags can be
set, which symbolizes the property. The keywords name and type must be defined, label
is optional (only for representation in GUI). Additionally a defaultvalue can be set within
the property-tag. The keyword needrestart defines, if the server has to be restarted or not
when property is set via GUI. The components-tag allows to define other html-elements like
password-fields, select-lists, textareas, links, etc. @enterprise uses also a default property-file

45

5.2. THE CONFIGURATION FILE

(stored in conf -folder), where you can see the definition of all @enterprise properties (values
stored in avw.conf), but DO NOT CHANGE THIS FILE!

Following example shows, how to define different html-elements (snippet of parametergroup-
tag):

<property label="Textfield name="example.textfield">
<components type="textfield" size="40" />
</property>
<property label="Password" name="example.password">
<components type="password" />
</property>
<property label="Textarea" name="example.textarea">
<components type="textarea" />
</property>
<property label="Checkbox"
name="example.checkbox" type="Boolean">
</property>
<property label="Dropdown-List"
name="example.dropdownlist" type="Integer"
defaultvalue="0">
<restriction>

<enumeration value="0" name="v1" />
<enumeration value="1" name="v2" />
<enumeration value="2" name="v3" />
</restriction>

</property>
<property lable="Select-List" name="example.selectlist">
<components type="selectlist" multiselect="true" />
<restriction>
<enumeration value="1" name="sunday" />
<enumeration value="2" name="monday" />
<enumeration value="3" name="tuesday" />
<enumeration value="4" name="wednesday" />
<enumeration value="5" name="thursday" />
<enumeration value="6" name="friday" />
<enumeration value="7" name="saturday" />
</restriction>
</property>
<property label="Class Checker" name="example.classchecker">
<components>
<a href="javascript:ep.admin.checkClass(’example.classchecker’,
’aimg’,’instanceof java.lang.Object’)">

</components>
</property>

46

5.3. THE APPLICATION CLASS

5.3 The Application Class

The application class contains methods for startup, shutdown, and other control operations
of the application. The interface com.groiss.component.Service (a sub-interface of
Service) contains the following methods:

public void startup() throws ApplicationException;

public void shutdown() throws ApplicationException;

public boolean isRunning() throws ApplicationException;

public void reconfigure() throws ApplicationException;

The first two methods are called on startup respective shutdown of the server. The method
isRunning can be called to find out whether the application is running or not (whatever this
means in the context of the application).
There is a default implementation of the application interface, the ServiceAdapter class.
It contains empty method bodies. We strongly recommend to extend the adapter instead of
implementing the interface: Future extensions of the interface (addition of methods) can
make your implementation incomplete whereas the Adapter class will always implement the
necessary methods.
Another class, DefaultApplicationAdapter provides a default implementation of the
ApplicationAdapter interface, which contains some methods to tailor the behavior of an
application. You can define such a class and register it in the application administration (field
application class).

5.4 Documentation of Applications

You can add a documentation page to your application by specifying a property with the key
avw.application.docu in the application’s appl.prop file. @enterprise will search for
the documentation in the classpath, so you must add it either to the classes directory or to
the application jar file in the lib directory. Here comes an example for the property:

avw.application.docu=demodoc/index.html

When a user clicks on Help and Content, the system searches for @enterprise and appli-
cation documentation. If at least one application documentation is found, a selection page
will be shown, where the user can choose either the system documentation or an applica-
tion documentation. The application documentation links to the location specified in the
above mentioned property. There you can provide HTML help pages or links to pdf-files or
whatever you prefer.

5.5 Internationalization of Applications

@enterprise offers the possibility to add your own resource bundles to your applications. For
internationalizing your application following steps are necessary:

47

5.6. STARTUP AND SHUTDOWN

1. Definition: A resource bundle for the strings (and error) messages of the application
must be defined (see section 4.8).

2. Configuration: The resource bundle must be added to the application (see System
Administration Guide - section Applications).

3. Usage: There are different ways to use the resource bundle:

• Resources loaded by @enterprise: Use the placeholders "@@@" e.g. in
forms or gui-configuration (see section 10.2.5 for using placeholders in gui-
configuration). All strings beginning with "@@@" and ending with "@@" are
interpreted as translation labels. They are substituted using the resource bundle
(using the labels of the template as keys in the resource bundle).

Example for forms:

<input type="button" value="@@@close@@">
in locale en_US: <input type=button value="Close">
in locale de_AT: <input type=button value="Schließen">

• Resources loaded by FileServlet (images, scripts, HTML pages):
This resources are loaded from alllangs directory in classpath or loaded from
language specific directory (see section 5.9). Use the placeholders "@@@" as
described above.

• Java Code: In code resources can get by using the ApplicationAdapter to get
the Resource object (see section 9.3 for more details). If the keys of a HTML-
page should be translated, load the HTMLPage object like in following example
(see section 2.4 for more details).

Example:

ApplicationAdapter applclass =
(ApplicationAdapter)ServiceLocator.getOrgData().getById(
Application.class,"staffprocs").getApplicationClass();

Resource res = applclass.getResource();
String key = res.getString("key"); //translation key without @@@
HTMLPage p = new HTMLPage("hrmasks/info_vacation_added.html", res);
...

5.6 Startup and Shutdown

On startup of an application the system performs the following steps:

• Add the jar files to the lib directory and the classes directory to the classpath.

• Load the configuration file.

• Execute the startup method of the application class.

48

5.7. INSTALLATION

5.7 Installation

The installation of an application is done in two steps:

• First, copy the files to the destination directory.

• Secondly, create an application object, specify the id, name and installation directory
of the application.

On insert of the application object, the classpath is altered, the application loaded and the
application is started.
A second possibility to add an application is to pack the application into a jar or zip file and
load it onto the server. This is done via the "Install Application" function in the administration
task list.

5.8 Upgrading/Patching

Detailed information on how to apply a patch to an application can be found in the system
installation manual.

5.8.1 Creating patch archives

A custom patch file has to meet following standards: The technical format of a patch archive
is a ZIP-archive. It incorporates the individual new build numbers of the files to be patched,
along with two additional files (version,changes) which describe the patch and the needed
actions.

version

This file describes the build number of the patch and can also be used to specify a minimum
required application build number to be installed before the patch can be applied.
The following parameters are supported:

new: Describes the build after applying the patch. This parameter is required.

base: Describes the minimum required build number. This parameter can be used if you
want to release service-packs.

base-file: You can specify a pattern for a jar-file, which is used to determine the currently
installed version of an application. Wildcards (*) can be used.

Example for file version:

new:4.7.1.1
base:4.7
base-file:lib/itsm-*.jar

49

5.9. MAPPING OF URLS TO FILES OR METHODS

Because not every patch may be applicable for each installation, the mechanism compares
the currently installed build to the build number of the patch and the minimum required
build.
The installed build is retrieved from the file you specified with the base-file parameter. E.g. if
you set the parameter to lib/itsm-*.jar, a file is searched in the application-directory matching
that pattern. So if you have a file named itsm-1.0.jar in your lib folder, this file is used.
The patch mechanism can use two mechanisms to determine the version of the file.

Manifest: A parameter named Implementation-Version is expected to be in your reference-
file’s manifest file.

Filename: The build number is determined using the reference-file’s name. The part
between the last ’-’ sign and the file-ending (.jar) is considered to be the version
identifier.

Regardless where you prefer to store your build information, the build has to consist of
several numbers separated by a dot (e.g. 4.7.1.1).
Please note: If the currently installed build cannot be determined, the patch will not be
applied.

changes

This file describes the required actions. Following actions are supported:

Copy Copies the file from the patch-archive to the given location. If the file doesn’t exist,
it will be created. If the file exists but is the same as the file in the patch (checksum
comparison) , no action will be performed.

Delete Deletes the specified file (if present).

One file has to be specified per action. Each action has to be in a separate line.

Example for file changes:

Copy:lib/docu_it.jar
Delete:classes/MyForm.html
Copy:lib/itsm-1.0.2.jar
...

5.9 Mapping of URLs to files or methods

In this section we explain how a HTTP request URL is interpreted by @enterprise.
But let us first briefly step over the components of an URL:

<protocol>://<host>:<port><path>?<query>

e.g.:

http://www.groiss.com:80/wf/servlet.method/a.b.c?oid=24323&time=3254777

50

5.9. MAPPING OF URLS TO FILES OR METHODS

The protocol (http) states the set of rules which govern the communication between client and
server place. The host is the name or ip-address of the machine (www.groiss.com). The port
(80) is a specific transport endpoint within the machine. Together these three components
specify a service, which is an @enterprise installation in our case.
The path (/wf/servlet.method/a.b.c) refers to a resource within the service. By in-
terpreting this path, the service searches for resources internal to the service. Typical
resources are static files and dynamic content generated by program code. The parameters
(oid=24323&time=3254777) can be used by the service to customize the resource.

Using and referencing URLs

We do not deal with the protocol, host and port components of an URL, since we should
never reference to them within the same @enterprise installation. Further, in @enterprise
as well as in application servers, all URL paths start with the context root. In a standalone
installation this is always "/wf". When @enterprise runs within in an application server the
context root is specified during deployment.
When specifying URLs, adhere to the following rule:
Do not use an absolute URL when you are referring to resources within the same engine
(deployment context). In other words:

• do not include the protocol (http://)

• do not include the host name

• do not include the port

• do not include the context root

• do not include the slash following the context root

in your URLs.
By obeying to this rule, we gain deployment transparency within the server. The browsers
are responsible for constructing the absolute URL from the relative ones. In case of doubt,
use the status line of the browser to determine the constructed path.

Mapping of the URL path to a resource within @enterprise

When the part of the path after the context root is /servlet.method, then the Dispatcher
servlet is responsible for dealing with the URL. This is described in section 2.1.
Any string different from /servlet.method is handled by the FileServlet, which is respon-
sible for locating the file specified in the URL path and for proper internationalization of
those files.
Since there may be files which are independent of the language, the FileServlet distinguished
two cases:

a) language independent files

For addressing language independent files, the string /alllangs follows the context root.
The files are searched in the classpath including the alllangs prefix.

Example: The classpath consists of two components:

51

5.9. MAPPING OF URLS TO FILES OR METHODS

• a directory /home/firstappl/classes

• followed by a jar file lib/secondappl.jar

When resolving the URL

http://myhost:8000/wf/alllangs/dir/text.html

the FileServlet first tries to locate the file by accessing alllangs/dir/text.html starting
from the directory /home/firstappl/classes. If successful, the file is returned. If the
file could not be found in the first component of the class path, then the next component is
searched, and so on. In the example the FileServlet tries to locate the file by searching for
alllangs/dir/text.html within the jar file lib/secondappl.jar.

Hint: Since @enterprise version 8.0 images are stored in lang instead of alllangs folder.

b) language dependent files

When a string different from "/alllangs" follows the context root, the FileServlet interprets
the file as language dependent, for which the FileServlet supports two mechanisms:

1. The file has already been translated for the different locales, and the translations have
been stored in separate directories.

2. There is just one file (a template containing special labels) which is translated on-the-fly
when the file is loaded.

Because a locale can contain language, country and variant, the search path is implicitly
extended by
1. lang/<language>/<country>/<variant>/
2. lang/<language>/<country>/
3. lang/<language>/
4. lang/default

in this order.
If the file could not be found, an untranslated template is searched by extending the path with
5. alllangs/
If the file is found in steps 1,2,3 or 4 it is sent to the browser unchanged, if found in during
step 5 it is translated on-the-fly (see following subsection).
Note that each of the steps means to search within all the components of the classpath.

Example: The classpath consists of two components:

• a directory /home/firstappl/classes

• followed by a jar file lib/secondappl.jar

When resolving the URL

http://myhost:8000/wf/dir/text.html

52

5.9. MAPPING OF URLS TO FILES OR METHODS

and the locale is en_US, the file is searched in the following locations (since the locale has
no variant, the search starts at step 2):

2. /home/firstappl/classes/lang/en/US/dir/text.html
lib/secondappl.jar!lang/en/US/dir/text.html

3. /home/firstappl/classes/lang/en/dir/text.html
lib/secondappl.jar!lang/en/dir/text.html

4. /home/firstappl/classes/lang/default/dir/text.html
lib/secondappl.jar!lang/default/dir/text.html

5. /home/firstappl/classes/alllangs/dir/text.html
lib/secondappl.jar!alllangs/dir/text.html

Because the files are searched in all the components of the classpath, it is highly advisable to
use different prefixes for the files of different applications.

53

6 Organizational Data

The package com.groiss.org contains the API for the organizational data in @enterprise.
See the @enterprise Administration Guide for a description of the objects for representing
organizational data.
The interfaces Application, OrgUnit, Role, Right, and User have been defined to
access information abort the organization.
The interface OrgData is a service-interface for retrieving objects and make changes in the
organizational database.
The methods get and list wrap the corresponding methods in the Store interface.
Example: the following piece of code returns the list of active organizational units, ordered
by name:

List l = ServiceLocator.getOrgData().list(
OrgUnit.class,"active=1","name");

If you have the id of one of the objects of the organizational data, you get the object with the
method getById.

6.1 Users, their Roles and Rights

The interface User represents a person known to the system. The toString methods returns
the title, first name and surname, separated with spaces.
The toListString method return the same in another order: the surname, the first name and
then the title. It is more suitable for showing lists of users sorted by surname.

Use the methods getRoles and hasRole for finding out whether a user has a role.
Example: The following example shows the roles a selected user has in the - optionally -
selected department.

public Page showUserSelection(HttpServletRequest req) throws Exception {
HTMLPage p = new HTMLPage();
p.setPage(

"<html><form action=\"com.groiss.demo.OrgDemo.showUserRoles\">"+
"%user% %org% <input type=submit></form></html>");

OrgData od = ServiceLocator.getOrgData();
p.substitute("user", new DropdownList("user",

54

6.2. DABABASE OPERATIONS

od.list(User.class,null,null)).show());
p.substitute("org", new DropdownList("dept",

od.list(OrgUnit.class, null,null), true).show());
return p;

}

public Page showUserRoles(HttpServletRequest req) throws Exception {
HTMLPage p = new HTMLPage();
p.setPage("<html>%roles%</html>");
OrgData od = ServiceLocator.getOrgData();
User u = (User)od.get(User.class,

Long.parseLong(req.getParameter("user")));
OrgUnit ou = null;
String d = req.getParameter("dept");
if (!StringUtil.isEmpty(d)) {

ou = (OrgUnit)od.get(OrgUnit.class, Long.parseLong(d));
}
p.substitute("roles", od.getRoles(u,ou));
return p;

}

The first method shows a HTML page with two select lists for selecting a user and an
organizational unit. The second method reads the corresponding User and OrgUnit objects
and shows the roles of the user (optionally in the OrgUnit).

The home department - the department where the user has the home role can be retrieved
with the method getDefaultDept.

For checking whether a user has a right, use the method hasRight(User, Right, Object)
of interface OrgData.

You can overwrite the right checks for an object when implementing interface RightCheck.
Implementing this interface is especially useful for classes which permissions are dependent
on permissions on other objects (e.g. to edit object A the user must have edit right on
some related object B). When implementing RightCheck you can use the right-related
methods of interface OrgData (e.g. hasRight or its may-methods) for checking the rights of
related objects or the methods of utility class DefaultRightCheck. The difference between
those two alternative ways is that OrgData will check if the passed object implements
RightCheck and therefore will take the hasRight-implementation of that object whereas
DefaultRightCheck will check the standard permission system.
But note: you MUST NOT call the mentioned methods of OrgData with the current object
(i.e. ’this’ in Java) in its hasRight-implementation. This would lead to an infinite loop.

6.2 Dababase operations

The OrgData methods insert, update, delete perform the corresponding actions of the
Store service with the following additional functions:

55

6.3. PASSWORD POLICIES

• checking permissions: The methods insert, update, and delete call the corresponding
may* methods before performing the operation. As user argument the thread user is
used. If the object implements the RightCheck interface the methods of the interface
are called instead of the standard methods.

• making log entries: If the class implements the interface HasLog a log entry is written
to the database.

You can get the log entries for an object with the method getLogEntries, getVersion(Date)
returns the version of the object at a given date.

6.3 Password Policies

To write a special password checker, you have to implement the interface
com.groiss.passwd.Checker (and configure it in the password policy configuration).

interface Checker A Checker has a method which checks the password if it is compliant
to the specific policy. The method getReasons returns a list of Strings representing the
reasons, why the password is not compliant.

public interface Checker {
public List<String> getReasons();
public boolean isCompliant(String password);

}

6.4 Adding tab Additional Info

In @enterprise it is possible to attach forms to master data objects, for example users, org-
units, process definitions. For maintaining these objects there is an API and a user interface.
It is necessary to define the relation in one of your GUI configurations files: Add a node of
class com.dec.avw.lclient.AddInfoNode to the Actions section of the file, for example:

<Config>
<TreeConfig>
...
</TreeConfig>
<Actions>
.....
<Node id="your_id" name="a_label" class="com.dec.avw.lclient.AddInfoNode">

<Attrib key="form" value="com.dec.avw.appl.Jobform_5"/>
<Attrib key="attachedto" value="com.groiss.org.User" />

</Node>
.....
</Actions>

</Config>

56

6.5. DELETING MASTER DATA WITH REFERENCES

The configuration file must be referenced in a GUI configuration object. On startup, @enter-
prise reads these files and registers the object-extension nodes. In the above example you
will now get an additional tab in the user detail mask, where you can edit the attached form.
The OrgData interface has the method getObjectExtension for accessing the attached object:

OrgData org = ServiceLocator.getOrgData();
User u = org.getById(User.class, "testuser_id");
DMSForm f = (DMSForm)org.getObjectExtension(u,

"com.dec.avw.appl.addform_1",true);
//further handling with DMSForm
....

The method getObjectExtension() has following parameters:

• Persistent obj: The object, where the extension is added (e.g. User)

• String formclass: The form-class of the additional form

• boolean create: create the extension, if it does not exist

• Return value: the form

6.5 Deleting master data with references

If a master data object with references should be deleted, errors occurs with the property
isWarning=true. These errors are intercepted and a message in a confirm-dialog is displayed.
If the user accepts the deletion, the parameter ignoreError=<errnum> will be added to the
request and deletion will be tried again, whereas the deletion-operations using this parameter.
Following objects support this behavior/Exceptions which are marked as warning:

• Application - Exception 232

• Dept - Exceptions 88 and 232

• Role - Exceptions 966 and 210

• All objects - Exception 150

For each run new errors could be thrown. The accepted errors are available in ThreadContext
and can be used in onDelete().

57

7 HTML Components

The following section describes the API to build HTML components with Java. We have
defined Java Classes for most HTML elements, like forms, input fields, etc. You find the
classes in the package com.groiss.gui.component.
The use of them is simple: call the constructor with the necessary arguments. The method
show returns a string representation of the component.
The internal representation of the elements is a JDOM tree representing the XML structure
of the element. The method getRoot returns this tree.
The following method contains three examples for using the components:

File com/groiss/demo/HTMLComponents.java

package com.groiss.demo;

import java.util.*;
import javax.servlet.http.*;
import javax.swing.table.*;
import com.groiss.org.*;
import com.groiss.ds.*;
import com.groiss.wf.*;
import com.groiss.gui.*;
import com.groiss.gui.component.*;

/** Some examples of HTML components
*/
public class HTMLComponents {

static String[][] arr = {{ "a11", "a12", "a13"}, {"a21", "a22", "a23"}};
static String[] headers = {"col1","col2","col3"};

/** Show a select list of users.*/
public Page showMask(HttpServletRequest req) throws Exception {

HTMLPage result = new HTMLPage();
List<User> l = ServiceLocator.getOrgData().list(

User.class, null, "surname",null);

SelectList sl = new SelectList("user", l, 10);
DropdownList dl = new DropdownList("user", l);
TableContainer tc1 = new TableContainer(new DefaultTableModel(arr,headers));
tc1.setRowAttribute(1,"bgcolor","red");

58

List style = new ArrayList();
style.add(new Pair("bgcolor","grey"));

TableContainer tc2 = new TableContainer();
tc2.setAttribute("border","1");
for (User u: l) {

List row = new ArrayList();
row.add(u.getSurname());
row.add(u.getFirstName());
if (u.isActive())

tc2.addRow(row);
else

tc2.addRow(row,style,null);
}

result.setPage("<html>"+
"\n
" + sl.show() +
"\n
" + dl.show() +
"\n
" + tc1.show() +
"\n
" + tc2.show() +
"</html>");

return result;
}

}

First, a select list of length 10 with name user containing a list of users is constructed. This
works, because a User object implements the interface KeyValuePair: The value of the select
list option is the toString method, the key is the oid (as String). A DropdownList with the
same content is the next element.
A HTML table is build using the TableContainer class. One constructor takes a TableModel
object, we use the DefaultTableModel from swing to generate such a model.
Another table is build using the TableContainer by adding rows in a loop. When adding rows
one can set additional attributes of the row and the row columns.

59

8 The Workflow Engine

In this chapter we first present the function of the @enterprise workflow engine. After this,
the API of the engine is explained. Examples will show the possibilities of the API.

8.1 Process definition and execution

The definition of a process can be represented as graph. The activities are the nodes, the
edges represent the flow of control. The graph of the process definition is either generated
from a WDL script or graphically defined using the process editor.
The nodes of the graph can belong to the following types:

• task: interactive task (done by the user)

• system: automatic step, call of a program

• process: call of a sub process

• condition: labeled as if, while, exit_when: branch with condition

• andjoin and orjoin: join node after a split to parallel branches

• nop: structural nodes labeled as par, begin, end, and goto

The edges are directed and can have one of the following types:

• normal

• then: The edge is followed, when the condition in the previous node evaluates to true.

• else: The edge is followed, when the condition in the previous node evaluates to false.

Fig. 8.1 shows the same process in WDL notation and as graph produced from the process
editor. This graph is structurally equivalent to the internal structure of the process definition.

60

8.1. PROCESS DEFINITION AND EXECUTION

process iftest()
version 1;
name "iftest";
forms f Jobform;
application default;
begin

if (f.recipient = null) then
all right();

else
r1 left();

end;
while (f.subj = "1") do
r2 while1();
r3 while2();

end;
end;

Figure 8.1: Process graph

The workflow engine is an interpreter for the process definition graph. Its responsibility is to
change the state of the process instances according to the process definition graph.
The behavior of this interpreter can be described with the two procedures start_activity
and finish_activity shown in Fig. 8.2.
When a workflow is initiated, the procedure start_activity is called, it selects the initial
activity of the process and calls the procedure recursively. The behavior of this procedure
depends on the type of the node currently processed. If the type is nop (par, loop, endif, or
end) no action is performed and the execution proceeds with the successor nodes. If the
type of the node is condition (if, while, or exit_when) the expression defined with the node
is executed and depending on the result the branch marked with then or the branch marked
with else is followed. The two node types closing a parallel execution - andjoin and orjoin -
are handled in the following way: When processing an orjoin node, the successor is started
when the first branch reaches the orjoin node. When processing andjoin nodes, the successor
is started when the last branch reaches the node. If the node is a task node, the following
steps are performed: the (optional) procedure defined for this activity is executed, then the
agent is assigned. At this point the procedure terminates.
When the user finishes an activity, the procedure finish_activity is invoked (the button
complete in the worklist client) with the activity. In the procedure finish_activity the
successors of the node are started. The second argument defines the type of edge to follow.
States of process instances and activity instances are shown in Fig. 8.3 and Fig. 8.4.
The process is either running (state started) or not running - when it has been finished
normally (state finished) or when it has been aborted (state aborted).

61

8.1. PROCESS DEFINITION AND EXECUTION

procedure start_activity(act)
if type_of(act) = condition then

if execute_expression(act)
then finish_activity(act,"then");
else finish_activity(act,"else");

end if;

elsif type_of(act) = nop then
finish_activity(act,"normal");

elsif type_of(act) = orjoin then
if this is the first finished branch then

finish_activity(act,"normal");
end if;

elsif type_of(act) = andjoin then
if this is the last finished branch then

finish_activity(act,"normal");
end if;

elsif type_of(act) = process then
start_activity(init_activity(act));

elsif type_of(act) = activity then
execute_procedure(act);
assign_agent(act);

elsif type_of(act) = system then
execute_procedure(act);
finish_activity(act,"normal");

end if;
end;

procedure finish_activity(act, b)
if no successors of act then

finish_activity(parent(act));
else

for all successors succ of act in branch b do
start_activity(act);

end do;
end if;

end;

Figure 8.2: Interpreting the process definition

When an interactive activity is started, it is assigned to a role (state started) or to a user
(state active). Taking the activity from the role-worklist to the personal worklist changes
the state to active. Putting it in the suspension list changes the state to suspended. When
the process is aborted, the active activities afterwards have the state aborted. Finishing an
activity normally leads to state finished. When the agent of the following task or a choice
path have to be selected, the state of the activity is waiting, until this action has been done.

62

8.1. PROCESS DEFINITION AND EXECUTION

Start process started

finished

aborted

reactivate

finish the last step

abort

reactivate

Figure 8.3: Process States

finish predecessor
or start step

started

suspended
[agent = role]

active

suspended
[agent = user]

finishedcompensated

waiting

aborted

take

finish

finish

abort
abort

select next agent
or choice path

compensation on going back

into/out of
suspension list

into/out of
suspension list

give back

Figure 8.4: Activity States

The action "go back" compensates the activities lying on the path to the previous activity,
this activities have then the state compensated.
The constants for this states are defined in the interface ActivityInstance.

8.1.1 Structure of run-time data

Whenever a process or activity is started, some objects are created and stored in the database.
We call these objects run-time data, because they are created at run-time (of the engine) in
opposition to the build-time data (for example the process definition).

63

8.2. FORMS

Fig. 8.5 shows the relationship between the process graph and the run-time data. The process
structure shown in the left part of the figure is composed of nodes and edges. Nodes of
type task have a reference to a Task object. When the process is started, for each node the
engine processes an ActivityInstance object is created. These objects have references to the
corresponding node of the process graph. More than one ActivityInstance can be generated
for one node in the process graph in one process instance: The functions "set agent" or "give
back" create additional ActivityInstance objects, so that the history of the process instance
can be seen when listing the ActivityInstance objects.

Process Structure Task Definition Process Instance

Task 1

Task 2

Task 3

StepInstance 1

StepInstance 2

StepInstance 3

StepInstance 4

Node 1

Node 2 Node 3

Node 4

Node 5

Figure 8.5: Process graph and run-time data

If the node in the process graph is of type process the corresponding ActivityInstance object
represents the execution of a subprocess and also implements the interface ProcessInstance.
The ActivityInstance objects representing the execution of the subprocess are children of this
object. Fig. 8.6 shows such a graph of ActivityInstance objects. The object p0 represents the
execution of a process instance p0 In this process instance four steps have been executed, the
tasks t1,t2, t3, and the process p1. The execution of p1 contained the steps t4, t5, and t6.
The API provides the methods getParent() of ActivityInstance and getAtivityIntsance()
(of WfEngine), for navigating through this hierarchy. A process instance has always at least
one root node (ProcessInstance object) and one or more leaf nodes.

8.2 Forms

Forms hold the local data of process instances. When loading a form, @enterprise cre-
ates two Java classes and a database table per form. All classes are in the package

64

8.2. FORMS

p0

p1

t2

t3

t1

t4

t5

t6

Figure 8.6: Graph of ActivityInstance objects

com.dec.avw.appl.

1. The name of the first class is the form id followed by "_" and the version of the form.
It is a subclass of PersistentObject and provides the methods for access of the database
table.

The form fields are public fields of this class.

2. The name of the second class is composed of the string "HTML", the form id, an
underscore ("_"), and the form version.

It is a subclass of com.dec.avw.html.HTMLForm and contains the methods for view-
ing the HTML representation of the form.

For the form with the id Jobform and version 1 the Java Class looks like:

package com.dec.avw.appl;

import com.dec.avw.core.*;

public class Jobform_1 extends Form {
public String subj;
public String recipient;
public String description;
public String type;
public String finished;

65

8.3. THE @ENTERPRISE WORKFLOW API

public String getTabledef() {
return "create table form_Jobform_1(\n"+

" oid integer primary key,\n"+
" task integer,\n"+
" transactionId integer,\n"+
" subj varchar(55),\n"+
" recipient varchar(55),\n"+
" description varchar(55),\n"+
" type varchar(3),\n"+
" finished varchar(3)\n"+
")";

}

public String getTableName() { return "form_Jobform_1"; }
}

The Class HTMLJobform_1 is a subclass of HTMLForm and is responsible for the HTML
representation of the form.

package com.dec.avw.appl;

import com.dec.avw.html.*;

public class HTMLJobform_1 extends HTMLForm {

public Class getSQLClass() {
return com.dec.avw.appl.Jobform_1.class;

}

}

See the method setDate on page 75 as example for the usage of the form classes.

8.3 The @enterprise workflow API

The classes and interfaces for accessing the workflow engine are located in the package
com.grois.wf. The objects of the process definition and the run-time data can be accessed
with the following interfaces:

• ProcessDefiniton representing the definition of a process

• Task the interactive steps of a process definition

• ProcessInstance the instance of a process

• ActivityInstance the instance of a step of a process

66

8.3. THE @ENTERPRISE WORKFLOW API

The methods for manipulating process instances are executed using the interface WfEngine.
The method getWfEngine of class ServiceLocator returns an WfEngine object.
The methods are arranged in four groups:

• Create a process instance,

• find process instances,

• get information about process instances,

• change the state of process instances.

8.3.1 Create a process instance

To create a process instance we must specify the following data:

• the process definition,

• the user who starts the process,

• the organizational unit, where the process is started,

• the date, when the process should be finished (optional).

See the chapter 6 for information how to get users and org. units. The process definition can
be retrieved with one of the methods of WfEngine:

ProcessDefinition getProcessDefinition(String id);
ProcessDefinition getProcessDefinition(String id, int version);

Additionally, listProcessDefinitions returns the process definitions of an application,
getStartableProcesses the processes a user can start.
When the arguments are collected, the process can be started using:

ProcessInstance startProcess(ProcessDefinition p, User u, OrgUnit d,
Date duedate, String id)

The last argument is the process instance id. If you leave it null, the system assigns an id.

8.3.2 Find process instances

The following methods are used to find a process instance:

public List<ActivityInstance> getWorklist(Application a, boolean withRepr);
public List<ActivityInstance> getRoleWorklist(Application a);
public List<ActivityInstance> getSuspensionList(Application a);
public ProcessInstance getProcess(String id) throws WfException;
public ProcessInstance getProcess(long oid) throws WfException;
public ProcessInstance getProcess(DMSForm f) throws WfException;

The first three methods retrieve the worklist, role-worklist, and suspension list of the current
user. You can call the methods with application null, for getting the items for all applications.
If you know the id or the oid of a process, call one of the getProcess methods.

67

8.3. THE @ENTERPRISE WORKFLOW API

8.3.3 Get information about a process instance

The interface ActivityInstance has getter methods for all the information stored in the un-
derlying object: the agent, start time, end time, status, organizational unit, process definition,
process instance, type, and task.
The interface ProcessInstance has additional methods for getting the subject and the id.
In the WfEngine interface the following methods are available:

• public List<ActivityInstance> getActiveTasks(ProcessInstance process)
returns all active (state started, active, or suspended) tasks of a process

• public List<ActivityInstance> getActiveTasks(ProcessInstance process,
User u)
like above, restricted to a user.

• public List<? extends ActivityInstance>
getAllInteractiveTasks(ProcessInstance pi)
returns all interactive tasks of a ProcessInstance, even if they are children of a parfor,
par or scope.

• public List<ActivityInstance>
getActivityInstances(ProcessInstance process)
all activity instances of a process instance (all children).

• public DMSForm getForm(ProcessInstance pi, String id)
a form of the process, identified by the id

• public List<DMSForm> getForms(ProcessInstance process)
all forms of the process

• public ProcessInstance getMainProcess(ActivityInstance ai)
the root of the tree of activity instances.

• public ProcessInstance getParent(ActivityInstance ai)
the parent of an activity instance.

• public List<DMSObject> getDocuments(ProcessInstance process)
a list of documents attached to the process

• public List<DMSNote> getNotes(ProcessInstance process)
the notes attached to a process instance.

8.3.4 Manipulation of process instances

The API provides methods for all actions you can do from the worklist client: finish, take,
untake, goBack, seeLater, seeAgain, setAgent, gotoTask, copyTo, makeBranch, setOrgUnit,
setDescription. See there for details.
The following methods apply to process instances:

68

8.3. THE @ENTERPRISE WORKFLOW API

public void abort(ProcessInstance process) throws WfException;
public void reactivate(ProcessInstance process) throws WfException;
public void archive(ProcessInstance process) throws WfException;
public void setSubject(ProcessInstance process) throws WfException;
public void setSubjectToString(ProcessInstance process, String str)

throws WfException;

8.3.5 Getting the context

In conditions and system steps the method defined by the application can retrieve the current
activity instance with the following code:

WfEngine e = ServiceLocator.getWfEngine();
ActivityInstance ai = e.getContext();

8.3.6 Methods for process instances

There are several methods with process instance as arguments and how they perform needs
some clarification.
The structure of a process instance is as follows:

activityInstance -> [parfor_1 .. -> [subprocess_1 ...->]] main_process

The relation shown as arrow is a parent relation between activity instances. The getParent()
method returns the target of this relation. If we start at a leaf node (activity instance) the first
call returns the parfor node if existing. After other nested parfors the node of the current
subprocess will be found and finally, after other possible parfor and process nodes, the main
process. Any of these nodes except the first implements the process instance interface. The
method getProcessInstance() returns the next activity instance with type PROCESS (not
parfor) that can be found when calling getParent() repeatedly.

The methods on process instances behave as following:

• archive: This is the only method applicable only on the main process.

• abort, reactivate: Normally applicated on the main process, but it is possible to
perform this operations on intermediate nodes.

• getDocuments, getNotes, hasDocuments, hasNotes, setPriority: These meth-
ods first navigate to the main process, then perform like called with it.

• makeBranch, setSubject, getForms, getActivities, getActiveTasks: The
result depends on the argument. For example, to get the local forms inside a parfor,
the method getForms() must be called with the parent of the activity instance

69

9 Using the Workflow API

The programming of a workflow application contains several different tasks, which we will
describe in this chapter:

• Methods that are part of workflow execution: expressions, postconditions, preprocess-
ing, system steps.

• Interactive functions: called on user request as extension to the standard worklist
functions.

• Enhancing the functionality of forms.

• Setting the default behavior of some actions in the application class

• Internationalization of applications.

• Appearance of the client: configuration of the main screen and the worklists. Program-
ming of application specific worklists.

9.1 Application Methods Called by the Engine

The application programmer can define several types of methods which are executed by the
workflow engine:

• system step in the process definition,

• preprocessing: executed before the StepInstance is visible in the worklist,

• compensation: executed when compensating this step (function go back),

• postcondition: executed when user completes the task,

• take- and untake-hook: executed when the user takes the activity instance or gives it
back.

• condition: condition evaluation in if, while, exit when, choice.

70

9.1. APPLICATION METHODS CALLED BY THE ENGINE

In each case a Java method can be specified. In the first and last case the name of the
method is specified in the process definition, the other method names are specified in the
task declaration. The methods can have zero to n String parameters. The return value must
be boolean for conditions and postconditions and is ignored otherwise.
The following example shows two methods, foo and fee. The method foo can be used as
system step or postcondition, the second for all above cases.

class Test {
public void foo(String a, String b) {

...
}

public boolean fee() {
...
return true;

}

}

The value of the string parameters are constants, in the process definition and task declaration
the method call must be specified with the parameters, for example:

Test.foo("first", "second")

Note, that you also have to specify the package together with the class name if the class
belongs to a package. The class file must be in the class path of the server or the classes
directory of an application.
The following example shows a method which is called, when an activity instance is taken:

public void setFieldsApproval() throws Exception {
WfEngine e = ServiceLocator.getWfEngine();
ActivityInstance ai = e.getContext();
ProcessInstance pi = ai.getProcessInstance();
DMSForm f = e.getForm(pi, REQUESTFORM);
User u = (User)ai.getAgent();

//set the fields in the form
f.setField("approvedBy", u);
e.updateForm(f);

}

The methods first gets the activity instance, the process instance, and then a form of this
process. The field approvedBy of this form is set to the agent of this activity instance.

9.1.1 Usage of script-language GROOVY

@enterprise also offers the possibility to enter a GROOVY-script instead of a method-call
(preprocessing, compensation, etc.) in tasks and task-functions. For this purpose you have

71

9.1. APPLICATION METHODS CALLED BY THE ENGINE

to enter the keyword groovy: with a following groovy-script in one of the method-fields.
How to implement the method above (setFieldsApproval()) in groovy is shown in following
example:

groovy:
form_fmREQUESTFORM.setField("approvedBy",(User)ai.getAgent());
engine.updateForm(form_fmREQUESTFORM);

Hint: Groovy must be activated via the hidden parameter ep.scripts.enable in configuration-
file (see Installation and Configuration Guide - section Parameters without GUI)!

The context for tasks is:

• engine is the WfEngine object

• ai is the ActivityInstance

• pi is the ProcessInstance

• store is the Store object

• dms is the DMS object

• orgdata is the OrgData object

• user is the User object

• form_<formid> is the corresponding form

The context for task-functions is:

• request is the HttpServletRequest

• response is the HttpServletResponse

• context is the ServletContext object

• session is convenient for request.getSession(false) - can be null

• params is a map of all form parameters - can be empty

• headers is a map of all request header fields

• out is equal to response.getWriter()

• sout is equal to response.getOutputStream()

These context-variables are defined in com.groiss.groovy.WFBinding, but can be configured
via the hidden parameter ep.groovy.binding.class in configuration-file.

The following example shows a groovy-script which is called before activity instance is
visible in worklist (preprocessing):

72

9.1. APPLICATION METHODS CALLED BY THE ENGINE

groovy:
form = engine.getForm(pi, "inputform");
form.description = form.description + "Method call activated by task2. ";
engine.updateForm(form);

In this example the field "description" of the "inputform" is extended by the string "Method
call activated by task2". The form-fields are accessible directly without getField() and
setField() calls.

In the next example a groovy-script is entered in a task-function which is assigned to all
tasks:

groovy:
u = com.groiss.util.ThreadContext.getThreadPrincipal();
out.println("Logged on User: " + u.getFirstName() + " " +

u.getSurname() + "
");
out.println("Instance Details: " + request.getParameterMap());

If this task-function is called via worklist, the current user and information about the selected
instance will be displayed.

9.1.2 XPath-Conditions

The XML Path Langauge (XPath) is developed by the W3-consortium for addressing parts
of an XML-document (considered as tree). The access on @enterprise process data is done
with following variables:

• Forms: The access on a form and its elements is possible with variable $form_<fid>.
The several fields are subelements, e.g.:

<transactionId>2</transactionId>
<avwcreatedby>Frank Mansdorf</avwcreatedby>
<avwcreatedat>2010-01-29T09:34:29Z</avwcreatedat>

The task-field, OID and the class are defined as attributes at the form-element:

<form object="com.dec.avw.appl.hr_recruiting_1:1000002101"
task="1000098715">

Objects are defined as follows:

<selectagent object="com.dec.avw.core.User:12345">
...object attributes...

</selectagent>

The access to subforms is done via the:

73

9.1. APPLICATION METHODS CALLED BY THE ENGINE

<subform id="1">
<form object="com.dec.avw.appl.hr_evaluation_1:1000099042"

task="1000098715">
<transactionId>0</transactionId>
....
</form>

</subform>

• Current process instance: The access is possible by using the variable $pi. The
XML-structure of a process instance is defined as follows:

<pi object="com.dec.avw.core.StepInstance:12345">
<agent object="com.dec.avw.core.User:12345">
<firstName>Frank</firstName>
...

</agent>
</pi>

• Current activity instance (engine.getContext()): The access is possible
by using the variable $ai. The behaviour is analog to process instance.

• User of current step: The access is possible by using the variable $user. In
process conditions this user is always the ThreadUser. The XML-structure of a user
object is defined as follows:

<user object="com.dec.avw.core.User:12345">
<firstName>Frank</firstName>
...

</user>

• Java method: XPathCheckClass.echo(’arg’) = ’arg’
Any JAVA methods can be called, whereas String parameter are allowed only. The
API programmer is responsible for the RETURN value, but String is recommended.

• Configuration: There are 2 different kinds of configuration and their access possi-
bilities:

– Application: $configuration_<appl_id>/property[@name=’km’]/text()

– System: $configuration/property[@name=’avw.servername’]/text()

An other possibility to define XPath conditions is the usage of method
com.groiss.wf.SystemAction.evaluateXPath(xpathexpression).

Examples for XPath-Conditions:

xpath:$form_f/recipient = $user
xpath:$form_f/recipient/firstName = ’Frank’
xpath:$form_f/subform[@id=’1’]/form/status = ’ok’
xpath:com.groiss.wf.SystemAction.evaluateXPath("$form_f/finished = ’1’")
xpath:$configuration/property[@name=’avw.servername’]/text() = ’ep_oracle’

74

9.2. INTERACTIVE FUNCTIONS

9.2 Interactive Functions

The set of standard functions applicable in the worklist client can be extended with the so
called Task-Functions. The functions can be used for arbitrary application specific tasks, for
example sending mails, filling forms with some initial data, or anything else.
We differentiate between four types of functions:

• Functions applicable in the worklist in certain tasks. These functions can be attached
to task definitions in the system administration.

• Functions applicable in the worklist with every task of an application,

• task-independent functions,

• functions for viewing additional information for users, organizational units, and
process instance history.

In the user interface only these tasks are shown, where the user has the execute right. Task-
independent functions are reached with the link "Functions" in the navigation tree of the
client.
The signature of the Java methods is as follows:

public void foo(HttpServletRequest req, HttpServletResponse resp)
public Page foo(HttpServletRequest req)

See chapter 2 for a discussion of these two method signatures.
After you wrote the Java method you have to define a Task-Function object with the name of
your method in the system administration.

Example: Set a form field to the current date.

public Page setToDate(HttpServletRequest req) {
WfEngine e = ServiceLocator.getWfEngine();
ActivityInstance ai = e.getActivityInstance(Long.parseLong(

req.getParameter("functionTask")));
DMSForm f = e.getForm(ai.getProcessInstance(), "applform");
f.setField("datum", new Date());
e.updateForm(f);
return HTMLUtils.refreshWorklist(req, ai.getApplication());

}

The method contains the following steps:

• Get the process context: The request contains the parameter "functionTask" with the
object oid of the current activity.

• Get the form: the method getForm needs the id of the form and the process instance
object.

• Set the field: The fields of the form can be set with the method setField.

75

9.3. APPLICATION ADAPTER

• Save the changes in the database with the updateForm() method of the engine.

• View the worklist: The function has been invoked with a mouse click on a link, this
must result in the presentation of an HTML page on the browser. Here, we show the
worklist of the current user.

9.3 Application Adapter

For each application you can define a Java class where some characteristics of the application
can be defined. This class must implement the interface ApplicationAdapter.
There exists a default implementation DefaultApplicationAdapter which is used when no
application specific class is defined. You can either write a subclass of DefaultApplication
or implement the interface ApplicationInterface. The first alternative is preferred,
because it is more stable against changes of the default implementation or enhancements of
the interface.
See the API for details.
Example: Generate process ids:

public String getNewProcessId(ProcessInstance pi) throws Exception {
Connection conn = DBConnectionPool.getConnection();
Statement stmt = conn.createStatement();
int num = 1;
synchronized (this.getClass()) {
try {
int cnt = stmt.executeUpdate(

"update avw_processIds set num = num+1");
if (cnt == 0)
stmt.executeUpdate(
"insert into avw_processIds(num) values ("+num+")");

ResultSet rs = stmt.executeQuery(
"select max(num) from avw_processIds");

if (rs.next())
num = rs.getInt(1);

rs.close();
} finally {
stmt.close();

}
}
String id = Integer.toString(num);
return id;

}

This method generates new process ids.

76

9.4. THE FORM EVENT HANDLER

9.4 The Form Event Handler

The behavior of forms can be modified using the com.groiss.dms.FormEventHandler
interface. It contains the following methods:

public void onInsert(DMSForm f) throws Exception;
public void onUpdate(DMSForm f) throws Exception;
public void onDelete(DMSForm f) throws Exception;
public void onShow(DMSForm f, ActivityInstance ai, HTMLPage p,

HttpServletRequest req)) throws Exception;
public String getName(DMSForm f) throws Exception;

The first three methods are called before the respective database actions are performed. The
onShow method is called after the HTML text of the form is built, you can change the form
or make additional replacements. The getName method allows to set the name of the form.
The form event handler for a form is defined in the administration mask of the form type.
One event handler can be used for several form types.

Hint: If a form event handler is specified for a form and this form will be imported by
@enterprise import-function, the form event handler(s) will be called. If the code of the event
handlers should not be processed during import, you can check it by using ThreadContext
attribute ep.import.running (returns TRUE, if import is running).
Example: In the following example the onShow method and the onUpdate method are used:

public void onShow(DMSForm f, ActivityInstance ai, HTMLPage p,
HttpServletRequest req) {

if (ai != null) {
Task t = ai.getTask();
if (t != null)

p.substitute("task", t.getId());
}

}

public void onUpdate(DMSForm f) throws Exception {
try {

double total = 0;
DMS dms = ServiceLocator.getDMS();
DMSForm mf = dms.getMainForm(f);
List l = dms.listForms(SampleProcesses.TRAVEL_SUBFORM,
"oid in (select dest from avw_formrelation where id=’1’ and src=" +
mf.getOid() + ")", null, null);

for (Iterator e = l.iterator(); e.hasNext();) {
DMSForm next = (DMSForm)e.next();
total += Double.parseDouble((String)next.getField("amount"));

}
mf.setField("spesenbrutto", ""+total);
dms.update(mf);

77

9.4. THE FORM EVENT HANDLER

} catch (Exception e) {
e.printStackTrace();

}
}

The onShow method replaces the tag "%task%" with the id of the actual task, we have used
this to show different images:

The onUpdate method selects the subforms of the current form, sums up the amount values
and updates the main form.

9.4.1 Using Form Event Handler with XHTML forms and XForms

When using XHTML forms or XForms, the form event handler XHTMLFormEventHandler
should be used. The onShow() method contains the parameter XHTMLPage p, which includes
the whole HTML page with its html components. If the (HTML) components of a XForm
page should be accessed or edited, XPath is needed.

Example:

public void onShow(
DMSForm form, FormContext ctx, XHTMLPage p, HttpServletRequest req) {
try {
Element root = p.getRoot();
XPath xp = XPath.newInstance("//xf:textarea[@ref=’/data/form/texti’]");
xp.addNamespace(XForm.xformNS);
Element f = (Element)xp.selectSingleNode(root);
f.setAttribute("style","color:red");

} catch (Exception e) {
throw new ApplicationException(e);

}
}

In this example we get a textarea with the identification [@ref=’/data/form/texti’] and set
a new textcolor whereas texti is the name of the formfield. The following code shows the
textarea within the XForm:

....
<xf:textarea ref="/data/form/texti" rows="" cols="">

<xf:label class="label100">MyTextarea</xf:label>
</xf:textarea>
...

78

9.5. THE FORM TABLE HANDLER

9.5 The Form Table Handler

A subform table can be customized using a tablehandler. The class must implement the
interface com.groiss.dms.FormTableHandler. It is registered in the tablefield tag as
attribute tablehandler. The interface contains the following methods:

public void init(HttpServletRequest req, User u);
public List getList(List list);
public void modifyTableHeader(List header);
public void modifyTableLine(DMSForm f, KeyedList line);
public String lineStyle(DMSForm f, String style);

The first method is useful to initialize your class with the request. With the second method
you have the possibility to modify the delivered list and return it. The third method allows to
modify the table header of a subform. With the fourth method you can modify each table
line. The last method is for changing the style of the table lines.

9.6 Utilities for building an HTML interface

In this section some utility methods of the class com.groiss.wf.html.HTMLUtils are
described that you will need for showing the worklist or showing a form, etc.

9.6.1 Show the worklist

The following methods returns a HTML page containing the worklist for the given applica-
tion.

public static Page refreshWorklist(HttpServletRequest req,
Application appl)

9.6.2 Show the form

Two methods can be used for showing a process form:

public static Page showForm(HttpServletRequest req) throws Exception;
public static Page showForm(HttpServletRequest req, ActivityInstance ai,

String formid, int mode) throws Exception;

The first method calls the second, where the additional parameters ai, formid, and mode are
taken from the equally named ServletRequest parameters. The mode is one of the following:

0 update mode
9 view mode without buttons

79

9.7. OBJECT SELECTION

9.7 Object Selection

The class com.groiss.wf.html.HTMLUtils provides the method selectList for select-
ing objects from a list. The method is useful when you want to select an object and get
the selected object in the opener document. The ServletRequest can have the following
parameters:

Parameter
classname Java class of objects
title The title of the window
field The name of the field in the caller form: The classname and oid of the object

is written to the field. The string representation of the object is written
to the field with the specified name followed by "_display".

searchid If a condition (where clause) is needed, the attributes searchid and parameters
must be used and an action node must be created in the appropriate xml-file.
An example how to define parameterized conditions (it is always the same
procedure) can be found in chapter 15.

noClass instead of < classname >:< oid > only the oid is written to the field
attribs Normally the toString() method is used to display the objects. With the attribs

parameter you can specify a comma-separated list of attributes you
want to see.

searchAttrs If the list is very long a search can be used to restrict the number of elements
shown. Specify a list of attributes where you want to search. An input field will
appear on the mask. If the given string is a prefix of one of the attributes of an
object, the object will appear in the list.

The entries are sorted alphabetically.
When selecting an object, two values are written to the opener form. The object classname
and oid, concatenated with a colon (:) is written to the given field. The objects String
representation is written to the field named field_display.

Example: The following url is used to show a window for user selection:
The HTML code shows a button opening a window for selecting users:

<script>
function selectUser(){
window.open("../servlet.method/com.groiss.wf.html.HTMLUtils.selectList?"+

"classname=com.dec.avw.core.User&title=User&field=customer"+
"&attribs=surname,firstName,id&searchAttrs=surname,id",
"search",’width=500,height=500,directories=0,toolbar=0,scrollbars=1’);

}
</script>
...

<input type="hidden" name="customer" value=""/>
<input type="text" name="customer_display" value="" style="width:180"/>
<input type=button class="ep_button" value=" ? " onclick="selectUser()">
<input type=button class="ep_button" value=" X "

onclick="form.customer.value=’’;form.customer_display.value=’’;"></td>

80

9.8. TASK-FUNCTIONS IN FORMS

9.8 Task-Functions in forms

It is possible to place buttons for task-functions in forms. You must write the following
placeholder in the HTML form: "%%taskfunction:functionid%%", functionid is the id of a
task-function.
To sum up, there are several possibilities to place task-functions:

1. in the submenu appearing when you click on the cog-wheel in the worklist. the "show
in worklist" checkbox must be clicked.

2. in the toolbar: add the key "taskfunction:functionid" to the list of actions.

3. in the form: add the key "%%taskfunction:functionid%%" in the html form.
add the line <script id="toolbarfunctions">fid1,..,fidn</script> in the xhtml form

4. in the toolbar when the form is shown in the frame of the worklist. Add the key
"%%toolbarfunctions:fid1,..,fidn%%" into the HTML form and the key
<script id="toolbarfunctions">fid1,..,fidn</script> into xhtml forms. fid1 and fidn
are ids of task-functions. If you write "all" instead of a list of function ids, all applicable
task-functions are visible. It you specify no task-function at all, only the standard
buttons (save, back, save and back, and save and submit) are shown.

Hint: The necessary task functions have to be assigned to the corresponding tasks
in administration, otherwise no functions are visible.

In any case the parameter functionTask contains the oid of the activity instance where the
task function was invoked. In case 2, if more than one worklist entries have been selected,
this parameter appears for every selected entry.
In the target field of the task-function, you can specify the target window. You can also add
window properties if you want to create a new window. Add the properties after the target
name and a "," (comma), for example: _blank,toolbars=0,width=300,height=200

Hint: If a target window is specified, the form will not be saved when activating the save
button.

9.9 Batch Processing

In @enterprise two types of automated steps exist:

• synchronous: this is specified in WDL by the keyword system followed by a method
call. The method is executed in the same thread and within the transaction context of
the operation which started the step. After method execution the step is finished.

• asynchronous: specified by the keyword batch followed by a class name. Some
methods of this class are executed after the step has been started - in their own
transaction and thread.

81

9.9. BATCH PROCESSING

Use the first method (synchronous) whenever possible, i.e. if the execution time of the
method is not too long (it executes in the same transaction as the finish action of the previous
interactive step) and if you don’t need to wait for an external event to finish the step.
The class you specify for a batch job must implement the interface
com.groiss.batch.BatchAdapter:

public interface BatchAdapter {
void startup() throws ApplicationException;
void afterCreation(BatchJob job) throws ApplicationException;
void doStart(BatchJob job) throws ApplicationException;
void beforeCompletion(BatchJob job) throws ApplicationException;
void afterCompletion(BatchJob job, boolean commit) throws

ApplicationException;
void doCompensate(BatchJob job);

}

When the workflow engine reaches a batch step it creates a BatchJob object and writes it to
the database, this BatchJob contains state information.
The timer BatchManager is responsible for starting batch jobs and for finishing the steps
after the batch job has completed. The flow of control is as follows:

1. When the batch job is created, the startup method of the specified BatchAdapter
class is called. Then the BatchJob state is set to CREATED and the afterCreation
method is called.

2. The BatchManager timer starts the batch job by calling the doStart method. After
successful completion the state of the BatchJob is STARTED. If an exception is thrown
in doStart, the state of the BatchJob changes to STARTERROR. No further action is
taken by the batch system.

3. Next the batch job must be finished. This can be triggered from an internal or external
event (for example reception of an email). Call the method
BatchManager.markJobFinished, and the state of the BatchJob object will be FIN-
ISHED.

4. When the BatchManager detects finished jobs during its next timer controlled run, it
completes them. First it calls beforeCompletion. If there is an exception, the job is
placed in state FINISHERROR. No further action is taken by the batch system.

5. On going back via the batch job step the method doCompensate is called.

If beforeCompletion was executed successfully, afterCompletion is called with a
boolean parameter which indicates if the job is now in state COMPLETED (commit =
true) or in state FINISHERROR (commit = false).

It should also be noted, that the life cycle of a batchjob can be modified by appropriate
flagging with respect to three areas, which can be combined arbitrarily in a fully orthogonal
way.

82

9.9. BATCH PROCESSING

• newthread: By specifying newthread, the start of the job takes place in a newly
created thread. The original thread creates the batch job and calls afterCreation, but
the start of the job is done in the new thread. This feature could be used when the start
of the batch job itself takes significant time.

• autofinish: Setting autofinish means that immediately after the doStart Method
has terminated, the job is marked as finished and then completed by the system itself.
Could be used for "fire and forget" BatchJobs.

• startnow: A batch job where startnow is set is started immediately after the end of
the current transaction not during the next timer triggered run of the BatchManager.

• gobackonerror: Setting gobackonerror to true means that in case of an unhandled
exception during execution of the doStart method, the engine tries to goBack to the
last interactive step.

Add the flags after the class name in the WDL call, for example:

batch com.groiss.demo.DemoBatchAdapter() autofinish;

The defaults for the life cycle modifications are newthread=false, autofinish = false, start-
now=false, gobackonerror=false.
The following example illustrates the usage of this framework.

File wdl/batchproc.wdl

process batchproc()
application default;
version 1;

forms f Jobform;
subject f.subj;
begin

<a1> all order(f);
repeat

f.recipient a_task(f);
batch com.groiss.demo.DemoBatchAdapter("aparameter");

until f.finished = "1";
end;

The process is a slight variation of the well-known jobproc example. We introduce an ad-
ditional batch step, the processing logic is implemented in the class DemoBatchAdapter. The
parameter (just one parameter is allowed) can be accessed in the methods of DemoBatchAdapter
via bj.getParameters(). It is not used in the example, but could serve as a discriminator
when the same BatchAdapter is refered to in several different locations in one process
definition.
The general notion of the batch job we want realize is to write a file with some process
data to a process specific location in the filesystem. Then we trigger some external entity to
process the file. The external entity will place a second file in the same directory (the result
of its processing). The batch job will be finished through invocation of an URL and some of
the contents of the result file are transferred into the form.

83

9.9. BATCH PROCESSING

The DemoBatchAdapter implements the BatchAdapter interface, imports the needed things
and defines two utility methods, which state the location of the directories where the files
will be placed. Under a subdirectory batchdemo in the servers temporary directory, we will
place one directory for each process, named after the process id.

File classes/com/groiss/demo/DemoBatchAdapter

package com.groiss.demo;

import java.io.*;
import javax.servlet.http.*;
import com.groiss.util.Settings;
import com.groiss.wf.batch.*;
import com.groiss.wf.*;
import com.groiss.dms.*;
import com.groiss.util.ApplicationException;

public class DemoBatchAdapter implements BatchAdapter {

private String getMainDirName() {
return Settings.getTempDir()+File.separator+"batchdemo";

}

private String getProcDirName(ActivityInstance si) {
return si.getProcessInstance().getId();

}

The startup method creates the batchdemo directory. It is called by the BatchManager the
first time the DemoBatchAdapter is used. We could establish a communications channel
with some external entity here (e.g. a connection to a database or a JMS system).

public void startup() throws ApplicationException {
Settings.log("DemoBatchAdapter: startup ",2);
File mainDir = new File(getMainDirName());
mainDir.mkdir();

}

The afterCreation method creates the appropriate subdirectory for the process. We use the
getContext method of the BatchJob to retrieve the current ActivityInstance (StepInstance
object).

public void afterCreation(BatchJob job) throws ApplicationException {
Settings.log("DemoBatchAdapter: afterCreation "+job,2);
File procDir = new File(getMainDirName(),getProcDirName(job.getContext()));
procDir.mkdir();

}

The doStart method creates the first file (<processid>.out) and writes some process specific
data into it. The "real" start would take place instead of the comment.

public void doStart(BatchJob job) {

84

9.9. BATCH PROCESSING

Settings.log("DemoBatchAdapter: doStart in Thread"+
Thread.currentThread().getName()+" for job "+job,2);

try {
String procId = job.getContext().getProcessInstance().getId();
File procDir = new File(getMainDirName(),getProcDirName(
job.getContext()));

File outFile = new File(procDir,procId+".out");
PrintWriter out = new PrintWriter(new FileWriter(outFile));
out.println("Output File "+ new java.util.Date());
DMSForm f = ServiceLocator.getWfEngine().
getForm(job.getContext().getProcessInstance(),"f");
out.println(f.getField("description"));
out.println("../servlet.method/com.groiss.demo."+
DemoBatchAdapter.notifyFinish?bjOid="+job.getOid());
out.close();

} catch (Exception ex) {
throw new ApplicationException("doStart",ex);

}
}

The beforeCompletion method checks for the result file (<processid>.in) and transfers the
first line of this file into the description field of the form attached to the process.

public void beforeCompletion(BatchJob job) throws ApplicationException {
Settings.log("DemoBatchAdapter: beforeCompletion "+job,2);
try {

String procId = job.getContext().getProcessInstance().getId();
File procDir = new File(getMainDirName(),getProcDirName(

job.getContext()));
File inFile = new File(procDir,procId+".in");
BufferedReader in = new BufferedReader(new FileReader(inFile));
String line = in.readLine();
in.close();
DMSForm f = ServiceLocator.getWfEngine().
getForm(job.getContext().getProcessInstance(),"f");

f.setField("description",line);
ServiceLocator.getStore().update(f);

} catch (Exception ex) {
throw new ApplicationException("beforeCompletion",ex);

}
}

After successful completion, we delete the files and directories.

public void afterCompletion(BatchJob job, boolean commit)
throws ApplicationException {

Settings.log("DemoBatchAdapter: afterCompletion("+commit+" "+job,2);

85

9.9. BATCH PROCESSING

if (commit) {
String procId = job.getContext().getProcessInstance().getId();
File procDir = new File(getMainDirName(),getProcDirName(

job.getContext()));
File inFile = new File(procDir,procId+".in");
File outFile = new File(procDir,procId+".out");
inFile.delete();
outFile.delete();
procDir.delete();

}
}

For the sake of finishing, we provide a servlet method which expects the oid of the batch job
as parameter bjOid (you can find the value in the <processid.out> file).

public void notifyFinish(HttpServletRequest req, HttpServletResponse res)
throws Exception {

long bjOid = Long.parseLong(req.getParameter("bjOid"));
BatchJob bj = (BatchJob) new BatchJob().get(bjOid);
BatchManager.markJobFinished(bj);
res.getWriter().println("Done");

}

The compensation method does nothing in this simple example.

public void doCompensate(BatchJob job){}

}

This completes the example. The state of the batch job can be supervised via the communi-
cation section of the admin tasks in the system administration.

86

9.10. EVENT MECHANISM

9.10 Event Mechanism

The event mechanism is used for raising and handling events inside the workflow engine. An
event can be raised from the process execution or via API from another program. The event
will be received from all process instances which have registered for the event and the event
handler, specified by the receiver, will be called.
The event is identified by a name and an optional context object. If the raiser specifies such
an object, a handler registration matches only when the same context object is given or
when the handler registered without a context object. The context object itself is either a
com.groiss.store.PersistentObject or a String.

9.10.1 WDL extensions

The following extensions have been made to our process definition language WDL to define
the event mechanism:

raiseEvent =
"raiseEvent" "(" eventname "," "current_tx" ["," form] ")".

registerForEvent =
"registerForEvent" "(" eventname "," eventhandler ["," form]")".

sync =
"sync" "(" eventname "," eventhandler ["," form] ")".

unregister =
"unregister" "(" eventname ")".

raiseEvent The first argument is the name of the event. The next argument must be
current_tx at the moment. The third argument defines either a form or a form
field as context object. A further possibility is to enter the keyword process, which
represents the process instance oid (not the process instance itself).

registerForEvent The process registers for receiving events with the given name (first
parameter) and the given context object (same as raiseEvent) which is an optional
third parameter. The eventhandler defines a Java class implementing the interface
com.groiss.event.EventHandler.

unregister Removes the registration of this process instance for all events of the given
name.

sync waits for receiving an event. The parameters have the same meaning as in register-
ForEvent.

9.10.2 The Event API

All operations (except sync) defined in WDL can be performed from the API. The interface
Event defines the methods an event must have:

87

9.10. EVENT MECHANISM

public interface Event {
public String getName();
public ActivityInstance getRaiser();
public Object getContext();
public Date getRaiseDate();

}

The methods return the name, the raiser of the event, the context object and the raise date.
The implementation BasicEvent can be used as implementation (and is used for events raised
from the WDL statements above).
The EventHandler is a class containing the following methods:

public boolean handle(Event e, ProcessInstance registrant,
EventRegistry reg)

public void onRegister(ProcessInstance handlerProc)

When the event handler is registered, the method onRegister is called. When the registration
matches a raised event the handle method is called. You will make subclasses of this class
for doing some actions in the handle method. The EventHandler class itself writes a log file
entry when handle is called and does nothing in onRegister.
The utility class EventManager is used to raise events and register for events:

public class EventManager {
public static void raiseEvent(Event e) throws Exception;
public static long register(String name, Class eh, Object context)

throws ApplicationException;
public static void unregister(long oid) throws ApplicationException;
public static void unregister(String name, ProcessInstance registrant)

throws ApplicationException;
public static void unregisterAll(ProcessInstance registrant)

throws ApplicationException;
}

Events are submitted using raiseEvent. With register you can register an event handler,
the method returns the oid for the registration. Use this oid for the method unregister.
Alternatively, there is a unregister method for deleting registrations for a given event name
and process instance.
unregisterAll removes all registrations made by a process instance.

9.10.3 Event Processing

The WDL statement registerForEvent or the API call EventManager.register writes the event
name, event handler, the registrant, and the context object into the registration table.
When raiseEvent is called, all "matching" event handlers are executed (in undefined order).
For each event handler a new instance is created and the handle method is called. Matching
is defined as: same event name, and when a context object has been defined on register,
the context object of the event must be the same (means equal for String, same oid for
PersistentObject). The following table subsumes this behaviour (Y means handler is fired, N
means handler is not fired, = means firing depends on object or string equality).

88

9.10. EVENT MECHANISM

register
null object string

null Y N N
raise object Y = N

string Y N =

The handling of raised events is performed synchronous in the same thread as the raising.
The event raiser does not know how many handlers have been invoked. If the handling of an
event throws an (uncatched) exception, the transaction is rolled back.
In log level 2 or higher raising and handling of events is logged.
After an event for a sync is executed, the sync-step is finished if the handle method returns
true.
If unregister is not called explicitly, the handlers are removed at the end of the process (the
outermost main process in case of subprocesses).
Example:

process p1
forms f Jobform;

begin
all task1(f);
registerForEvent("personChange", PersonEventHandler, f.agent);
...

end;

process p2
forms f Person;
begin

all changeData(f);
raiseEvent("personChange", current_tx, f.pers);
...

end;

It an instance of process p1, we call it pi1, reaches the line registerForEvent, the following
record is added to the event registry:

client eventname context eventclass
pi1 personChange hugo PersonEventHandler

Process instance pi1 waits for personChange events, which apply to the object "hugo" ("hugo"
is the value of f.agent). When an instance of process p2 - pi2 - reaches the line raiseEvent
and f.pers has the value "hugo", then an event is raised with the following properties:

getName: personChange
getRaiser: pi2
getContext: hugo

The event manager looks in the registry after matching registrations and finds the above
entry, because event name and context object matches. An instance of PersonEventHandler
is created and the handle method is called with the events and process instance pi2 as
arguments.

89

9.11. EXAMPLES

9.10.4 Cluster

Event handlers are executed on the node where the event has been raised.

9.10.5 Administration

In the administration you can view the list of registrations and you can add and remove
registrations.
Processes waiting in a sync can be finished manually from the process history.

9.11 Examples

9.11.1 Start a Process

The first example in this section starts a process using the API. This is an often needed task:
Either you have to start processes from a program or want to fill the forms with initial values.
In this example the process jobproc is started and the form of the process in initialized.
The start form is static and resides in the serverarea directory:

File classes/alllangs/demo/StartJob.html

<HTML>
<HEAD>

<TITLE>StartJob</TITLE>
</HEAD>
<BODY>
Start a process:

<P><form action="../servlet.method/com.groiss.demo.StartJob.start">
<TABLE>
<TR><TD>Subject:</TD>

<TD><input name="subj"></TD>
</TR>

<TR>
<TD>Next Agent:</TD>
<TD><input name="agent"></TD>

</TR>

<TR>
<TD>Description:</TD>
<TD><textarea name="description"></textarea></TD>

</TR>

<TR>
<TD>finished due to:</TD>
<TD><input name="duedate"></TD>

</TR>
</TABLE>
<input type="submit" value="Start Process">
</form>

90

9.11. EXAMPLES

</BODY>
</HTML>

The method start in the class StartJob:

File com/groiss/demo/StartJob.java

package com.groiss.demo;

import java.util.Date;

import javax.servlet.http.HttpServletRequest;

import com.groiss.dms.DMSForm;
import com.groiss.gui.HTMLPage;
import com.groiss.gui.Page;
import com.groiss.org.OrgData;
import com.groiss.org.OrgUnit;
import com.groiss.org.User;
import com.groiss.util.ThreadContext;
import com.groiss.wf.ProcessDefinition;
import com.groiss.wf.ProcessInstance;
import com.groiss.wf.ServiceLocator;
import com.groiss.wf.WfEngine;

/* Start the process ’jobproc’ using the information from the
* StartJob form.
*/
public class StartJob {

public Page start(HttpServletRequest req) throws Exception {
// get parameters
String subj = req.getParameter("subj");
String agent = req.getParameter("agent");
String description = req.getParameter("description");
String duedatestr = req.getParameter("duedate");
Date duedate = com.groiss.cal.CalUtil.parseDate(duedatestr);

User user = (User)ThreadContext.getThreadPrincipal();
WfEngine e = ServiceLocator.getWfEngine();
OrgData od = ServiceLocator.getOrgData();
OrgUnit dept = od.getHomeOrg(user);

ProcessDefinition pd = e.getProcessDefinition("jobproc");
ProcessInstance pi = e.startProcess(pd, user, dept, duedate, null);

DMSForm form = e.getForm(pi, "f");
form.setField("recipient", agent);
form.setField("subj", subj);
form.setField("description", description);
e.updateForm(form);

91

9.11. EXAMPLES

HTMLPage p = new HTMLPage();
p.setPage("<html><body>Process " + pi.getId() + "started.</body></html>");
return p;

}
}

9.11.2 Find running Processes

The following example, a simple process instance monitor, shows the work items assigned to
a selected user.
A dynamically created form lets you select a user, on submit the list of work items belonging
to this user is shown.

import java.util.*;
import javax.servlet.http.*;
import com.groiss.org.*;
import com.groiss.wf.*;
import com.groiss.gui.component.*;
import com.groiss.util.*;
import com.groiss.gui.*;

/** Show the worklist of a user
*/
public class Monitor {

/** Show a select list of users.
*/
public Page showMask(HttpServletRequest req) throws Exception {

HTMLPage result = new HTMLPage();
List l = ServiceLocator.getOrgData().list(

User.class, "active=1", "surname");
result.setPage(
"<form action=’com.groiss.demo.Monitor.showList’>Benutzer:"+
new SelectList("user", l, 10).show() +
"
<input type=submit>" +
"</form>");

return result;
}

/** Show the worklist of a selected user.
*/
public Page showList(HttpServletRequest req) throws Exception {

HTMLPage result = new HTMLPage();
long user = Long.parseLong(req.getParameter("user"));
StringBuffer p = new StringBuffer("<html>");
WfEngine e = ServiceLocator.getWfEngine();
e.setUser((User)ServiceLocator.getOrgData().get(User.class, user));

92

9.11. EXAMPLES

List <ActivityInstance> l = e.getWorklist(null, false);
for (ActivityInstance ai:l) {

p.append(ai.getProcessInstance().getId() +", " + ai.getStarted()
+ ", " + ai.getProcessDefinition().getId() + "
");

}
result.setPage(p.toString());
return result;

}

}

93

10 Configuring the Worklist Client

10.1 Introduction

The appearance of the Worklist Client of @enterprise is fully configurable. Use the GUI
Configuration editor described in System Administration manual. Different clients can be
built by defining configuration files.
The next sections describe the syntax of the configuration file. In the following section the
implementation of a worklist class is described.

10.2 The Elements of the Configuration File

The configuration file contains the structure of the navigation tree. The tree consists of nodes
of different types. Depending on the type, different attributes or child nodes are available.
The standard configuration file resides in the file ep.jar in classes/standard.xml. If you
modify this file the standard appearance of the client is changed.
More often you want to create application or user group specific clients. In such a case you
define your own configuration file and put it into the classpath. The URL for a client based
on such a configuration file is:

http://host:port/wf/servlet.method/
com.dec.avw.html.HTMLGui.showFrames?id=<the_id>

<the_id> stands for the name of the configuration file, (without the ".xml" suffix).
The configuration is described in XML format, the DTD (Document Type Definition) is in
the file Config.dtd in the conf directory of the file ep.jar.
The DTD is used for the HTML client and for the Java client, so not every element makes
sense for the HTML client. In this section, we describe only the elements for the HTML
client. The structure of the navigation tree looks as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Config SYSTEM "conf/Config.dtd">
<Config>

<TreeConfig>
<Main_Tree name="Desktop">
<Node ... />

</Main_Tree>

94

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

</TreeConfig>
</Config>

The root element Config contains the whole tree configuration in the element TreeConfig
(no other child elements of Config is applicable for the HTML client). This element contains
the Main_Tree, which can contain Node elements.
When a user logs in, the navigation tree is built using the following rules: For the structure
of nodes in the Main_Tree a corresponding tree of HTML labels and links is built.
The tree is then composed of elements of type Node. Before we look at the possible types of
nodes we present the possibilities to customize the main tree:

10.2.1 Replacing the HTML templates

The main page of the client uses three HTML templates. All of them can be replaced with
the configuration using Attrib elements with the following keys:

framepage: The frame page, default is com/dec/avw/lclient/ClientIndex.html

framepageRTL: The same as framepage, but for right-to-left mode (e.g. for Arabic sym-
bols)

treeRenderer: A method which manipulates the tree rendering. This method must consist
of a return value Page and a parameter com.groiss.ds.Pair which contains the whole
tree.

The following example shows a treeRenderer method:

public Page createTree(Pair pair) {
HTMLPage p = new HTMLPage();
p.setPage("<html>" + createRek(pair) + "</html>");
return p;

}

private String createRek(Pair tree){
String result = ((Link)tree.first).show()+"
";
if (tree.second instanceof List)

for (Pair child: (List<Pair>)tree.second){
result += createRek(child);

}
return result;

}

10.2.2 Restricting access to clients

With the attribute right you can restrict access to a client configuration. You specify the
right the user must have to access the configuration. Other users receive an error, the message
can be specified with the attribute rightmessage.

Example:

95

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

<Main_Tree name="Desktop">
<Attrib key="right" value="client1"/>
<Attrib key="rightmessage" value="You are not allowed to do this!"/>
..

10.2.3 Tree Nodes

The tree is described using nested Node elements. A Node can have the following attributes:

name: this name is visible in the tree.

class: specifies the type of the node - a fully qualified Java class name. The possible types
are described in this section

Instead of name the tag <name> can be used. This tag allows to define e.g. images or include
Java scripts (see example 10.2.3).
Every Node element can contain one or more Attrib elements, all having two attributes,
key and value. The following Attrib names can appear in every Node element:

target: The target of the link, right is the default.

id: The id of the link.

cssclass: A style sheet can be entered here.

roles: Access restricted to users having one of the roles in the list.

default: If this attribute is present and its value is true, the node is the default node. The
web page represented by this node will be shown when the user navigates to this client
the first time.

In the following sections the node types are described.

Label

class: com.dec.avw.lclient.LabelNode
Defines a simple label.

Node

class: com.dec.avw.lclient.Node
Defines a hyperlink; href defines the link.

Worklist Description

class: com.dec.avw.lclient.WorklistDescription
Represents a link to the worklist. With the attribute appl you can restrict the worklist items
to a given application. If this attribute is not present and the node is not inside an application
node, the worklist for all applications is retrieved.

96

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

USER the personal worklist: agent is the user
ROLE the role worklist plus the role worklists of the substituted

users
SUSP the suspension list of the user plus the suspension list of the

substituted users
ROLESUSP the suspended item where the agent is a role the user has or

substitutes.
SUBST_USER the personal worklists of the substituted users.
ROLE_NO_SUBST like ROLE without the substitutions
SUSP_NO_SUBST like SUSP without the substitutions
ROLESUSP_NO_SUBST like ROLESUSP without the substitutions

Table 10.1: Worklist Types

The type of the worklist (user worklist, role worklist, etc.) is specified in the attribute type,
table 10.1 shows the possible values. You may specify any combinations of these types. The
id attribute is used to refer to this worklist description from the API.
The attribute worklist defines the class implementing the worklist (implementing the
interface com.groiss.wf.html.Worklist).
The attribute actions defines the applicable functions from the table 10.2.

Name Description
finish complete one or more tasks
untake put item back into role worklist
finishAndSelect finish and select next agent
finishAndComment finish and comment for next agent (+ select next agent)
goBack go back to one of previous steps
seeLater put work item into suspension list
makeVersion make a version of the process instance
take take an item from the role worklist
recall recall an item from the suspension list
recallAndTake take an item form the role suspension list
setAgent set a new agent
newFolder new userfolder
editFolder edit userfolder
cut cut selected item and put it into clipboard
insert insert item from clipboard
adHoc adhoc-functionality for worklist
loadDoc load a DMS object and attach it to process instance
taskfunction:functionid functionid is the id of a task-function
space separator

Table 10.2: Actions

Additional actions can be defined like in following example:

97

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

<Actions>
<Node id="print">

<name>@@@print@@</name>
<Attrib key="iconpath" value="../images/print.gif" />
<Attrib key="href" value="javascript:window.print()" />

</Node>
</Actions>

This action is referenced in the worklist description, e.g.:

<Attrib key="actions" value="finish,xmlfilename.print" />

Name Description
role role the work-item belongs to
id process id
dept department name
process process name
task task name
task-form0 task name with a link to the first form in tab view
process-form0 process name with a link to the first form in tab view
subject process subject
documents links to the forms and documents
functions link to the functions (icon)
received when the work item has been received
finish_till the due date of the task
process_duedate the due date of the main process
put_back_until in the suspension list till ...
currentEditor the current editor (only displayed, if AUTO-TAKE)
priority priority of the process instance
origin symbolizes, if user sees the instance via substitution or not
application the application where the process belongs to

Table 10.3: Columns of Worklist

The following attributes exist for defining columns:

• links: Defines the presentation of forms in worklist, when activating the forms-icon.
Following values can be defined:

– tabs: The default behavior of @enterprise. The form is opened in the tab-view.
For displaying the worklist-toolbar above the tab-view, you have to set the value
detail for attribute formTarget.

– compatibility: This mode opens the form in an own window/frame, depending
on attribute formTarget. The presentation of the form is the same like in
@enterprise versions equal to or less than 6.4

– tabsWithoutForms: With this value the form is displayed in an own frame without
detail-tabs. The toolbar contains the functions Save, Save and Complete and
Back only.

98

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

• columns: a set of <column> can be defined with following attributes:

– id: from table 10.3 or self defined id, the worklist implementation must provide
the value. The definition of a form field in the following syntax:

id ":" process-definition-id ":" process-version ":" form-id ":"
columnname

{ ";" process-definition-id ":" process-version ":" form-id ":"
columnname }

This syntax defines for every process instance which form field is shown. If the
worklist contains an instance of a process not listed in the field specification the
column will remain empty.

– name: the name of the column

– visible: when set to true, the column is displayed automatically without using
the columnpicker.

– icon: path to an icon; it is displayed instead of the name

• defaultSortColumn and defaultSortDirection: These 2 parameters allow to
define a column which is sorted by default. If a user is changing the order in table, the
new order is stored in the user properties table (and read from there). The attribute
defaultSortColumn must contain the column-id as value (see example below). The
attribute defaultSortDirection contains the values asc for ascending sorting or desc
for descending sorting. If one attribute is missing, the first (or given) column will be
sorted (by default in ascending order).

• selection: checkboxes on the left side of worklist-entries can be modified.

– none: no checkboxes will be displayed in the worklist

– one: radio-buttons will be displayed instead of checkboxes

– multiple: checkboxes will be displayed (default, if the attribute selection is not
set)

– rowsingle: one row can selected only (no checkboxes or radio-buttons)

– rowmultiple: multiple rows can be selected (no checkboxes or radio-buttons)

The following attributes allows to increase the performance of the worklist table:

• <Attrib key="avoidDocsAndNotes" value="true" /> avoids selection of documents and
notes; should only be set if neither documents nor notes are needed in the application!

• <Attrib key="avoidUserFolderFilter" value="true" /> avoids filtering by userfolder
contents; should only be set if user folders are not used in the application!

Example:

99

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

<Node name="MyWorklist" id="id_4"
class="com.dec.avw.lclient.WorklistDescription">

<Attrib key="type" value="USER" />
<Attrib key="actions" value="untake,finish,finishAndSelect,goBack,

seeLater,setAgent" />
<columns>
<column id="id" name="@@@id@@" visible="true" />
<column id="dept" name="@@@deptshort@@" visible="false" />
<column id="process" name="@@@process@@" visible="true" />
<column id="task" name="@@@task@@" visible="true" />
<column id="subject" name="@@@subject@@" visible="true" />
<column id="documents" name="@@@documents@@" visible="true" />
<column id="received" name="@@@received@@" visible="true" />
<column id="finish_till" name="@@@finish_till@@" visible="false" />
<column id="rb:xhtml_proc:1:f:radiobutton" name="rb" visible="true"/>

</columns>
<Attrib key="defaultSortColumn" value="rb:xhtml_proc:1:f:radiobutton" />
<Attrib key="defaultSortDirection" value="desc" />

</Node>

This node describes a link to the user worklist (type=USER) with 8 columns defined, six of
them are visible, the others can be selected using the column selection menu on the right
edge of the table header. The column with name rb is sorted by default in descending order.

UserFolder

class: com.dec.avw.lclient.UserFolder
Represents a link to the userfolder. In standard.xml the attribute filterwl with value wl
means, that all stored filters are inherited from the standard-worklist depending on attribute
id in worklist description node.

The attribute treePerUser is especially for displaying the worklist and user folders of
substituted users in separated trees. If this attribute is not set/activated, the user folders of
the substituted user are not displayed in the role worklist. The following example shows the
personal worklist (with user folders) of substituted users in the role worklist.

Example:

<Node name="@@@role_worklist@@"
class="com.dec.avw.lclient.WorklistDescription">

<Attrib key="type" value="ROLE+SUBST_USER" />
<Attrib key="functions" value="take+seeLater" />
<Node name="user folder" class="com.dec.avw.lclient.UserFolder">
<Attrib key="type" value="SUBST_USER" />
<Attrib key="treePerUser" value="true" />
<Attrib key="filterwl" value="wl"/>
<Attrib key="actions" value="take+seeLater" />
<columns>

100

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

<column id="agent" name="@@@role@@" visible="true" />
<column id="id" name="@@@id@@" visible="true" />
<column id="dept" name="@@@deptshort@@" visible="true" />
<column id="process" name="@@@process@@" visible="true" />
<column id="task" name="@@@task@@" visible="true" />
<column id="subject" name="@@@subject@@" visible="true" />
<column id="priority" name="@@@priority@@" visible="true" />
<column id="functions" name="@@@functions@@" visible="true" />
<column id="documents" name="@@@documents@@" visible="true" />
<column id="received" name="@@@received@@" visible="true" />
<column id="finish_till" name="@@@finish_till@@" visible="true" />

</columns>
</Node>
<columns>
<column id="agent" name="@@@role@@" visible="true" />
<column id="id" name="@@@id@@" visible="true" />
<column id="dept" name="@@@deptshort@@" visible="true" />
<column id="process" name="@@@process@@" visible="true" />
<column id="task" name="@@@task@@" visible="true" />
<column id="subject" name="@@@subject@@" visible="true" />
<column id="priority" name="@@@priority@@" visible="true" />
<column id="functions" name="@@@functions@@" visible="true" />
<column id="documents" name="@@@documents@@" visible="true" />
<column id="received" name="@@@received@@" visible="true" />
<column id="finish_till" name="@@@finish_till@@" visible="true" />

</columns>
</Node>

Process Start Node

class: com.dec.avw.lclient.ProcessStartDescription
Defines a link for starting processes. Four modes are available, the mode is specified via the
attribute mode:

FORM: A form of the process is opened, after filling the form the process can be started. The
definition of an interface form is necessary (see System Administration Guide).

DUEDATE: On click on the link a form is shown where the due date and the start department
can be entered.

DIRECT: On click on the link the process is started immediately.

ALL: The list of startable processes of the application is shown.

The Attribute procid denotes the id of the process. The system uses the active process with
this id and the highest version number. In mode ALL (default-mode) the attribute application
can contain a list of application ids. The attribute wlid is an id of a worklist which is shown
after a process start.

101

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

Functions

class: com.dec.avw.lclient.TaskFunctionNode
Shows a link to a global task function, parameters can be specified.
Example: A link to the function note_global will appear for all users with the role r1. The
function will be called with the arguments x = 1 and y = 2. Left of the function name the
specified icon is shown.

<Node class="com.dec.avw.lclient.TaskFunctionNode">
<name> f1 </name>
<Attrib key="function value="note_global" />
<Attrib key="roles" value="r1"/>
<Attrib key="params" value="x=1&y=2"/>

</Node>

Function List

class: com.dec.avw.lclient.FunctionListDescription
Shows a link to all global task functions of an application.
The attribute application can contain a list of application ids.

Reports

class: com.dec.avw.lclient.ReportNode
A node can be configured to link to a stored query.

<Node id="id_23" class="com.dec.avw.lclient.ReportNode">
<name>MyReport</name>
<Attrib key="report" value="bsp_03" />

</Node>

The attribute report contains the id of the report (see Reporting manual).

DMS

class: com.groiss.dms.html.DMSNode
Shows the DMS of @enterprise. Following attributes can be defined:

• actions: Analog to node type worklist description.
Examples:

– folderForm: The form of the current folder can be displayed by activating this
function in toolbar.

– taskfunction:formtemplate: The function Mark as processform-template is dis-
played in toolbar.

• columns. Analog to node type worklist description.

• formtypes: This attribute can contain a list of forms, which are allowed or denied
depending on attribute listtype.

102

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

• listtype: Value whitelist means, that the entered formtypes are allowed only (can be
created). Value blacklist means, that the entered formtypes are not allowed. All other
formtypes of @enterprise can be used.

• paging: If set to true, the paging mechanism of @enterprise for DMS tables is used.

Example:

<Node id="id_5" class="com.groiss.dms.html.DMSNode">
<name>DMS</name>
<Attrib key="actions" value="new,space,cut,copy,link,paste,delete,

refresh,space,folderProps,webfolder,upward,clipboard" />
<columns>
<column id="name" name="@@@name@@" visible="true" icon="" />
<column id="form" name="@@@additional_data@@" visible="true"
icon="images/form.gif" />

<column id="type" name="@@@docType@@" visible="true" icon="" />
<column id="size" name="@@@docSize@@" visible="true" icon="" />
<column id="changed" name="@@@changed_at@@" visible="true" icon="" />
<column id="status" name="@@@locked_by@@" visible="true" icon="" />
<column id="info" name="@@@properties@@" visible="true"
icon="images/info.gif" />

<column id="versions" name="@@@versions@@" visible="true"
icon="images/version.gif" />

<column id="attachedNotes" name="@@@notes@@" visible="true"
icon="images/dms/attachednotes.gif" />

</columns>
<Attrib key="formtypes" value=",f_mainform(1)" />
<Attrib key="listtype" value="blacklist" />

</Node>

It is also possible to create a link in the navigation tree which refers to a simple DMS folder.
The following example shows a possibility for this case:

<Node class="com.dec.avw.lclient.Node">
<name>News of the day</name>
<Attrib key="href" value="../servlet.method/

com.groiss.dms.html.HTMLDMSObject.showDocs?path={COMMON}/News" />
</Node>

More information about the method HTMLDMSObject.showDocs() can be found in section
11.5.1.

Table

class: com.dec.avw.lclient.TableRendererNode
A table can be created whereas the table should be a form-class. Following most needed
attributes are:

• classname: The classname of the object (form-class).

103

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

• tablehandler: The tablehandler to manipulate the table (see section 9.5).

• model: Here you can define the table model (default: com.groiss.storegui.FormTable).

• columns: Analog to node type worklist description.

• actions: Analog to node type worklist description.

• size: The window properties can set here by adding several parameters separated by
semicolon. The syntax is the same as using the javascript method window.open().

• columnPicker: If set to true, the column picker is displayed.

• useFilter: If set to true, the filter mechanism of @enterprise for tables is provided.

• paging: If set to true, the paging mechanism of @enterprise for tables is used.

• pagesize: Individual paging size for this table. If not set, the user parameter is used
and as default the configuration parameter.

• toolbarShape: The value text indicates that toolbar functions are displayed as text
instead of icon. The value both allows to display icon and text.

Example:

<Node id="id_25" class="com.dec.avw.lclient.TableRendererNode">
<name>MyTable</name>
<Attrib key="size" value="width=800,height=600" />
<Attrib key="classname" value="com.dec.avw.appl.Jobform_5" />
<columns>
<column id="subj" name="Subject" visible="true" icon="" />

</columns>
<Attrib key="actions" value="new,edit,delete" />
<Attrib key="columnPicker" value="true" />

</Node>

It also possible to define tabbed views shown in the following example. The master-view
must contain the attribute tabs. The slash at the first position indicates that the master-view
is shown as tab Common. The second position indicates the detail page (= second tab) which
is defined as own node - named detail in this example - in the xml named myxml within
the Actions block. A further necessary attribute in master-view is detail to get a tabbed
window view. In our example the detail-view is a table (displayed in page) with columns Id
and Name wich represents the history of the master-view. If an entry is double-clicked (=
attribute defaction) or selected and the toolbarfunction view is activated, the detail-view of
the selected entry is opened. The attribute tb indicates that a toolbar (frame with id tbframe)
is displayed as vertical toolbar (= attribute tbalign).

<Node id="master" class="com.dec.avw.lclient.TableRendererNode">^
<name>Master</name>
<Attrib key="model" value="com.groiss.storegui.FormTable"/>
<Attrib key="formclass" value="com.dec.avw.appl.master_1" />

104

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

<Attrib key="columnPicker" value="true" />
<Attrib key="actions" value="new,edit,delete,space,

searchfield,search,allsearch"/>
<Attrib key="searchAttrs" value="master_id"/>
<Attrib key="detail"

value="com.groiss.storegui.TabbedWindow.showDialog" />
<Attrib key="tabs" value="/,myxml.detail" />
<Attrib key="paging" value="true"/>
<Attrib key="useFilter" value="true"/>
<Attrib key="size" value="width=850,height=500" />

</Node>

<Actions>
<Node id="detail" class="com.dec.avw.lclient.TableRendererNode">
<name>Detail</name>
<Attrib key="model" value="com.groiss.storegui.FormTable"/>
<Attrib key="tablehandler" value="com.groiss.test.DetailTableHandler"/>
<Attrib key="formclass" value="com.dec.avw.appl.detail_1" />
<Attrib key="actions" value="view" />
<Attrib key="defaction" value="view"/>
<Attrib key="tb" value="tbframe" />
<Attrib key="tbalign" value="v" />
<Attrib key="page" value="mask/TabTB.html" />
<Attrib key="mf" value="parent" />
<Attrib key="columnPicker" value="true" />
<columns>
<column id="detail_id" name="Id" visible="true" />,
<column id="detail_name" name="Name" visible="false" />

</columns>
<Attrib key="size" value="width=800,height=500" />

</Node>
</Actions>

10.2.4 Default-page

One of the links in the tree can be the default-Link. This page is then loaded in the right
frame when the frameset is initially loaded (after login). The default page is specified with
the attribute default in the following manner:

<Attrib key="default" value="true" />

10.2.5 Internationalization

Use @@@key@@ like in HTMLPage. The resource must reside in classpath of the
application. If standard @enterprise resources should be used, the key must contain a leading
ep:, e.g. @@@ep:role@@. It is also possible to use resources of other applications. In this
case the application-id is the prefix instead of ep:, e.g. @@@itsm:abortandarchive@@.

105

10.2. THE ELEMENTS OF THE CONFIGURATION FILE

10.2.6 Adding HTML Code Between the Links

Arbitrary HTML Code can be put between the links in the navigation tree, for example
a horizontal rule (<hr>). You specify a node with the HTML code as name and no other
attributes. Example:

<Node class="com.dec.avw.lclient.LabelNode">
<name><hr/></name>

</Node>

10.2.7 Configure user parameters

The node settings in the configuration file contains an attribute with following value, where
you can add parameters in form of a list to show or hide options on the settings page of the
users:

<Node name="@@@settings@@" class="com.dec.avw.lclient.Node" >
<Attrib key="href"
value="../servlet.method/com.dec.avw.html.HTMLUserProps.showProps" />

</Node>

The properties descend from the parameter for in the label-tag of UserProps.html. A
summary of these properties is given in the following table:

Parameter Meaning
avw.email.notification E-Mail-Notification

(New Entry in Worklist, New Entry in Role-Worklist)
locale Language
avw.timezone Time Zone
avw.table.pagesize Items per Page
mail.protocol Mail protocol
mail.communicationtype Type of Communication
mail.server Mail Server (IMAP)
mail.user Mail User
mail.password Mail Password
mail.foldername Mail Folder
avw.gui.right.url Home Page

The properties in the list are separated by a comma shown in the following example.

Example:

com.dec.avw.html.HTMLUserProps.showProps?list=locale,avw.timezone

In this example the options Language and Time Zone are visible on the settings page of the
users only. If you want to show no options, you have to keep the list of properties empty. If
you want to show all options, do not use a parameter list after showProps.

106

10.3. CUSTOMIZING THE WORKLIST

10.2.8 Change style and logos

@enterprise uses a property-file where the style-information are stored. This file is within
the ep.jar. If you want to use your own style, you have to unzip the file ep.jar, put style.prop
in the classes directory of @enterprise and change the properties within the file.
If you want to change the @enterprise-logos, you have to do following steps:

1. Create the directory lang/default/images in classes directory

2. Create a file named enterprise.gif in the images folder to replace the logo at the
login-page

3. Create a file named enterprise_medium.gif to replace the logo in the top left corner
above the navigation frame

Icons are referenced with the path /<ctx>/images/subdir/filename. They reside in the
classpath under the path lang/default/images and lang/fa/images for some right-to-left icons.
If you want to you use your own icons, you have to put your icon in the classpath like in
following examples:

classes/lang/default/images/kugerl.gif
classes/lang/default/images/smartclient/status-busy.png

The first example overwrites the icon for the old representation of @enterprise, the second
one for shiny representation. The representation of @enterprise could be changed under
Configuration → Localization → Use shiny GUI.

10.3 Customizing the Worklist

For achieving full flexibility in worklist layouts, it is possible to write a Java class defining
the appearance of the worklist. You can mix information from @enterprise (user, task name)
with application specific data from forms or other database tables.
Define your class as implementor of com.groiss.wf.html.Worklist or as subclass of
WorklistAdapter and specify the class in the xml configuration file as additional attribute
of the worklist description:

<Attrib key="worklist" value="com.groiss.demo.DemoWL" />

The Worklist interface contains the following methods:

public void init(HttpServletRequest req, WorklistDescription wl, User u);
public HTMLPage getHTMLPage();
public Object getTitle();
public List<ActivityInstance> getList();
public void getAdditionalData(List instances, List<String> splitResult);
public void modifyColumns(List<ColumnDescription> colDescs);
public void modifyTableLine(ActivityInstance ai,
KeyedList<String,Object> line);

public String lineStyle(ActivityInstance ai, String style);
public List<Pair<String,String>> listFilters(List lines);

107

10.3. CUSTOMIZING THE WORKLIST

The interface WorklistDescription used in the init method:

public interface WorklistDescription {
public int getType();
public String getId();
public Application getApplication();
public List<ColumnDescription> getColumns();
public void needForm(String processid, int version, String formid);
public DMSForm getForm(ProcessInstance pi, String formid);

}

The WorklistDescription contains getters for the definitions from the XML file. The list
retrieved from the method getColumns can be modified to change the displayed columns.
The method needForm is used to define which forms will be needed in the worklist construc-
tion. You must call this method in the init method of your worklist implementation. The
system will then retrieve the forms in an efficient manner. The method getForm retrieves
these forms from the temporary cache.
The methods of the Worklist interface are called in the written order and do the following:

• init: You can init your class with the request. For you convenience, we give you the
type of the worklist, the application, and the user. The init method is called once for
the creation of a worklist.

• getHTMLPage: Replace the standard page or return null. Note that your page contains
at least the tag %tab% where the table will appear and %title% where the title is
inserted.

• getTitle: non null overwrites the title.

• getList: non null overwrites the list, should return list of ActivityInstances,

• getAdditionalData: Your chance to collect data. See the next section for details.

• modifyTableHeader: You get the header as we suggest it (i.e. the default), a list Pairs
of reserved keywords and the labels. The keywords can be find in table 10.3.

You can change this header as you like. The resulting header is used to build the table
lines: for the keywords the system adds the corresponding column, for other names
we add "null" elements.

• modifyTableLine: Your chance to modify the line, called for each table line. Return-
ing null filters out this line.

• lineStyle: Finally you can change the style of the line, return the name of a table-row
style class.

• listFilters: Define a list of customized filters. See below.

The worklist implementation can be used to define filters, two steps are necessary: First, the
method listFilters defines the available filters:

108

10.4. DISPLAYING ADDITIONAL DATA

public List<Pair<String,String>> listFilters(List<ActivityInstance> lines){
List<Pair<String,String>> result = new List<Pair<String,String>>();
// filter processes jobproc
result.add(new Pair("jobproc","Process job"));
// filter tasks a_task
result.add(new Pair("a_task","Task a_task"));
return result;

}

Next, you must remember the selected filter in a local variable:

String filter;
public void init(HttpServletRequest req, WorklistDescription wld,

User u) {
filter = req.getParameter("filter_s");

}

In the method modifyTableLine you can filter out lines with the method clear():

public void modifyTableLine(ActivityInstance ai,
KeyedList<String,Object> line) {

if ("jobproc".equals(filter) && !(ai.getProcessDefinition().getId()).
equals("jobproc") ||

"a_task".equals(filter) && !(ai.getTask().getId()).equals("a_task")){
line.clear();
return;

}
}

10.3.1 Link to forms and documents

For customizing the links to forms and documents the class com.groiss.wf.html.HTMLUtils
contains the following methods:

• getDocumentsLink(ActivityInstance si): returns a link to the documents of the process,

• getNotesLink(ActivityInstance si): returns a link to the notes of the process,

• getFormLinks(ActivityInstance ai, int mode, String comingFrom, String target): re-
turns the links to the process forms concatenated to a string. The mode is either
UPDATE or VIEW, comingFrom is the url shown after a form submit and target is the
target frame of the submit action.

10.4 Displaying Additional Data

The previous example showed how to display additional data in the worklist.
While this works in principle, the performance of such an approach may suffer. Consider
a scenario where a database table user_data may hold additional data about a process.

109

10.4. DISPLAYING ADDITIONAL DATA

The simplest approach to display this data in the worklist would be to define a method
getUserData, which gets the ActivityInstance as a parameter and returns an appropriate
display string (or link), and to call this method in modifyTableLine.

...
line.set(i, getUserData(ai));
...

As an example, we define a class AdditionalProcessData which contains some arbitrary
data.

File classes/com/groiss/demo/AdditionalProcessData.java

package com.groiss.demo;

public class AdditionalProcessData extends com.groiss.store.PersistentObject {
public com.groiss.wf.ProcessInstance process;
public String data;
public String getTableName() { return "demo_addprocdata";}

}

The class contains some fields for data storage and the method getTableName, which returns
the name of the database table. The table must be generated using an SQL statement like
this:

File sql/addprocdataschema.sql

create table demo_addprocdata (
oid decimal(20) primary key,
process decimal(20),
process_class varchar(100),
data varchar(100)

);

create index demo_addpdata_proc on demo_addprocdata(process);

A straightforward implementation of getUserData might look like this:

String getUserData_V1(ActivityInstance ai) {
AdditionalProcessData ad = (AdditionalProcessData)
ServiceLocator.getStore().get(AdditionalProcessData.class,

"process="+si.getProcessInstance().getOid());
if (ad !=null) {
return ""+ad.data+"";

} else {
return " ";

}
}

While this implementation works nicely, it should be noted that it makes a single point query
in the database for each item in the worklist. This could have quite a negative impact on
performance for longer worklists and on server throughput in general.

110

10.4. DISPLAYING ADDITIONAL DATA

A better solution is often to batch together a number of those single selects. This means to
reformulate the query as where value IN (...) and then to collect the results in a Java
method and to use this data later on in getUserData.
To accomplish this, we provide an extra method getAdditionalData in Worklist which
should be implemented in your worklist class. The method is called with the parameter list
containing the items of this worklist.
The splitResult parameter is a Vector of strings. Each of those strings is a comma
separated list of oids of the main processes of the worklist items. The reason that we provide
a Vector of such oid lists is that most database systems pose a limit on the number of elements
of an IN-list. The length of the list is set in database specific way. Now our example looks
like this:

protected Hashtable additionalDataTable;

public void getAdditionalData(List list, Vector splitResult) {
additionalDataTable = new Hashtable();
for (Iterator i = splitResult.iterator(); i.hasNext();) {
String inlist = (String)i.next();
Iterator i2 = new AdditionalProcessData().list(

"process in ("+inlist+")").iterator();
while (e2.hasNext()) {
AdditionalProcessData ad = (AdditionalProcessData) i2.next();
additionalDataTable.put(new Long(ad.process.getOid()),ad);

}
}

}

String getUserData_V2(ActivityInstance si) {
AdditionalProcessData ad =
(AdditionalProcessData)additionalDataTable.get(

new Long(ai.getProcessInstance().getOid()));
if (ad != null) {
return ""+ad.data+"";

} else {
return " ";

}
}

The Hashtable additionalDataTable is an instance variable which stores the additional
user data. It is filled by the getAdditionalData method by iteration over the elements of
the splitResult Vector and using a query of the form "where process in. . . " instead of the
former "where process =". Later the getUserData_V2 method is called once for each item
in the worklist via getTableLine (change the call from getUserData_V1 method to the
getUserData_V2 method). It looks up the data in the Hashtable and not in the database.
To test this functionality you may use the following task function:

File classes/com/groiss/demo/HTMLAddProcData.java

111

10.4. DISPLAYING ADDITIONAL DATA

package com.groiss.demo;

import java.util.Date;

import javax.servlet.http.HttpServletRequest;

import com.groiss.gui.HTMLPage;
import com.groiss.gui.Page;
import com.groiss.store.Store;
import com.groiss.wf.ActivityInstance;
import com.groiss.wf.ProcessInstance;
import com.groiss.wf.ServiceLocator;
import com.groiss.wf.WfEngine;

public class HTMLAddProcData {

public Page addData(HttpServletRequest req) throws Exception {
WfEngine e = ServiceLocator.getWfEngine();
Store store = ServiceLocator.getStore();
ActivityInstance ai = e.getActivityInstance(

Long.parseLong(req.getParameter("functionTask")));
ProcessInstance pi = ai.getProcessInstance();
AdditionalProcessData ad = new AdditionalProcessData();
String msg;
if (store.get(ad.getClass(), "process="+pi.getOid()) != null) {

ad.data = new Date().toString();
store.update(ad);
msg = "Updated";

} else {
ad.process = pi;
ad.data = new Date().toString();
store.insert(ad);
msg = "Inserted";

}
HTMLPage p = new HTMLPage();
p.setPage("<html><head></head><body>"+msg+": "+ad.data+"
"+
"<form><input type=\"button\" value=\"OK\" onclick=\"history.back()\">"+
"</input></form></body></html>");
return p;

}
}

To sum up, this approach might be somewhat more intensive implementation wise, but in
general it does pay off well in terms of increased performance and diminished server load.

112

11 Document Management

@enterprise offers powerful mechanisms for managing documents, either attached to pro-
cesses or located within a document tree. The key features of this component are:

• typed documents and folders: each document or folder belongs to a type which may
have its own set of meta data

• flexible storage of document content: storage of document content is independent
from storage of meta data and can be changed via interface implementation (standard
implementation: content will be stored in the database)

• storage of meta data: meta data are stored in the database (as known from process
forms)

• permission control: individual permissions or permission lists (if activated) may be
attached to documents and folders

• adaptability: own documents or folders may be integrated and the mechanisms for
storing the document content and archiving documents may be changed

In the following sections we will see which classes and interfaces exist in @enterprise
Document Management System (DMS) and how they are related and we will see some
examples using the DMS API.

11.1 Objects of the DMS

The most important interface in the DMS is the interface DMSObject. The DMS can manage
all objects that implement this interface. DMSObject provides methods for retrieving and
setting information of an object in the DMS, like the name of an object or when it was lastly
changed. But because we have various types of objects in the DMS which differ in their
characteristics one interface would not be sufficient. Fig. 11.1 shows the schema of all the
various types of objects (all represented by their own specific interface) which can be used
within the Document Management System of @enterprise.

In a DMS usually thousands of objects will exists which have to be organized in some way
so that users can handle their set of DMS objects. Therefore interface DMSFolder exists. The
concept should be well known from file systems where each file is located within a folder.

113

11.2. LIFE CYCLE OF A DMSOBJECT

Figure 11.1: Schema of DMS

DMSFolder defines such a folder. You can add DMS objects to it, retrieve them later and you
can remove them again. Because any object implementing DMSObject can be added to a
DMSFolder you can build hierarchic folder structures by adding one folder to another folder.
Although DMSObject provides already a set of properties these are all system defined and of
limited use. So we need objects which can hold additional, user defined data. This can be
achieved using DMSForm. DMSForm is an interface which provides access to structured data,
i.e. data with a specific key and value. Related to a DMSForm is the interface FormType
which provides more information about forms.
Beside structured data we also want to manage unstructured data like a text file or something
else. Therefore the DMS provides the interface DMSDocForm, which can handle structured
data (because it extends DMSForm) and unstructured data. Another different type of object
in the DMS is defined by the interface DMSLink. A DMSLink holds a reference to another
DMSObject of any type (except a DMSLink again).
At last we have the interface DMSNote which is special kind of DMSForm in the way that it
has two predefined fields (a subject and a content) and it is used to annotate other DMSOb-
jects. Therefore you can attach one ore more DMSNotes to any type of a DMSObject (you
can think about it as a kind of an electronic Post-it ®).

11.2 Life Cycle of a DMSObject

The life cycle of a DMSObject is quite simple and straight forward as you can see in Fig. 11.2.
When a DMSObject is created it already exists within the DMS but it is in an inconsistent
state (from the DMS point of view) because it is not added to a folder.

114

11.3. STORAGE AND VERSIONING

The DMS requires all DMSObjects to be assigned to a folder (accept DMSNotes, they can
be attached to a DMSObject). Only after adding the object to a folder the whole functionality
of the DMS is available to manage and edit this object. Moving it from one folder to another
folder is possible, but deleting the assignment is not.
As expected the life cycle of a DMSObject ends with its deletion. In the case of deletion
interface DMSArchiver is invoked which can be used to archive some relevant data. The
default implementation does nothing but the implementation of this interface can be replaced
by the system administration in section DMS).

create
DMSObject

created assigned
add

move

delete

Figure 11.2: DMSObject Life Cycle

11.3 Storage and Versioning

For managing the data of the various DMS objects we need to store these data in a persistent
storage. The DMS handles the storage of structured and unstructured data in different ways.
Making the structured data persistent lies in the responsibility of the DMS objects themselves.
But for storing the unstructured data the DMS uses the interface IStore. This interface
provides a small set of simple methods for storing and retrieving these data.
The concrete implementation of this interface can be specified via the system administration
of the @enterprise sever (in section DMS). The default implementation stores these data in
the data base1.

Although we mentioned that the structured data have to be handled by the DMS objects
themselves they store their data also in the database, but they do not use the IStore interface
for doing that.

In the DMS beside managing the actual data of DMSObjects we have also the possibility
to make versions of DMSObjects. These versions must be managed too which lies in the
responsibility of interface PersistentVersion. PersistentVersion holds information
about the version itself (i.e. when it was created and by whom) and it manages the versioned
content of the various DMSObjects. Here we have the same strategy as in managing the
actual data: versions of structured data are stored in the database, versions of unstructured
data are stored via IStore.

1An exemplary implementation of a store which stores the data as files in a file system
can be found in the demo package of @enterprise (classes com.groiss.demo.dms.FileStore and
com.groiss.demo.dms.FileStoreBean).

115

11.4. THE @ENTERPRISE DMS API

Figure 11.3: Storage and Versions

11.4 The @enterprise DMS API

All the interfaces of the DMS API are located in the package com.groiss.dms. Apart
from the interfaces already mentioned in the above sections this package contains another
important interface called DMS. This interface offers a powerful set of methods for creating
and manipulating DMSObjects and provides also some other useful utility methods for
programmers working with the DMS. You can retrieve an implementation of this interface
by calling ServiceLocator.getDMS().

The methods of interface DMS are arranged in the following groups:

• Create DMS related objects

• Manage the relations between these objects

• Manipulate the objects

• Navigate within the DMS

• Permissions on the objects

• other utility methods

Each group will be explained in the following section, but for a more detailed description of
the mentioned methods see the @enterprise API Documentation.

116

11.4. THE @ENTERPRISE DMS API

11.4.1 Create DMS objects

Each kind of DMS object has its own creation method in interface DMS. For most of them
you need the following data:

• the type of the object which should be created

• the name of the object

• a template if the new object should be a copy of this template

• the user who wants to create the object

• a permission list if wanted

The type can be retrieved with one of the following methods of DMS:

• FormType getFormType(String id, int version)

• FormType getFormType(long oid)

Or you can get all the types a user may create via method listCreateableFormTypes. If
you want to use a template you have to specify one which is of the same type as the passed
one.
When all arguments are available you can use one of these creation methods:

• DMSFolder createFolder(FormType ft, String name, DMSFolder template,
User u,
PermissionList acl)

• DMSDocForm createDocForm(FormType ft, String name, String extension,
DMSDocForm template, User u,
PermissionList acl)

• DMSForm createForm(FormType ft, DMSForm template, User u,
PermissionList acl)

• DMSNote createNote(String subject, String content, User u,
PermissionList acl)

As you can see we don’t have a creation method for DMSLink. This is because links are
created by method move which will be explained in section 11.4.2.

11.4.2 Managing Relations

There are three groups of relationship in DMS and for each group DMS offers a set of methods
for managing those relationships. The first group is for managing the relations between a
DMSFolder and its contents:

• DMSObject add(DMSFolder f, DMSObject o, User u) throws Exception
adds the object to the folder

• void remove(DMSFolder f, DMSObject o, User u)
removes the object from the folder

117

11.4. THE @ENTERPRISE DMS API

• void delete(DMSFolder f, DMSObject o, User u)
removes the object from the folder and then deletes the object

• DMSObject move(DMSFolder src, DMSFolder dest, DMSObject doc,
short type, User u)
depending on the value of parameter type you can achieve the following goals:

– DMS.MOVE: move the object from one folder to another

– DMS.COPY: add a copy of the object to another folder

– DMS.LINK: add a link to the object to another folder

The second group of methods is provided for managing the relationship between a DMSOb-
ject and its attached notes:

• void attachNote(DMSObject target, DMSNote note, User user)
attaches the note to the target

• void removeNote(DMSObject target, DMSNote note, User user)
removes the note from the target and deletes the note

• List<DMSNote> listNotes(DMSObject target, User user)
returns the list of notes which are attached to the target and for which the user has at
least view right

And last but not least we have methods for managing the relationship between a DMSObject
and its versions:

• PersistentVersion makeVersion(DMSObject obj, User user,
String description)
makes a version of the passed object

• void deleteVersion(PersistentVersion dv, User user)
delete the passed version

• List<PersistentVersion> listVersions(DMSObject obj, User user) returns
a list of the versions of the passed object

11.4.3 Manipulate DMS Objects

Beside the manipulation methods offered already by DMSObject and their sub-interfaces,
interface DMS provides the following methods:

• DMSObject renameDocument(DMSFolder folder, DMSObject obj,
String newName,String newExtension, User u)
renames the passed DMSObject

• DMSDocForm reloadDocument(DMSFolder folder, DMSDocForm document,
String newExtension, InputStream is, User user)
replaces the content of the passed DMSDocForm with the content held by the passed
InputStream

118

11.4. THE @ENTERPRISE DMS API

• DMSForm changeType(DMSForm obj, FormType newType, DMSFolder folder,
User user)
changes the FormType of the passed DMSForm

• void update(DMSObject o)
updates the DMSObject

11.4.4 Navigate within the DMS

Because objects in DMS are hierarchically organized we need some methods to navigate in
this hierarchy. Therefore the following methods are available:

• DMSFolder getRootFolder(User user)
returns the root of the DMS tree of the specified user

• DMSFolder getFolder(DMSObject obj)
returns the folder the passed object belongs to

• List<DMSFolder> listSubfolders(DMSFolder startFolder)
returns a list of all the folders within the tree of which startFolder is the root (inclusive
the root itself)

• DMSForm getMainForm(DMSForm f)
returns the main from if there is one

• List<DMSForm> listSubforms(DMSForm f, int id)
returns the subforms with the passed id (if there are some)

• List<DMSForm> listSubforms(DMSForm f, int id, String cond,
String order, Object[] vals)
returns the subforms with the passed id which match the passed condition

• List<DMSForm> listForms(FormType ft, String cond,
String order, Object[] vals)
returns a list of objects of the specified type which match the passed condition

• List<DMSObject> listContents(DMSFolder folder, FormType ft,
String cond, String order, Object[] vals, boolean recursive)
returns a list of objects of the specified type which belong to the passed folder and
match the passed condition

11.4.5 Permissions in DMS

The interface DMS offers some methods to check if a specific user may view or edit a DM-
SObject. Although interface OrgData defines method hasRight, these additional methods
are necessary because the DMS performs the checks a little bit different.
The differences are:

• DMSObjects which are attached to a process are bound to the rights the user has for
this process (i.e. their own right relations are ignored)

119

11.4. THE @ENTERPRISE DMS API

• DMSNotes which are attached to a DMSObject are bound to the rights of their
DMSObject, and it is also interpreted if they are private (visible only to their creator)
or public (visible to all that may view the DMSObject)

Therefore the following methods are defined in DMS:

• boolean mayView(User user, DMSObject obj)
returns true if the user may view the passed DMSObject

• boolean mayEdit(User user, DMSObject obj)
returns true if the user may edit the passed DMSObject

• boolean mayDelete(User user, DMSObject obj)
returns true if the user may delete the passed DMSObject

• void checkView(User user, DMSObject obj)
throws an Exception the user may not view the passed DMSObject

• void checkEdit(User user, DMSObject obj)
throws an Exception the user may not edit the passed DMSObject

• void checkDelete(User user, DMSObject obj)
throws an Exception the user may not delete the passed DMSObject

• void disableRightChecks()
disables all DMS related right checks (i.e. the mayXXX methods always return true
and the checkXXX methods never throw an exception)

• void enableRightChecks()
enables the right checks again

ATTENTION: be careful with using DMS.disableRightChecks() because it disables them
until DMS.enableRightChecks() is called or the transaction is finished.

11.4.6 Utility Methods

Last but not least interface DMS provides some utility methods, e.g.:

• DMSObject getDMSObject(String classname, long oid)
returns the DMS object with the passed oid which is an instance of the passed class

• String getIcon(String extension)
returns the path to the icon for the passed extension

• void checkValidName(DMSObject target, String name, String extension)
throws an exception if the passed name or extension contain an invalid character. In-
valid characters are all characters which are considered as invalid by the Windows®
file system. By now these are the following characters: / \ : * ? " < > |

• void checkDuplicateNames(DMSFolder targetFolder, DMSObject targetObject,
String name, String extension)
throws an Exception if the target folder already contains an object with the passed
name and extension

120

11.5. USING THE DMS API

• boolean isDuplicateName(DMSFolder targetFolder, DMSObject targetObject,
String name, String extension)
returns true it the target folder already contains an object with the passed name and
extension

11.5 Using the DMS API

Knowing now all relevant interfaces and classes of the @enterprise DMS this chapter will
show you some examples for the usage of the DMS API, especially for cases which we
assume being most likely to be implemented by application programmers. But before
describing those examples we will get to know a few additional utility classes of the DMS.

11.5.1 Utilities for DMS related HTML Interface

Additionally to the classes and interfaces mentioned in the sections above the DMS provides
other classes and interfaces which should simplify the life of an API programmer building a
specific HTML interface to the DMS. These are:

• HTMLDMSObject

• DMSTableHandler

• XHTMLFolderFormEventHandler

HTMLDMSObject

HTMLDMSObject contains a set of HTML specific utility methods, the most important are:

• static Pair getTree(DMSFolder root)
Returns the tree of which the passed folder is the root of. The returned tree is a pair
holding a structure which is designed to be used for class HTMLTree

• static Page showDocs(DMSFolder f)
Returns a page showing the content of the passed folder.

• static Page showDocs(HttpServletRequest req)
Returns a page showing the content of a folder. To specify the desired folder you can
pass it by oid or by a path of names (as known by file systems).

• static String getDocsUrl(DMSFolder folder, ActivityInstance task,
String actions, String pathToRoot)
Returns the url for getting the list of documents of a specific folder.

• static String getEditUrl(DMSObject object, DMSFolder folder, boolean
readOnly)
Returns the url for editing (if readOnly is false) or viewing (if readOnly is true) the
passed DMSObject.

A more detailed description can be found in the API documentation

121

11.5. USING THE DMS API

DMSTableHandler

This interface gives the application programmer the possibility to change the table view and
toolbar used to represent the contents of a folder in the HTML client. An implementation
of that interface may be set globally (i.e. for all folders) via System Configuration (section
DMS) or for each form type representing a folder via administration for form types.
The methods provided by this interface are:

• void init(HttpServletRequest req, DMSFolder folder, User u, int mode)
Gives you the possibility to initialize the implementation class.

• HTMLPage getHTMLPage()
Returns the html page into which the table should be integrated (e.g. for some
placeholder substitutions).

• String getTitle()
The title for the table can be changed by this method.

• List<DMSObject> getList(List<DMSObject> objects)
Your chance to modify the list of the table entries and to collect additional data for
them.

• void modifyColumns(List<ColumnDescription> colDescs)
The descriptions (i.e. column header) for the table columns may be changed here.

• void modifyTableLine(DMSObject obj, Map<String, Object> line)
The table line representing on folder entry can also be modified.

• void modifyActions(List<Pair<String, Object» actions)
This is your chance to modify the set of provided actions for the folder and its entries.

• String lineStyle(DMSObject obj, String style)
By implementing this method you change the style of the line for the specified folder
item by returning the name of the style class which should be used.

Additional information about this interface and its methods can be found in the API documen-
tation. There you will also find class DMSTableAdapter which is an empty implementation
of this interface and can be used if you do not want to implement all methods of that interface
(e.g. when only the title should be changed).
In section 11.5.3 we will see an example for an implementation of DMSTableHandler.

XHTMLFolderFormEventHandler

This interface is an extension of interface XHTMLFormEventHandler which is only useful
for form types representing folders because it provides methods which will be called when
an item will be added or removed from a folder.

• void onAdd(DMSFolder f, DMSObject o) throws Exception
This method will be called immediately before a new item will be added to a folder.

• void onRemove(DMSFolder f, DMSObject o) throws Exception
This method will be called immediately before a item will be removed from its folder.

122

11.5. USING THE DMS API

You can register an implementation of this interface as you would register any other type of
form event handler. It is also possible to register it for non-folder form types, in that case
methods onAdd and onRemove will never be called.
As it is for interface DMSTableHandler there is also an empty implementation of this
interface available which is XHTMLFolderFormEventAdapter.

11.5.2 Adding a Document to a Process

Although adding a document to a process is a default functionality of the @enterprise worklist
it may sometimes be necessary to perform this action automatically within some program
code. Or imagine the case that some external user which may not see the @enterprise
worklist should be able to add documents to processes. The following example will show
how to create a HTML mask which allows you to select a process and add a document to this
process. Method showMask creates a simple HTML page in which a process can be selected
and a file can be specified. As form action method addDoc is defined, which takes the users
input (without checking the input for correctness) and makes a new document which is added
to the specified process.

File com/groiss/demo/dms/DMSDemo.java

public Page showAddDocMask(HttpServletRequest req) throws Exception {
List<ActivityInstance> ais =

ServiceLocator.getWfEngine().getWorklist(null,false);
DropdownList l = new DropdownList("process");
for (ActivityInstance ai : ais) {

ProcessInstance pi = ai.getProcessInstance();
l.addOption("" + pi.getOid(), pi.toString());

}
HTMLPage page = new HTMLPage();
page.setPage(

"<form method=\"post\" enctype=\"multipart/form-data\" "+
"action=\"com.groiss.demo.dms.DMSDemo.addDoc\">" +
"Process:" + l.show() +
"
File: <input type=\"file\" name=\"file\">" +
"
Name: <input type=\"text\" name=\"name\">" +
"
<input type=\"submit\">" +
"</form>");

return page;
}

public Page addDoc(HttpServletRequest re) throws Exception {
//transform the req. because we need a MultipartRequest when handling files
MultipartRequest req = MultipartRequest.createInstance(re);
//get the current user
User user = (User)ThreadContext.getThreadPrincipal();
//get the selected process
WfEngine e = ServiceLocator.getWfEngine();
ProcessInstance process = e.getProcess(Long.parseLong(

req.getParameter("process")));

//get the specified name and divide it into the name and the extension

123

11.5. USING THE DMS API

//(e.g. doc for Word files)
String tmpName = req.getParameter("name");
int idx = tmpName.lastIndexOf(".");
String name = tmpName.substring(0, idx);
String extension = tmpName.substring(idx+1);

//get the file
File file = req.getFile("file");

//create a new standard document and add it to the process
DMS dms = ServiceLocator.getDMS();
DMSDocForm newDoc = dms.createDocForm(dms.getFormType(

FormType.STANDARD_DOCUMENT), name, extension, null, user, null);
dms.add(process.getDMSFolder(), newDoc, user);

//check in the content of the file
newDoc.checkIn(user, new FileInputStream(file));

//return an answer
HTMLPage page = new HTMLPage();
page.setPage("<html>Upload done.</html>");
return page;

}

Creating the document and adding it to the process is done using the utility class DMS from
package com.groiss.dms which contains a set of DMS related utility methods (for more
details see @enterprise API documentation).

This example works also for adding a document to a folder. The only difference is that you
have to find the correct folder instead of the correct process. As you can see in the class
diagram StepInstance and FolderForm (the base class for all folder implementations)
implement the same interface DMSFolder, so all folder related API methods may be applied
to processes and folders.

Adding other DMSObjects to a folder or process works quite similar as in the example above.
You only have to choose the corresponding creation method in class DMS and collect the
necessary parameters. After that again call method add to add it to the process or folder.

11.5.3 Adapting Folder and Table View

In this example we will implement a table handler and an event handler for a folder to solve
the following tasks:

1. add an additional column determining if a bill has already been paid or not

2. at the bottom of the table we want to display the total amount of bills within the current
folder

3. change the folders behavior so that it allows only bills or bill folders in its content

4. define a function ’paid’ which marks a bill as paid

124

11.5. USING THE DMS API

Adding a Column

If we want to add a column to the table of contents of a folder there are two different ways
for doing that:

1. If the additional column is a meta data field of the objects within the content you can
add this column via configuration of the folders table representation (either for one
specific folder or for all folders of a specific folder type). How this can be done is
explained in the User manual.

2. If the additional column is not a column of the contained objects or we don’t want
to configure it (or cannot because of format problems) we must implement a table
handler.

In our case here we could just only configure the additional column but this would not be
sufficient because it would display the values 0 for unpaid and 1 for paid (because the meta
data field paid is a checkbox with these values in the meta data form) which is not very
useful. Instead we want the text No for unpaid and Yes for paid.
So what we will do here is to implement a table handler by creating a class named
BillFolderTableHandler which inherits from DMSTableAdapter.

File com/groiss/demo/dms/BillFolderTableHandler.java

private DMSFolder folder;
private Resource applResource;

public void init(HttpServletRequest reqP, DMSFolder folderP, User userP,
int modeP){

folder = folderP;
}

public void modifyColumns(List<ColumnDescription> colDescs){
for(ColumnDescription cd : colDescs){

if("form.paid".equals(cd.getId())){
//in this case no additional column must be added because
//it has already been added via configuration
return;

}
}
//here we know that the column has not already been added via configuration
//so we do it now
colDescs.add(new ColumnDescription("form.paid",

new Image("../images/check.gif")));
colDescs.add(new ColumnDescription("form.paid",

new Image("../images/paid.gif")));
}

public void modifyTableLine(DMSObject obj, Map<String, Object> line) {
String value = "";
try {

if(1 == ((DMSForm)obj).<Long>getField("paid").longValue()){
value = getResource().getString("yes");

125

11.5. USING THE DMS API

}
else {

value = getResource().getString("no");
}

}
catch(Exception ex){

Settings.logError(ex);
}
line.put("form.paid", value);

}

private Resource getResource(){
if(applResource == null){

OrgData od = ServiceLocator.getOrgData();
Application aa = od.getById(Application.class, "demo");
applResource=((ApplicationAdapter)aa.getApplicationClass()).getResource();

}
return applResource;

}

The first method is used to initialize our handler so that we know for what folder it should be
used.
The next step is to override method modifyColumns(List<ColumnDescription>) to add
an additional column for the field paid if not already done via configuration. This is only
done here to show the programmatically way of adding a column, normally the column
should be added via configuration.
Then we must override method modifyTableLine(DMSObject, Map<String, Object>)
which will add the value that should be displayed in column "form.paid". The white-list
configuration of our demo folder (see formtype with id demo_billfolder) will guarantee
that our folder only contains forms of type demo_bill in which field paid is available.
Otherwise we could use method hasField(String) of interface DMSForm to check the
availability of such a field.
At last we have a private helper method which will return the correct resource for I18N
support of our demo application (see the configuration of application ’demo’).

When we have finished our implementation we must register our new table handler for our
new folder type via administration.

Display Total Amount of Bills

The next step in our bill example is to display the total amount of all the bills within a folder.
This can be achieved by implementing method getHTMLPage() in the following way:

File com/groiss/demo/dms/BillFolderTableHandler.java

public HTMLPage getHTMLPage() {
HTMLPage p = null;
try {

126

11.5. USING THE DMS API

p = new HTMLPage("mask/Tab.html");
Store store = ServiceLocator.getStore();
//calculate the sum of all bills in the current folder
Object sum = store.getValue("select sum(amount) from form_bill_1 " +

"where oid in (select item from avw_dmsfldritemrel " +
"where folder="+folder.getOid()+")");

//add the calculated sum at the end of the table (by
//replacing the table’s placeholder with the placeholder
//again and the calculated sum)
p.substitute("tab", "%tab%
" +

DefaultResource.getString("sum") + ": " +
(sum == null ? "0" : sum) + "");

}
catch (Exception ex){

Settings.logError(ex);
}
return p;

}

Changing Folder Behavior

In this section we will see how we can change the default behavior of a folder. In our example
we will:

1. set field ’account_year’ of a bill to the account year of the folder

2. deny adding bills which account year is different to that of the folder

File com/groiss/demo/dms/BillFolderEventHandler.java

public void onAdd(DMSFolder f, DMSObject o) throws Exception {
String folderAY = ((DMSForm) f).getField("accounting_year");
if(!StringUtil.isEmpty(folderAY)){

String billAY = ((DMSForm) o).getField("accounting_year");
if(StringUtil.isEmpty(billAY)){

//in this case set the accounting year of the bill to that of the folder
((DMSForm) o).setField("accounting_year", folderAY);
ServiceLocator.getDMS().update(o);

} else {
//in this case accept o only if it belongs to the same accounting year
if(!folderAY.equals(billAY)){

throw new ApplicationException("Only bills belonging to accounting" +
" year " + folderAY + " may be added to this folder.");

}
}

}
}

Function ’paid’

Now we have reached the last step in our bill example. We will write a function with which
we can mark a bill as paid without editing the bills meta data by hand. To achieve this goal

127

11.5. USING THE DMS API

we have to:

1. write this function

2. make this function available to the user

The next code snippet will show the method for writing this function. First we get the bills
and manipulate their meta data programmatically. After doing that we must assure that the
user gets according feedback by reloading the contents table which then displays Yes in the
column paid for these bills.

File com/groiss/demo/dms/DMSDemo.java

public Page billPaid(HttpServletRequest req) throws Exception {
//get the form
for(String object : req.getParameterValues("object")){

DMSForm bill = (DMSForm) HTMLDMSObject.getDMSObject(object);
//set it to be paid
bill.setField("paid", "1");
ServiceLocator.getDMS().update(bill);

}
//reload the table
return HTMLDMSObject.showDocs(req);

}

Now we must make this function available to the user. This can again be done in two
different ways: via configuration in the folder properties of formtype demo_billfolder
or by overriding method modifyActions(List<Pair<String, Object») in our table
handler.

File com/groiss/demo/dms/BillFolderTableHandler.java

public void modifyActions(List<Pair<String, Object>> actions){
for(Pair<String, Object> action : actions){

if("demo.billPaid".equals(action.first)){
//in this case no additional action is needed
return;

}
}
//here we know that the action has not already been added via configuration
//so we do it now
actions.add(new Pair<String, Object>("space", "space"));
actions.add(new Pair<String, Object>("demo.billPaid", "demo.billPaid"));

}

The concrete method for that action must be defined in an xml file which must be loadable
via the class path. As an example here is our snippet of our demo file:

File demos/classes/demo.xml

...
<Actions>

...
<Node id="billPaid" name="@@@paid@@">

<Attrib key="href" value="com.groiss.demo.dms.DMSDemo.billPaid" />

128

11.5. USING THE DMS API

<Attrib key="iconpath" value="../images/paid.gif"/>
<Attrib key="apply" value="MULTI"/>

</Node>
</Actions>
...

As you can see the name of our action has three leading and two trailing ’@’ signs. This is
used when the name of the function should be translated into different languages at runtime
(needed in a multi-language environment). The system will interpret this markup and will use
the application’s resource for translation (see the application’s configuration for the defined
resource).

11.5.4 Build your own DMS Pages

In the last section of our examples we will see how we can integrate the various graphical
elements of the DMS (tree, content table, toolbar) into our own HTML pages. This would
allow us e.g. to open a browser window in which only the content of a folder and its toolbar
is shown, or in which only the dms functionality of @enterprise is available.

Tree Page

First of all the following example will show how we can build a page only containing the
dms tree and send it to the browser.

File com/groiss/demo/dms/DMSDemo.java

public Page showTree(HttpServletRequest req) throws Exception {
User user = (User) ThreadContext.getThreadPrincipal();
DMSFolder root = DMS.getRootFolder(user);
Pair tree = HTMLDMSObject.getTree(root);
return new HTMLTree(tree);

}

After getting the current user we get his DMS root folder by calling the corresponding
method of utility class DMS. Then we must create the tree structure by using another utility
method of class HTMLDMSObject. This will return a pair containing the whole tree of the
root tree which can now be used to create a default HTMLTree.
It is possible to configure the returned tree, e.g. the page into which the tree is integrated, or
the resource bundle which should be used for internationalizing the tree. For more possible
configuration see the API documentation of HTMLTree. If the tree’s page should be replaced
two things must be elements of this page:

• the placeholder %tree% in the body which will be replaced by the generated tree

• the import of various javascript files:

<script src="../servlet.method/
com.groiss.gui.JavascriptLoader.getScripts"></script>

<script src="../scripts/prototype.js"></script>

129

11.5. USING THE DMS API

Content Page

The next example will return the page holding the content table of the root folder of the
current user.

File com/groiss/demo/dms/DMSDemo.java

public Page showFolderContent(HttpServletRequest req) throws Exception {
User user = (User) ThreadContext.getThreadPrincipal();
DMSFolder root = DMS.getRootFolder(user);
return HTMLDMSObject.showDocs(root);

}

Again we get the current user and his root folder. But now we use the utility class
HTMLDMSObject and call its method showDoc with the root folder as parameter. This is
all we have to do if we only want to display a folders content. We can also call this method
for any other folder, but therefore we would have to pass the folders class and oid and then
get the corresponding folder using method getDMSObject(String, long) of class DMS.

Content Page with Toolbar

But showing only the content of a folder may not be enough for our application programmers.
It’s likely that we also want the toolbar so we can add new objects or manipulate the existing
ones. To do so we must create a new method and a new HTML page template which will
consist of two frames, one for the toolbar and one for the table.
First take a look at the HTML page template:

File demos/classes/alllangs/demo/dms/twoframes.html

<html>
<head>

<meta http-equiv="Pragma" content="no-cache">
<frameset rows="35,*" border=1>

<frame src="../servlet.method/com.groiss.avw.html.HTMLToolbar.show?actions="
frameborder="no" name="toolbarframe" marginwidth=1 marginheight=1
scrolling=no noresize>

<frame src="\%contentUrl\%" name="right" frameborder="yes">
</frameset>

</head>
</html>

This is only an example for such a template but note, the following conditions must be met
by any other template:

• it must contain at least two frames (which can also be iframes)

• the frame for the toolbar must be named "buttons"

• the frame for the table must be named "right"

As you can see the first frame source is method HTMLToolbar.show which will return
the toolbar. The second frame source is not fixed in the template instead a placeholder
contentUrl is defined. So this frame source will be calculated at runtime and the placeholder

130

11.5. USING THE DMS API

will be substituted by the calculated url. The next code will perform this replacement in the
template and will return the finished page to the browser.

File com/groiss/demo/dms/DMSDemo.java

public Page showContentAndToolbar(HttpServletRequest req) throws Exception {
User user = (User) ThreadContext.getThreadPrincipal();
DMSFolder root = DMS.getRootFolder(user);
HTMLPage page = new HTMLPage("alllangs/demo/dms/twoframes.html");
String ref = HTMLDMSObject.getDocsUrl(root, null, null,

root.getClass().getName() + ":" + root.getOid());
page.substitute("contentUrl", ref);
return page;

}

The most important line of code is the call of HTMLDMSObject.getDocsUrl. This will return
an url which will show the contents table of the passed folder when it is clicked. For more
details see the API documentation of class HTMLDMSObject.

Putting it All Together

At last we will see an example containing all mentioned elements (tree, table, toolbar).
Therefore we need also a HTML page template which uses already described methods
for their frame sources. The complete page will be returned to the browser by method
DMSDemo.showAll().

File demos/classes/alllangs/demo/dms/threeframes.html

<html>
<head>
<meta http-equiv="Pragma" content="no-cache">
<frameset rows="35,*" border=1>

<frame src="../servlet.method/com.groiss.avw.html.HTMLToolbar.show?actions="
frameborder="no" name="toolbarframe" marginwidth=1 marginheight=1
scrolling=no noresize>

<frameset cols="200,*" frameborder="yes">
<frame src="../servlet.method/com.groiss.demo.dms.DMSDemo.showTree"

name="tree" frameborder="yes">
<frame src="../servlet.method/com.groiss.demo.dms.DMSDemo.showFolderContent"

name="right" frameborder="yes">
</frameset>

</frameset>
</head>
</html>

File com/groiss/demo/dms/DMSDemo.java

public Page showAll(HttpServletRequest req) throws Exception {
return new HTMLPage("alllangs/demo/dms/threeframes.html");

}

131

12 Communication with other Systems

12.1 E-Mail

@enterprise can receive and send emails in a simple way. For sending emails use the methods
in com.groiss.util.MailSender, for example:

public static boolean send(String to, String from, String host,
String subject, String msgText);

The following piece of code is an example of sending a message:

MailSender.send("recipient@yourdomain.com",
"sender@mydomain.com",
null,
"subject text",
"the mail text...");

The second argument, the mail sender, is usually left null, the system default is used in this
case. The method returns true when sending was successful.

Receiving mails is a more complicated task. @enterprise contains a mail handler which is
able to read mails from an IMAP mail box. In the system administration you can define such
a mail box and a handler class for processing the incoming mails.
The mail handler class must implement the following interface:

package com.groiss.mail;

public interface MailHandler {
public boolean receive(javax.mail.Message msg);

}

The following example takes the incoming mails and starts the process jobproc for each
mail. It is assumed that the subject field contains a workflow user or role (the id of it). In the
subj field of the form we write the email address of the sender, the message body is written
to the description field.

File com/groiss/demo/MailGetter.java

132

12.1. E-MAIL

package com.groiss.demo;

import java.io.InputStream;

import javax.mail.Message;
import javax.mail.Multipart;
import javax.mail.Part;

import com.groiss.component.Configuration;
import com.groiss.dms.DMSForm;
import com.groiss.mail.MailHandler;
import com.groiss.org.OrgData;
import com.groiss.org.OrgUnit;
import com.groiss.util.FileUtil;
import com.groiss.util.Settings;
import com.groiss.wf.ProcessDefinition;
import com.groiss.wf.ProcessInstance;
import com.groiss.wf.ServiceLocator;
import com.groiss.wf.WfEngine;

public class MailGetter implements MailHandler {

public boolean receive(Message msg) throws Exception {
// get the content
Object content = msg.getContent();
String contentstr;
if (content instanceof Multipart || content instanceof InputStream) {

InputStream is;
if (content instanceof Multipart) {

Part part = ((Multipart)content).getBodyPart(0);
is = part.getInputStream();

} else {
is = (InputStream)content;

}
contentstr = new String(FileUtil.getBytesFromStream(is));

} else
contentstr = content.toString();

String subject = msg.getSubject();
String from = msg.getFrom()[0].toString();
WfEngine e = ServiceLocator.getWfEngine();
OrgData od = ServiceLocator.getOrgData();
ProcessDefinition pd = e.getProcessDefinition("jobproc");
OrgUnit startou = od.getById(OrgUnit.class,

Configuration.get("demo").getProperty("start.ou"));
ProcessInstance pi = e.startProcess(pd, null, startou, null, null);
DMSForm form = e.getForms(pi).get(0);
form.setField("subj", from + ","+ subject);
form.setField("description", contentstr);
e.updateForm(form);
Settings.log("Process started, id:"+pi.getId(),2);
return true;

}
}

133

12.2. REMOTE METHOD INVOCATION

12.2 Remote Method Invocation

You can connect to @enterprise from other Java programs using Remote Method Invocation
(RMI). The class com.groiss.wf.SessionFactory is used as root object to get a session
from a client to the @enterprise server. Write the following lines to connect to a server:

DefaultResource.init("com.dec.avw.resource.Strings",
"com.dec.avw.resource.Errors");

Properties props = new Properties();
props.put("url", url); // host:port
props.put("userid", userid);
props.put("password", password);
Session ss = SessionFactory.createSession(
"com.groiss.avw.RMISessionFactory", props);

Store s = ss.getStore();
WfEngine e = ss.getWfEngine();
OrgData od = ss.getOrgData();
DMS dms = ss.getDMS();
...

The interfaces Store, WfEngine, OrgData, and DMS provide you the necessary API calls
of @enterprise. See the EPClient example in the demo files (com.groiss.demo.client
package).

12.3 Wf-XML 2.0

Wf-XML is a protocol for process engines that makes it easy to link engines together for
interoperability. Wf-XML 2.0 is an updated version of this protocol, built on top of the
Asynchronous Service Access Protocol (ASAP), which is in turn built on Simple Object
Access Protocol (SOAP).
@enterprise contains an implementation of the standard. @enterprise can receive Wf-XML
messages to start a process, get the current state of a process and change a process’ state;
and the system can also send all types of messages.

12.3.1 ASAP Overview

ASAP is a protocol that is needed for integration of asynchronous services across the Internet
and their interaction defined by Oasis ASAP Committee. The integration and interactions
consist of control and monitoring of the services. Control means creating the service, setting
up the service, starting the service, stopping the service, being informed of exceptions, being
informed of the completion of the service and getting the results of the service. Monitoring
means checking on the current status of the service and getting an execution history of the
service.

134

12.3. WF-XML 2.0

Figure 12.1: Resource types of an asynchronous web service and the methods
they use.

For the support of an asynchronous web service, three types of endpoints are defined to
match the three roles of the interaction: Instance, Factory, and Observer. An endpoint type
is distinguished by the group of operations it supports, and so there are three groups of
operations (see Fig. 12.1).

Typical use of this protocol would be as follows:

• A Factory endpoint receives a CreateInstanceRq message that contains ContextData
and an EPR of an Observer

• The Factory service creates an Instance service (with associated Instance endpoint).

• The Factory responds with a CreateInstanceRs message that contains an EPR for the
Instance

• The Instance service eventually completes its task and sends a CompletedRq message
that contains the ResultsData to the Observer endpoint

12.3.2 Wf-XML Overview

ASAP offers a way to start an instance of an asynchronous web service (AWS), monitor it,
control it, and be notified when it is complete. This service instance can perform just about
anything for any purpose. Wf-XML extends this in the special case that the asynchronous
service is being invoked on a process engine.
The Service Factory maps to a Process Definition; the Service Instance maps to a Process
Instance. Process engines provide some additional capabilities for monitoring the process.
First of all, because it is a process, and not simply an opaque service, there is a process
diagram. This diagram can be retrieved for introspection. Second, since the process is
composed of activities, one can ask the activities for their current values. An activity may

135

12.3. WF-XML 2.0

Figure 12.2: Typical usage scenario of ASAP.

Figure 12.3: Resource types of a process engine web service and the methods
they use.

136

12.3. WF-XML 2.0

itself represent an invocation of a yet another remote service, and the address of that service
instance may be retrieved. Thirdly, the process definitions can be edited, removed, or added.
Service registry resource is workflow system itself, or some application within this system,
it manages factory resources, that are kind of process definitions, that can create in turn an
operation instances, each of such instances can have one or more running activities.
Each resource has common properties like name, description, and few specific properties,
that will be returned back to GetProperties call. Some of this properties read-only, other can
be modified with SetProperties call.
Container resources like Service registry, Factory, Instance have additionally methods for
container introspection (see corresponding listXXX calls).
Typical use of this protocol would be as follows:

• A Service registry resource receives ListDefintionsRq message, and returns list of
process definitions

• A Client pick up required Factory resource from list and send CreateInstanceRq

• A Factory endpoint receives a CreateInstanceRq message that contains ContextData
and an EPR of an Observer

• The Factory service creates an Instance service (with associated Instance endpoint).

• The Factory responds with a CreateInstanceRs message that contains an EPR for the
Instance

• The Instance service eventually completes its task and sends a CompletedRq message
that contains the ResultsData to the Observer endpoint

Context/Result data

As defined in ASAP specification the service factory should provide a schema for the
ContextData element and ResultData elements. The schema may be XML Schema or Relax
NG.
@enterprise WfXML implementation defines common XML Schema for both Context and
Result data, the only difference between them is that Context data may contain additionally
start parameter with optional start-up options (see Fig. 12.4).
Context and result data elements contains zero or more Parameter elements, each parameter
has name and value. Value of Name could be one of the following:

• StartParameter (considered only for createInstance request)

• ProcessForms

• DMSFolder

• Notes

Content of Value element is dependent from value of Name element.

137

12.3. WF-XML 2.0

Figure 12.4: Schema of process Context/Result data.

138

12.3. WF-XML 2.0

StartParameter

Value element contains start-up properties for createInstance call, inside it can be Agent,
Department and DueDate elements.
Value of Agent element is an agent id, that will be assigned with a new process. Agent Id
should be known for @enterprise.
The Department element will contain id of organization unit, that will be assigned with new
process. If department element is missing, then WfXML Engine will take default WfXML
organization unit. This value will be taken from configuration properties of @enterprise
The date value in DueDate element will affect corresponding property of process. If no
DueDate element is specified, then process will be started without this restriction. Format of
date should be in following format: yyyy-MM-dd´T´HH:mm:ss´Z´.

ProcessForms

Value element contains zero or more Form elements. Each Form has a name that is unique for
the process, this value will be encoded in content of Field element with attribute name=’name’.
Form contains also one or more Field elements and zero or more Form and attached Notes
elements.

DMSFolder

Value element of DMSFolder parameter could contain zero or more of following elements:

• Form

• FolderForm

• DocumentForm

• Note

• WebLink

FolderForm is a folder object, that could contain some additional fields with meta information.
Content elements allowed in FolderForm are the same as for the Value element of DMSFolder
parameter.
DocumentForm is a file document, that could contain some additional fields with meta
information. Content of file is encoded in base64.

Notes

This parameter contains zero or more Note elements.

WfXML2Timer

WfXML2Timer component is an @enterprise timer that will track status of observed pro-
cesses, once status change detected appropriate method of IWfXMLEngine will be called.
Engine will then lookup all remote observers and send them notifications. WfXMLTimer
will also check expiration of local observers and once expired observer detected timeout
method of corresponding handler class will be called.

139

12.3. WF-XML 2.0

Figure 12.5: Overview of WfXML client classes.

Partner communication

WfXML itself does not require explicit partnership between communicating parts, but
in some situation there is need to define it. These are advantages of communication on
partnership basis:

• Accept only authenticated incoming requests from trusted partners

• Support one-way communications (e.g. through firewall)

• Configurable communication settings

• Automatic and reliable initiation of remote processes through application configuration

Wf-XML Client API

This layer provide easy to use API for communication with external part and dealing with
Wf-XML/ASAP resource properties. This API will be used by @enterprise application
classes and WfXMLEngine layer (see Fig. 12.5).

Example

Lets take a look how these classes can be used on short example.

140

12.3. WF-XML 2.0

WfXMLFactory factory;
WfXMLInstance instance;
WfXMLActivity activity;

factory = new WfXMLFactory(
new URI("http://myserver.com/factory/jobproc")));

instance = factory.createInstance();

List activities = instance.listActivities();
activity = activities.get(0);
activity.completeActivity();

instance.getProperties();
if(instance.getStatus().equals("open.running")) {
instance.setName("job process 1");
instance.setProperties();
}
instance.changeState("closed.abnormalCompleted.aborted");

First of all we get access to factory resource with WfXMLFactory, this can be done either:

• through use of service registry method listDefinitions,

• or simply by call to constructor of WfXMLFactory with exact URL to external factory
resource.

After that we get access to instance resource. This can be done in following ways:

• By call to factory method listInstances if we want to get existing instance

• By call to factory method createInstance if we want to start new process

• By call to constructor of WfXMLInstance object with exact URL to existing instance
resource, and reference to factory object

Once we got instance object we can list activities, get and set properties, and also change
instance state.

Access to activity resource can be gained from:

• instance resource object, by calling listActivities method

• or by call to constructor of WfXMLActivity class, with exact URL to external activity
resource.

Activity object can be used by clients to get/set properties and to complete activity.

Observer resource can be used if client wants to subscribe/unsubscribe itself for process
instance state notifications. The following short example show us how this could be done:

141

12.3. WF-XML 2.0

LocalEPObserver observer = LocalEPObserver.createInstance(null,
MyObserver.class, null, null);

instance.subscribe(observer);
observer.getObserver().setProcess_url(
instance.getAddress().toString());
observer.getObserver().update();

LocalEPObserver is special kind of WfXMLObserver, that will use @enterprise Obser-
verService for accepting of incoming notifications. Alternatively client can specify any other
observer resource by call to instance subscribe with URL parameter.

To unsubscribe itself from notifications, client should call instance method unsubscribe with
reference to WfXMLObserver object that should be taken off subscription. Access to existing
observer object can be gained from:

• instance observers property

• or simply by call to constructor of WfXMLObserver class with exact URL that points
to observer resource.

Local observers should be first taken from database, and only after that they can be passed to
call to unsubscribe method. Client should remember value of observer id property, if sooner
unsubscribe is possible.

long observerId = observer.getId();

...

LocalEPObserver observer = LocalEPObserver.getInstance(observerId);

instance.unsubscribe(observer);

12.3.3 Administration

Installation

There are few steps required before Wf-XML interface of @enterprise can be used. First
of all Axis2 Web-service container should be installed either as part of @enterprise, or as
standalone web-app inside @enterprise web-server. Implementation classes are dependent
from runtime context of @enterprise, and cannot be launched out of it.

Once Axis distribution is installed and verified, we can overwrite generic axis configuration
file (server-config.wsdd) located in WEB-INF directory with prepared configuration from
com/groiss/wfxml/server/impl.

Configuration

Wf-XML components relies on few configuration properties, that should be configured by
administrator, before it can be used. The following properties can be set via the GUI under

142

12.3. WF-XML 2.0

Server A (active) Server B (active)

CreateProcessInstance

ProcessInstanceStateChanged

Server A (active) Server C (passive)

CreateProcessInstance

Outgoing-Buffer
Get waiting messages from buffer

Figure 12.6: Active-active and active-passive Wf-XML communication.

Administration → Configuration → Communication.

First of all we have to specify relative location of Web-service classes on @enterprise
web-server:

wfxml2.serviceregistry.path=/services.axis2/WfXML2ServiceRegistryService
wfxml2.factory.path=/services.axis2/WfXML2FactoryService
wfxml2.instance.path=/services.axis2/WfXML2InstanceService
wfxml2.activity.path=/services.axis2/WfXML2ActivityService
wfxml2.observer.path=/services.axis2/WfXML2ObserverService

Also default organization unit and user id for default agent should be configured:

wfxml2.orgunit=gi
wfxml2.user=wfxml_user

An @enterprise server can be configured to run with three different operating modes:

• off: Wf-XML is turned off. The server does not send messages and it also does not
accept incoming messages.

• active: An active server sends messages to other servers and accepts messages. This
is the ‘normal’ operating mode, like it is used in the specification.

• passive: A passive server does not send messages itself, it only receives incoming
messages. Active servers can request outgoing messages from passive servers, but a
passive server never sends messages itself. The passive server stores outgoing message
in a buffer and keeps them until the target server requests them. This might be useful
for security reasons where you want to allow connections to be established just in one
direction. Figure 12.6 shows a diagram with active-active and active-passive server
communication. The direction of the arrows always indicates the direction in which
the connection is established. Responses are sent back through the same connections.

For proper work of WfXML Engine layer in @enterprise timer task should be registered
under Administration → Admin-Tasks → Server → Timer :

143

12.3. WF-XML 2.0

• Timer class name: com.groiss.wfxml2.engine.timertask.WfXMLTimer

• Period: By default 60 seconds. Lower value will decrease status notification delays,
higher will save system time resources.

The following additional settings must be applied to an @enterprise server in order to use
Wf-XML:

You have to define communication partners in Admin-Tasks → Communication → WfXML
→ Partner List. You must set the following data for each Wf-XML partner server:

• Server: The ID of the server. In case of @enterprise servers, this must be the server id
of the partner.

• Operating Mode: Operating mode of the partner server. If you set it to ‘passive’, the
local server will try to request messages from this server, because it doesn’t expect
the partner server to send any messages. Mind: this works only, if the local server is
active! Two passive servers cannot communicate with each other.

• Host Name: The host name of the partner server.

• Port: The port on which the partner server is listening for HTTP requests.

• Path: The context path

Here you can also get a quick overview of your local server with the Local status link.
If you click on Partner status, your server sends a test message to the other server and
displays information about the partner server. Mind that this works only if both servers are
@enterprise servers.

12.3.4 Wf-XML Web client

For quick test of functional state of Wf-XML @enterprise, or any other Wf-XML implemen-
tations - administrator has possibility to use web client interface, that can be reached with
following URL or find under Administration → Admin-Tasks → Communication → WfXML
→ Web Client.

On first page location of ServiceRegistry Service should be specified, and list of definitions
managed by ServiceRegistry can be obtained (see Fig. 12.7) by using following URL:

http://servername:port/wf/services.axis2/WfXML2ServiceRegistryService

It is also possible to restrict the definition list by adding an application id with parameter
?application_id=<applid>.
After successful connection to ServiceRegistry service user will be able to browse list of
definitions managed there (see Fig. 12.8).

After selection one of definitions, which are Factory resources following actions are possible:

• Show properties will display available properties of Factory resource

144

12.3. WF-XML 2.0

Figure 12.7: Connect to service registry screen.

Figure 12.8: List of definitions screen.

145

12.3. WF-XML 2.0

Figure 12.9: Create instance screen.

• List instances action will show the list of running processes that belong to the selected
Factory resource

• Create instance action will provide form where initial process properties can be
specified (see Fig. 12.9). In this form name, subject, description fields can be specified.
Additionally context data can be specified in XML format. Schema specified for
factory is also displayed to make easy for client XML validation. After Create action
successfully processed new screen with short information about created instance will
be presented.

From this point we can operate on instance resource level. On this level we have following
actions available for use:

• Show properties action will display form with available properties, observers and

146

12.4. LDAP

Figure 12.10: Activity list screen.

context/result data for selected instance. This form allows to perform modifications on
some instance properties.

• List activities action allows to browse list of active activities for this process instance.
From this point we can operate on activity resource level.

• Change state action will display a form where required state can be specified. After
successful change of instance state the instance properties page will be displayed.

• Subscribe action will display a form observer URL can be specified. After successful
observer subscription the page with instance properties will be displayed.

On the activity resource level we have following actions available for use (see Fig. 12.10):

• Complete activity action will provide form where option path can be specified. Af-
ter successful completion of activity user will be redirected back on instance level
(instance properties screen).

• Show properties action will display form with available properties for selected activity,
this form also can be used to perform modification of instance properties or context
data.

12.4 LDAP

The organizational data of @enterprise can be synchronized with directory services (LDAP-
servers). With the administrative interface, one can define a set of LDAP-servers for the
purposes of either importing (part of) their directory data and incorporate it in the @enterprise
organizational data or to export this organizational data into an LDAP server.
In most cases, an installation wanting to synchronize with directory services will define
exactly one LDAP server and employ a unidirectional synchronization. Technically it is
possible to have a single LDAP server and to bidirectionally import from this server as well
as export to this server. But on an administrative level it is strongly recommended to use
either @enterprise as the source and the LDAP server as the target or vice versa, but not at
the same time.
Please note that LDAPv3 must be supported by the LDAP-Servers.

12.4.1 Basic Aspects of the Synchronization Mechanism

The synchronization can be characterized by the following aspects:

147

12.4. LDAP

• Directory Service: Comprises the technical aspects of the directory server. Needed
are the hostname or IP-address, the port, the path in the directory tree to use as a
searchroot, a filter which can be applied to the entires in this tree, and credentials in
the form of a user name and a password.

• Direction: Each LDAP-Server can act as source of imported data or as destination of
exported data.

• Timer Involvement: The synchronization can be carried out manually or executed by
the LDAPDirSyncTask timer (the system takes care that at most one LDAP synchro-
nization operation takes place at at one point of time).

• Scope: The following organizational entities of @enterprise are subject to LDAP
synchronization:

– Rights

– Organizational Units

– Organizational Hierarchies

– Roles with associated permissions

– Users with associated roles and permissions

While all of these entities can be synchronized by a default mechanism, most installa-
tions will probably restrict themselves to a subset, e.g. basic user data.

• Schema Mapping The default synchronization mechanism uses a fixed directory
schema at this moment. But since each organization employs its specific schema to
structure the information in the directory, the default mapping mechanisms can be
replaced by a customer specific one in the form of a Java class.

12.4.2 Default Schema Mapping

Since we strive for a possibly complete mapping of all the @enterprise organizational
data, we defined a specific LDAP schema. It can be found in the conf/schma.ldap file in
the @enterprise installations. This schema comprises appropriate definitions for LDAP
attributetypes and objectclasses and uses an officially registered enterprise number (see
http://www.iana.org/assignments/enterprise-numbers).
The schema must be deployed onto the LDAP server using the proprietary means of the
product. In OpenLDAP, the file must be included in the master schema file (which can
usually be found in /etc/openldap/slapd.conf). For other products, your mileage will vary.
Since the schema is not trivial, it might be advisable to export some organizational data
using the default mechanism and to browse the resulting LDAP directory to gain a better
understanding of the following description.
Under the searchroot, there are the five subdivisions (People, Departments, DeptTree, Roles,
Rights), each implemented as organizational unit:

• Rights: Each right is of objectClass entRight, it is identified (RDN) by the attribute
entId which contains the @enterprise id of the right. For the other attributes, the
mapping is as follows:

148

12.4. LDAP

– entName: name (mandatory)

– entApplication: application (id of application the right is associated with, manda-
tory)

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

• Departments: Each department is of objectClass entDepartment which is a subclass
of class organizationalUnit. It is identified (RDN) by the attribute ou which contains
the @enterprise id of the department. Other attibutes are:

– entName: name

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

– entOrderAttr: orderattr

– mail: email

– entOrgType: orgtype

– entOrgClass: orgclass (id of the departments orgclass)

– telephoneNumber: telnr

– postalAddress: address

• Department Trees: Each department tree is of objectClass entDeptTree. It is identi-
fied (RDN) by the attribute entId which contains the @enterprise id of the depttree.
Other attributes are:

– entName: name (mandatory)

– entOid: oid

– entXid: transactionid

– Under each department tree node, there is a flat collection of directory entries
which represent the edges of the department tree (Java class DeptHierarchy).
Each depthierarchy object is mapped to one LDAP entry of objectClass ent-
DeptHierarchy. It is identified by attribute cn. The value of cn is the id of the
subDepartment of the edge, optionally concatenated with the id of the superDe-
partment of the edge. In concatenated RDNs, we use the # as a component
separator. The other attributes are:

* entOid: oid

* entXid: transactionid

* entSubDept: subdepartment (full LDAP DN of the subdepartment, manda-
tory)

149

12.4. LDAP

* entSuperDept: superdepartment (full LDAP DN of the superdepartment)

By using DNs as the value for the subdepartment and superdepartments entries,
we enable quick navigation in the LDAP-directory.

• Roles: Each role is of objectClass entRole which is a subclass of organizationalRole.
It is identified (RDN) by the attribute cn which contains the @enterprise id of the role.
Other attributes are:

– entName: name

– entOid: oid

– entXid: transactionid

– description: description

– entActive: active

– entRoleType: type

– entReferenceRole: reference role (full LDAP DN of the referred role)

– entApplication: application (id of application the role is associated with)

– Below each role node, there is an organizationalUnit with ou=ACLEntries which
contains a flat collection of directory entries which represent the permissions
given to the role (Java class ACLEntry). Each ACLEntry object is mapped to
one LDAP entry of objectClass entACLEntry. It is identified by attribute cn.
The value of cn is concatenation of the following fields: id of the right, id of the
department, name of the object class, oid of the object. The other attributes are:

* entOid: oid

* entXid: transactionid

* entRight: avwright (full LDAP DN of the right, mandatory)

* entDept: dept (full LDAP DN of the department)

* entTargetClass: target_class

* entTarget: oid of the object to which this permission applies

* entOrgScope: orgscope (mandatory)

* entObjScope: objscope (mandatory)

* entPositive: positive (mandatory)

• People: Each user object is of objectClass entPerson which is a subclass of inetOr-
ganizationalPerson. It is identified (RDN) by the attribute uid which contains the
@enterprise id of the user object. Other attributes are:

– title: title

– givenName: firstName

– sn: surname

– description: description

– mail: email

– telephoneNumber: telnr

– userPassword: password

150

12.4. LDAP

– entOid: oid
– entXid: transactionid
– entServer: server (id of the users server)
– entActive: active
– entOrderAttr: orderattr
– entLocale: locale
– entPWneverExpires: pwdneverexpires
– entPWmustChange: changepwdnext
– entPWunchangeable: cantchangepwd
– Below each user node, there is organizationalUnit with ou=ACLEntries exactly

like in the case of Roles.
– Under each user node, there is als an organizationalUnit with ou=UserRoles

which contains a flat collection of directory entries which represent the roles
given to the user(Java class UserRole). Each UserRole object is mapped to one
LDAP entry of objectClass entUserRole. It is identified by attribute cn.The value
of cn is a concatenation of the id of the role, optionally followed by the id of the
department. The other attributes are:

* entOid: oid

* entXid: transactionid

* entActive: active

* entDept: department (full LDAP DN of the department)

* entRole: role (full LDAP DN of the role, mandatory)

Exporting to LDAP

Exporting an @enterprise object to the LDAP directory is done like this:

1. Lookup the LDAP entry by its RDN

2. If not found, search it via the entOid Attribute

3. if still not found, create the LDAP entry and export all its subobjects

4. else if the RDN changed (attributes which form the RDN in @enterprise were updated),
delete the entire LDAP-subtree below the entry and export the object

5. else if RDN unchanged but Xid changed, then update the LDAP entry

Importing from LDAP

The import algorithm for one LDAP entry can be sketched as follows:

1. If the entry has an entOid attribute, then search in the database based on this oid

2. If not found, search by its RDN

3. If still not found, create a new database object with the attributes of the LDAP entry

4. else check if an update is needed (Xid changed), and update the SQL object as needed

151

12.4. LDAP

12.4.3 Customizing the Synchronization

The default schema is clearly much more complicated than needed in typical installations
which usually just want to import user data from the directory service.
As already mentioned, one installation can use its own schema mapping semantics by
providing a Java Class which implements com.groiss.ldap.DirectorySyncer. The
interface consists of just one method synchronize() which receives two parameters. The
first one is the com.groiss.ldap.DirectoryServer entry as entered in the administrative
interface. It can be used to parametrize the synchronization process or can be ignored
altogether. The second parameter of snynchronize() is a DirContext (found in the
javax.naming.directory package). The DirContext represents an established connection
to the LDAP-server and serves as a main entry point for all following operations in the LDAP
server (using the the LDAP-Provider of JNDI).
The following class realizes a simple mapping and can be used as a starting point for ones
one implementations:

File com/groiss/demo/SimpleDirectorySyncher.java

package com.groiss.demo;

import java.lang.reflect.Field;
import javax.naming.Binding;
import javax.naming.NamingEnumeration;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.DirContext;
import com.groiss.ldap.DirectoryServer;
import com.groiss.ldap.DirectorySyncer;
import com.groiss.ldap.LDAPUtils;
import com.groiss.org.OrgData;
import com.groiss.org.User;
import com.groiss.store.StoreUtil;
import com.groiss.wf.ServiceLocator;

public class SimpleDirectorySyncer implements DirectorySyncer {

private static final String LDAPKEYATTNAME = "uid";

public void synchronize(DirectoryServer ds, DirContext baseContext)
throws Exception {

NamingEnumeration<Binding> ne = baseContext.listBindings("");
while (ne.hasMore()) {

Binding b = ne.next();
String rdn = b.getName();
DirContext objectCtx = (DirContext) b.getObject();
syncObject(rdn,ds,baseContext,objectCtx);

}
}

private void syncObject(String rdn, DirectoryServer ds,
DirContext baseContext,DirContext objectCtx)

152

12.4. LDAP

throws Exception {
Attributes attribs = objectCtx.getAttributes("");
Object ldapKey = attribs.get(LDAPKEYATTNAME).get();
OrgData od = ServiceLocator.getOrgData();
User u = od.getById(User.class,(String)ldapKey);
if (u !=null) { // object exists in @enterprise

//Settings.log("SimpleDirectorySyncer: "+ldapKey+"already present",1);
// do nothing
// od.update(u);

} else { // create user object
//Settings.log("SimpleDirectorySyncer: Creating User "+ldapKey,1);
u = od.createUser();
setFields(u,attribs);
u.setActive(true);
od.insert(u);

}
}

private static String[][] attMap = {
{"sn","surname"},
{"givenName","firstName"},
{"uid","id"},
{"title","title"},
{"givenName","firstName"},
{"description","description"},
{"mail","email"},
{"telephoneNumber","telNr"}

};

private void setFields(User u, Attributes attribs) throws Exception {
for (int i = 0; i< attMap.length;i++) {

Attribute att=attribs.get(attMap[i][0]);
if (att==null) {

continue;
}
Object attVal = att.get();
if (attVal == null) {

continue;
}
Field ff = StoreUtil.getField(u,attMap[i][1]);
//Settings.log("******"+attMap[i][0]+" "+attMap[i][1]+" "+attVal,1);
LDAPUtils.setField(ff,u,attVal);

}
}

}

153

13 XWDL

13.1 Introduction

This chapter presents the XWDL, an extensible XML based dialect of WDL.
The classic approach to define process types in @enterprise was to use the Workflow
Description Language (WDL) or to draw the process with the process editor applet.
WDL is designed as a kind of structured, human-readable process programming language.
It is not mainly targeted for the exchange of process type information with other systems.
In order to semantically analyze the WDL-scripts, those third-party systems would have to
make use of conventional parsing techniques.
The export/import format of @enterprise allows one to transfer application definitions (which
contain process definitions) between @enterprise systems. While this format is XML based,
the process information is still sent along as a WDL-Script.
The formulation of WDL in a structure-rich XML has the following aims / benefits:

• third-party applications can generate XWDL-Scripts on the grounds of a well under-
stood formalism

• use a plain DTD-driven XML editor to write XWDL-Scripts with automatic syntactical
correctness

• verification of the syntax using solely an out of the box XMl-parser.

• third party extensions could be accommodated using an extension approach for the
DTD

13.2 Usage

13.2.1 HTML-Client

XWDL-Processes can be loaded into the system exactly like WDL Processes. There are
two new links on the Process / Script page for viewing (IE6 needed) or downloading the
XWDL-Code of a process.

154

13.3. API

13.3 API

A simple API is provided to insert XWDL-Processes into the system.

package com.groiss.wf.xwdl;
public class ProcessParser implements IProcessParser{

public ProcessDefinition loadProcess(InputStream is, boolean genRoles,
boolean genTasks) throws Exception;

public ProcessDefinition loadProcess(String fileName, boolean genRoles,
boolean genTasks) throws Exception;

public String getErrors();

A XWDL-Process can be loaded from an InputStream or from a File which is specified via
its filename. The booleans genRoles and genTasks state whether roles and tasks should be
generated. When the process could be loaded without errors, no Exception is thrown and the
getErrors method will return the empty string.
A typical usage would be like this:

ProcessParser pp = new com.groiss.wf.xwdl.ProcessParser;
try {

ProcessDefinition pd = pp.loadProcess(fileName, true, true);
} catch (Exception ex) {

//rollback;
}
if (pp.getErrors().length() != 0) {

// error occured;
// rollback;

} else {
// commit;

}

13.4 The basic DTD

The dtd uses ENTITY definitions for the content of each element. This allows for extensions
of the DTD in a modular manner. The extension mechanism is described in the next section.
The DTD resides in the file conf/xwdl.dtd which is part of the distribution.

13.5 An Example

We will now present a rendering of WDL in XWDL by means of an example.

155

13.5. AN EXAMPLE

13.5.1 WDL

The example in WDL is:

process all_things_x()
version 1;
name "all control structures";
description "Test the control structures";
maxtime 10 minutes;
forms form Jobform;
timeoutaction none;
timeouttask
all,r adm_task(form);
application default;
startfunction ;
begin

<first>
all start_task(form);
loop

choice
"first choice: an if":

if (form.type = "hw") then
all hw_task(form);

elsif (form.type = "sw") then
form.recipient swx_task(form);

elsif (form.type = "adm") then
first:user adm_task(form);

else
first:user none_task(form);

end;
"second choice: a while":

while (form.type = "hw") do
form.recipient while_task1(form);
<in_while>
form.recipient while_task2(form);
form.recipient while_task3(form);

end;
"third choice: a loop":

loop
form.recipient loop_task(form);
exit when (form.type = "hw");

end;
"fourth choice: system steps":

system com.groiss.demo.SystemSteps.emptyMethod();
form.recipient between_task(form);
system com.groiss.demo.SystemSteps.emptyMethod();
system com.groiss.demo.SystemSteps.emptyMethod();
form.recipient aftersys_task(form);

156

13.5. AN EXAMPLE

"fifth choice: andpar":
andpar

form.recipient andpar1_task(form);
|
all andpar2_task(form);
|
form.recipient andpar3_task(form);

end;
"sixth choice: orpar":

orpar
form.recipient orpar1_task(form);
|
form.recipient orpar2_task(form);
|
form.recipient orpar3_task(form);

end;
"eight choice: subprocesses":

call subflow1(form);
"nineth choice: goto (into the while)":

goto in_while;
end;
exit when (form.finished = 1);

end;
end

13.5.2 XDWL

The corresponding formulation in XWDL would look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE process SYSTEM "./conf/xwdl.dtd">
<process id="all_things_x" version="1"
name="all control structures" description="Test the control structures"
application="default">
<forms>

<formdecl id="form" typ="Jobform" />
</forms>
<timing timeoutaction="none" maxtime="10" maxtimeunit="minutes">

<activity id="adm_task">
<agent string="all" />
<agent string="r" />
<form name="form" />

</activity>
</timing>
<label id="first" />

157

13.5. AN EXAMPLE

<activity id="start_task">
<agent string="all" />
<form name="form" />

</activity>
<loop>

<choice>
<case name="first choice: an if">
<if condition="(form.type = "hw")">
<then>
<activity id="hw_task">

<agent string="all" />
<form name="form" />

</activity>
</then>
<elsif condition="(form.type = "sw")">
<then>

<activity id="swx_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</then>

</elsif>
<elsif condition="(form.type = "adm")">
<then>

<activity id="adm_task">
<agent string="first:user" />
<form name="form" />

</activity>
</then>

</elsif>
<else>
<activity id="none_task">

<agent string="first:user" />
<form name="form" />

</activity>
</else>

</if>
</case>
<case name="second choice: a while">
<while condition="(form.type = "hw")">
<activity id="while_task1">
<agent string="form.recipient" />
<form name="form" />

</activity>
<label id="in_while" />
<activity id="while_task2">
<agent string="form.recipient" />

158

13.5. AN EXAMPLE

<form name="form" />
</activity>
<activity id="while_task3">
<agent string="form.recipient" />
<form name="form" />

</activity>
</while>

</case>
<case name="third choice: a loop">
<loop>
<activity id="loop_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<exit condition="(form.type = "hw")" />

</loop>
</case>
<case name="fourth choice: system steps">
<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()" />
<activity id="between_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()" />
<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()" />
<activity id="aftersys_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</case>
<case name="fifth choice: andpar">
<andpar>
<parallel>
<activity id="andpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="andpar2_task">

<agent string="all" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="andpar3_task">

<agent string="form.recipient" />

159

13.5. AN EXAMPLE

<form name="form" />
</activity>

</parallel>
</andpar>

</case>
<case name="sixth choice: orpar">
<orpar>
<parallel>
<activity id="orpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="orpar2_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="orpar3_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</orpar>
</case>
<case name="eight choice: subprocesses">
<call id="subflow1">
<form name="form" />

</call>
</case>
<case name="nineth choice: goto (into the while)">
<goto label="in_while" />

</case>
</choice>
<exit condition="(form.finished = 1)" />

</loop>
</process>

Versioning: If -1 is specified as the version of the process, it gets a new version number.
If there are already process definitions with this id in the system, the new process gets the
highest version number of those processes plus one. If there are no processes with this id,
version number 1 is assigned.

160

13.6. THE EXTENSION MODEL

13.6 The extension model

13.6.1 The extension DTD

The extension mechanism follows the spirit of the formulation of Modular XHTML [5]
without introducing any unneeded complexity.
The main idea is to leave the basic XWDL DTD untouched and to define a specific extension
DTD which would include the original DTD like this:

<![INCLUDE [
<!ENTITY % xwdl.mod SYSTEM "./xwdl.dtd">
%xwdl.mod;]]>

Before the inclusion, one would define a name for the extension like this:

<!ENTITY % adonis.name "adonis">
<!ENTITY % adonis.pfx "%adonis.name;:">

Further a namespace for the extension is to be defined:

<!ENTITY % xwdl.process.xmlns.extra ’xmlns:%adonis.name;
CDATA #FIXED "http://www.woanders.com"’>

The xwdl.process.xmlns.extra entity was included in the attributes for the process element
in the main xwdl.dtd file. By defining the namespace here, we can annotate the specific
elements with the name prefix (adonis in this case).
Additional attributes would be declared via stand alone attribute lists like in the following
example. We add an extra attribute to the element if with an attribute name which is prefixed
by the namespace in the extension DTD. It is defined as implied, so it is not mandatory

<!ENTITY % adonis.if.condition.qname "%adonis.pfx;condition">
<!ATTLIST if

%adonis.if.condition.qname; CDATA #IMPLIED
>

Changes in the element structure are implemented by defining the new elements in the
extension DTD and then by defining the corresponding . . . content entity from the xwdl.dtd
file. The example declares a new element adonis:followingProcess with four attributes and
states the new content model for the activity. Thereby we can use the new element within
activity elements after the original content (agents and forms).
It is a requirement, that the original content of the elements like described in the
xwdl.dtd file is not altered but merely augmented.

<!ENTITY % adonis.followingProcess.qname "%adonis.pfx;followingProcess">
<!ELEMENT %adonis.followingProcess.qname; EMPTY>
<!ATTLIST %adonis.followingProcess.qname;

id CDATA #REQUIRED
name CDATA #IMPLIED

161

13.6. THE EXTENSION MODEL

version CDATA #IMPLIED
gs CDATA #IMPLIED

>

<!ENTITY % xwdl.activity.content
"(agent*,form*,%adonis.followingProcess.qname;*)" >

System steps can be extended as follows:

<!ENTITY % adonis.varout.qname "%adonis.pfx;varout">
<!ELEMENT %adonis.varout.qname; EMPTY>
<!ATTLIST %adonis.varout.qname;

task CDATA #REQUIRED
>
<!ENTITY % xwdl.system.content "(%adonis.varout.qname;)?">

The whole extension dtd looks like this:

<!ENTITY % adonis.name "adonis">
<!ENTITY % adonis.pfx "%adonis.name;:">
<!ENTITY % xwdl.process.xmlns.extra ’xmlns:%adonis.name;

CDATA #FIXED "http://www.woanders.com"’>

<!ENTITY % adonis.if.condition.qname "%adonis.pfx;condition">
<!ATTLIST if

%adonis.if.condition.qname; CDATA #IMPLIED
>

<!ENTITY % adonis.followingProcess.qname "%adonis.pfx;followingProcess">
<!ELEMENT %adonis.followingProcess.qname; EMPTY>
<!ATTLIST %adonis.followingProcess.qname;

id CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
gs CDATA #IMPLIED

>

<!ENTITY % adonis.varout.qname "%adonis.pfx;varout">
<!ELEMENT %adonis.varout.qname; EMPTY>
<!ATTLIST %adonis.varout.qname;

task CDATA #REQUIRED
>

<!ENTITY % xwdl.activity.content
"(agent*,form*,%adonis.followingProcess.qname;*)" >

<!ENTITY % xwdl.system.content "(%adonis.varout.qname;)?">

162

13.6. THE EXTENSION MODEL

<![INCLUDE [
<!ENTITY % xwdl.mod SYSTEM "./xwdl.dtd">
%xwdl.mod;]]>

13.6.2 An Example

An extended XDWL file using the above extension dtd could look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xwdl extensionHandler="com.groiss.wf.xwdl.NullExtensionHandler"?>
<!DOCTYPE process SYSTEM "./conf/adonis.dtd">
<process xmlns:xdwl=’http://www.groiss.com’
xmlns:adonis="http://www.woanders.com" id="all_things_x" version="1"
name="all control structures" description="Test the control structures"
application="default">
<forms>

<formdecl id="form" typ="Jobform" />
</forms>
<timing timeoutaction="none" maxtime="10" maxtimeunit="minutes">

<activity id="adm_task">
<agent string="all" />
<agent string="r" rolename="anewnamedifferentfromr"/>
<form name="form" />

</activity>
</timing>
<label id="first" />
<activity id="start_task">

<agent string="all" />
<form name="form" />

</activity>
<loop>

<choice>
<case name="first choice: an if">
<if condition="(form.type = "hw")" adonis:condition="cc">
<then>
<activity id="hw_task">

<agent string="all" />
<form name="form" />
<adonis:followingProcess id="ididid" gs="gsgsgs"/>
<adonis:followingProcess id="ididid2" gs="gsgsgs2"/>

</activity>
</then>
<elsif condition="(form.type = "sw")">
<then>

<activity id="swx_task" name="the name of this task">
<agent string="form.recipient" />

163

13.6. THE EXTENSION MODEL

<form name="form" />
</activity>

</then>
</elsif>
<elsif condition="(form.type = "adm")">
<then>

<activity id="adm_task">
<agent string="first:user" />
<form name="form" />

</activity>
</then>

</elsif>
<else>
<activity id="none_task">

<agent string="first:user" />
<form name="form" />

</activity>
</else>

</if>
</case>
<case name="second choice: a while">
<while condition="(form.type = "hw")">
<activity id="while_task1">
<agent string="form.recipient" />
<form name="form" />

</activity>
<label id="in_while" />
<activity id="while_task2">
<agent string="form.recipient" />
<form name="form" />

</activity>
<activity id="while_task3">
<agent string="form.recipient" />
<form name="form" />

</activity>
</while>

</case>
<case name="third choice: a loop">
<loop>
<activity id="loop_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<exit condition="(form.type = "hw")" />

</loop>
</case>
<case name="fourth choice: system steps">

164

13.6. THE EXTENSION MODEL

<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()">
<adonis:varout task="something"/>

</system>
<activity id="between_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()" />
<system methodcall="com.groiss.demo.SystemSteps.emptyMethod()" />
<activity id="aftersys_task">
<agent string="form.recipient" />
<form name="form" />

</activity>
</case>
<case name="fifth choice: andpar">
<andpar>
<parallel>
<activity id="andpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="andpar2_task">

<agent string="all" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="andpar3_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</andpar>
</case>
<case name="sixth choice: orpar">
<orpar>
<parallel>
<activity id="orpar1_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>
<parallel>
<activity id="orpar2_task">

<agent string="form.recipient" />

165

13.7. EXTENSION API

<form name="form" />
</activity>

</parallel>
<parallel>
<activity id="orpar3_task">

<agent string="form.recipient" />
<form name="form" />

</activity>
</parallel>

</orpar>
</case>
<case name="eight choice: subprocesses">
<call id="subflow1">
<form name="form" />

</call>
</case>
<case name="nineth choice: goto (into the while)">
<goto label="in_while" />

</case>
</choice>
<exit condition="(form.finished = 1)" />

</loop>
</process>

13.7 Extension API

Parsing a standard XWDL-file without extensions is done by @enterprise itself.
For the proper treatment of extension attributes and extension elements, we define a callback-
interface. We will use the JDOM-API [6] for processing.

package com.groiss.wf.xwdl;
import org.jdom.Element;
import com.dec.avw.core.ProcessDefinition;
import com.dec.avw.core.Step;

public interface IExtensionHandler {
public void init();
public void handle(Element e, Step s, ProcessDefinition pd);

}

Call details:

• for extended elements: when the element is recognized, processing of the JDOM-tree
of the element is done by the handler. The tree walker in @enterprise will never step
"into" such a subtree.

• for extended attributes: when the containing element is recognized. The handler is
expected to process the extended attributes and nothing else.

166

13.7. EXTENSION API

• oids for the process and the steps are already set when the handler is called, but the
objects themselves have not yet been written to the database.

The extensionHandler is specified via a processing-instruction in the XWDL-file:

<?xwdl extensionHandler="at.adonis.xwdl.ExtensionHandler"?>

The processing instruction must be included at the outermost document level (before the root
XML element).
For debugging purposes, a NullExtensionHandler can be specified. This handler logs its calls
to the system log at log level 0.

<?xwdl extensionHandler="com.groiss.wf.xwdl.NullExtensionHandler"?>

167

14 Web services

@enterprise application classes can use external web services, and provide own web service
interfaces for external use. Administration console provides easy management of own web
services, and allows generation of client classes for external web service from corresponding
WSDL.
@enterprise provides support for web service oriented development in a broad variety of use
cases.

14.1 Components

14.1.1 WS-Framework

@enterprise uses the Apache Axis2 Web service engine [7] (v.1.5). It also ships with support
for several WS-standards like WS-Security, WS-Policy, WS-Trust etc. Axis2 provides code
generation capabilities to generate client and service stubs and implementations from or into
WSDL-files. (see: [8]).

14.1.2 EP-Context

This component provides an invocation context for local service implementations, in way
similar as the Dispatcher class for servlet methods.
The component is implemented as an Axis2 module. The module defines handlers for InFlow,
OutFlow, InFaultFlow, and OutFaultFlow. If a service wants to use this functionality, it must
engage this module in the services.xml file:

<service>
...
<module ref="epcontext" />
...
</service>

When a service specifies the use of this module, a transaction handling mechanism takes
place (cf. Dispatcher):

• If the web service throws no exception, a commit is performed automatically.

• If the web service signals an error by throwing an exception, a rollback is performed.

If a different behavior is desired, then the web service implementation must take care of it.

168

14.2. PROVIDING WEB SERVICES

14.1.3 Partner Links

Partner links provide a mechanism to obtain location transparency for the addressing of
remote service links.
A partner link maps a logical id of a remote web service to a specific physical transport
address. Changes in the address do not require any changes in the clients, because they
reference just the partner IDs. The mapping of partner IDs to addresses can be accomplished
via the administrative GUI of @enterprise.

14.2 Providing web services

To provide a web service via @enterprise, the Axis2 standard ways of creating webservices
should be used.

Code-first write your service-implementation first and generate the WSDL

Contract-first write your WSDL to specify the service, generate the service skeletons and
add your business logic

We recommend you to use the "contract-first" approach, because of better interoperability to
other systems.

14.2.1 Contract-first with Axis2

1. Specify the WSDL

2. Generate your service skeletons with the Axis2 CLI or Ant-Task [9]

3. Compile the generated sources

4. Package the generated sources

5. Add the new library to your application classpath

6. Subclass the service-skeleton and implement your business logic

7. Modify the services.xml to change the implementation class. This step is required,
because it’s not recommended to modify the generated source files.

8. Package your services.xml and your WSDL as an Web service archive (.aar)

9. Upload the archive to the server

10. Deploy the service

An example contract-first-service can be found in the @enterprise demos at demos/webservices.
Instructions on how to run the demo can be found in the readme.txt file.

169

14.3. WEB SERVICE SECURITY

14.3 Web service security

Several standards like WS-Security, WS-Trust, WS-Policy, WS-Secure Conversation can be
used to get the desired level of security for local services. The WS-Framework component
provides an implementation of those standards.
A policy following the WS-Policy standard should be used to describe any type of service
requirements (policies). One particular type of such requirements are security aspects. They
are specified via a policy descriptor which is usually embedded inside a WSDL or a service
deployment descriptor.
Local Web services deployed on an @enterprise server can use one of the following prede-
fined security profiles:

UserNameToken provides authentication for a single-call scenario

SAMLToken provides authentication for a repeated-call scenario

Both profiles enable to inject the user principal information into the EP-context and to access
the UserPrincical via the ThreadContext from within the web service implementation classes
where fine grained access control can be provided via the well known @enterprise rights
system.
Please note that sending the credentials like username and password in plain text over HTTP
is not secure. It is strongly recommended to use HTTPS as encrypted transport mechanism.

14.3.1 WS-security with UserNameToken

This is a basic form of security scenario; it can be used to the access to a provided web service.
Is specifies, that a username and a password must be sent inside the SOAP header together
with the request as proper credentials to use the service. On the server side the authentication
will be performed on the basis of the provided credentials against the @enterprise user base.
A positive authentication will result in the call of the service method; a negative result will
deny the access and send an appropriate error back to the client.

14.3.2 WS-security with SAMLToken

This security scenario provides some kind of session context for repeated communication
between the client and the service (cf. fig. 14.1).
Instead of providing the username/password credentials directly to the service, calls to the
actual services in this scenario are preceded by an explicit authentication step.
In this "login" phase, @enterprise issues a special access token in the form of a SAMLToken.
Proper credentials like username and password must be provided in order to get such a token.
When the client possesses such a token, it can issue multiple calls of services without
any need to repeated re-authentication. A SAMLToken can either expire or be explicitly
invalidated/canceled by the client ("logout").

14.4 Demos

Examples for the various scenarios can be found in the demo package demos.zip.

170

14.4. DEMOS

Figure 14.1: SAMLToken: Communication between server and client

After extraction of the archive, the classes/com/groiss/demo/ws/security directory contains
two examples for web services with authentication:

• WorklistService_UT calls the username/password authentication.

• WorklistService_SAML implements a communication using a SAMLToken.

To run the examples do the following:

• Upload the two WorklistService*.aar files using the Local services wizard

• set up your server to use SSL

• browse to servlet.method/com.groiss.demo.ws.Client.showPage

• fill the required fields and perform the call, e.g. SAML-Token:

– Client: SAML-token

171

14.4. DEMOS

– URL: https://’host’:’sslport’/wf/services.axis2/WorklistService_SAML/

– User: <user_id>

– Password: <user_pwd>

– UT-Service-Policy: policy/ut/policy.xml

– SAML-Service-Policy: policy/saml/policy.xml

– STS-URL: https://’host’:’sslport’/wf/services.axis2/SecureTokenService/

– STS-Policy: policy/saml/policy_sts.xml

172

15 AJAX and JavaScript in HTML
pages

This chapter describes the handling of the @enterprise JavaScript library, the AJAX compo-
nents (DOJO) and how to use customized DOJO controls.

15.1 The @enterprise JavaScript library

This section describes how to embed the @enterprise JavaScript library and how the files are
organized in packages. Furthermore some useful methods are explained.

Each page which should use JavaScript must contain following import within the head-tag.
The files are taken from the JavaScript source directory, packaged into the page and cached
on the server:

<script src="../servlet.method/com.groiss.gui.JavascriptLoader.getScripts">
</script>

All @enterprise JavaScript methods are structured in packages (e.g. ep.util.js for utility
methods) and are stored in alllangs/scripts/source within the ep.jar. Some useful methods are
described below:

• ep.util.isFF: Check, if the current browser is Firefox.

• ep.util.isIE: Check, if the current browser is Internet Explorer.

• ep.util.isIE6: Same as ep.util.isIE, but especially for Internet Explorer 6.

• ep.util.isSafari: Check, if the current browser is Safari. Example:

if(ep.util.isFF) {
//handling for Firefox
...

}
else if(ep.util.isIE) {
//handling for Internet Explorer
...

173

15.1. THE @ENTERPRISE JAVASCRIPT LIBRARY

}
else if(ep.util.isSafari) {
//handling for Safari
...
}
else {
//handling for all other browsers
...
}

• ep.util.getParam(name,query_string): This method gets the parameter value
from the query_string of the URL (= everything behind the question mark). The
parameter query_string is optionally and if not used, document.location.search is the
default search string.

• ep.util.moveEntries(sourceid,targetid,sorted,indexarray): Moves the
selected entries from selectlist sourceid (= id of the source selectlist) to selectlist
targetid (= id of the target selectlist). The parameter sorted is a boolean parameter
and indicates, if the moved entries should be sorted in target selectlist. The parameter
indexarray contains the indices of the entries in source selectlist, which should be
moved. If the parameter indexarray is null, all entries are moved.

• ep.util.moveAllEntries(sourceid,targetid,sorted,indexarray): Moves
all entries from selectlist sourceid (= id of the source selectlist) to selectlist targetid (=
id of the target selectlist) analogous to ep.util.moveEntries().

• ep.util.showToolbar(actions,target,toolbar,orientation): By calling this
method the servlet method com.groiss.avw.html.HTMLToolbar.show will be invoked.
The parameter actions contains all actions, which should be displayed in toolbar. The
actions parameter is a whitespace separated string containing the id’s of the actions
(from a XML-configuration). The target parameter indicates the location, where the
toolbar should be displayed. If the parameter is empty, parent.right is used. With
the optional parameter toolbar you can define the toolbar frame. If not defined, the
parent.toolbarframe is default. The parameter orientation can be used to set the
alignment of the toolbar. The character v symbolizes, that a vertical toolbar should be
used; h or empty orientation parameter means that horizontal toolbar should be used.

Example:

<body onload="ep.util.showToolbar(’admin.refreshControl myxml.save’,
’parent.right’)">

...
</body>

• ep.util.clearToolbar(toolbar): This method removes all functions from the
toolbar. With the optional parameter toolbar you can define the toolbar frame. If not
defined, parent.toolbarframe is default.

174

15.2. USING DOJO IN @ENTERPRISE

• ep.util.urlEncode(val,doc): This method encodes a string (= parameter val)
and returns the encoded value for URL’s. The optional parameter doc contains a
reference to a document object; if the parameter is not used, the current document is
used.

• ep.util.urlDecode(val): This method is the direct opposite to ep.util.urlEncode().

• ep.util.refreshOpener(): Method to refresh the opener window, e.g. if data are
changed in a popup and the opener should be refreshed with this data.

15.2 Using DOJO in @enterprise

The DOJO toolkit is an open source modular JavaScript library designed to ease the rapid
development of cross platform, JavaScript/Ajax based applications and web sites. One
important feature of Ajax applications is asynchronous communication of the browser with
the server: information is exchanged and the page’s presentation is updated without a need
for reloading the whole page.
@enterprise uses the latest DOJO version from http://dojotoolkit.org/

15.2.1 Add DOJO to a page

This section describes which components are necessary to use DOJO in your forms (xhtml,
xforms) with the standard @enterprise style:

1. Import following script beneath the JavaScriptLoader call:

<script type="text/javascript" src="../scripts/dojo/dojo.js"
djConfig="parseOnLoad: true">

</script>

Depending on the used DOJO control (see section 15.3) it is recommended to use
DOJO layers for reducing server requests and increasing performance (see
http://www.qc4blog.com/?p=1001). Following layers are available in @enterprise:

• objectselect

• datefield

• tooltip

A layer can be imported in following way, e.g. for DateField:

<script type="text/javascript" src="../scripts/dojo/dojo-datefield.js">
</script>

2. Import style definition:

175

15.3. USAGE OF CUSTOMIZED DOJO CONTROLS

<link href="../html/avw.css" rel="stylesheet" type="text/css"></link>
<style type="text/css">

@import "../scripts/dijit/themes/tundra/tundra.css";
@import "../scripts/dojo/resources/dojo.css";
@import "../scripts/jscalendar/calendar-system.css";

</style>

3. Import used widgets, for example:

dojo.require("ep.widget.DateField"); //necessary for date fields
dojo.require("ep.widget.ObjectSelect");//necessary for object select

DODJO widgets are prepackaged components of JavaScript code, HTML markup and
CSS style declarations that can be used to enrich websites with various interactive
features that work across browsers.

4. Add the following css-class to the body tag:

<body class="tundra">

Hint: If your page is dojo-enabled, it’s recommended to use dojo.addOnLoad(foo) instead
of <body onLoad="foo()"> (see: http://docs.dojocampus.org/dojo/addOnLoad)

15.3 Usage of customized DOJO controls

This section describes how the components DateField and ObjectSelect can be added to the
form.

15.3.1 Date control - ep.widget.DateField

For adding a datefield an input-field must be created of dojoType ep.widget.DateField like in
following example:

<input type="text" name="changeTime" id="changeTime" showTime="false"
value="" dojoType="ep.widget.DateField"/>

The attribute showTime means, that the time is displayed, if set to true. If the value of a
datefield should be changed, the method setValue() should be used like in following example.
The method getValue() reads the value of the datefield.

dijit.byId(’changeTime’).setValue(’01-01-2009’); //set to value 01-01-2009
dijit.byId(’changeTime’).getValue(); //read value of datefield

176

15.3. USAGE OF CUSTOMIZED DOJO CONTROLS

15.3.2 Object selection - ep.widget.ObjectSelect

For adding a object selection an select-field must be created of dojoType ep.widget.ObjectSelect
like in following example:

<select name="substitute" id="substitute" class="ep_select"
style="width:400px" dojoType="ep.widget.ObjectSelect"
classname="com.groiss.org.User" searchAttributes="surname,id"
value="[’’,’’]">

</select>

The attribute classname is required and must contain a java class of type Persistent. Following
optional attributes can be entered:

• searchAttributes: A comma separated list of attributes can be entered for searching the
input string.

• searchid: This parameter must be used, if a WHERE-clause with parameter should
be used. The searchid consists of the xml-id (created by the @enterprise GUI-
Configuration) and the node-id, i.e. <xmlid>.<nodeid> and executes the appropriate
action node of the xml.

• parameters: The parameters for the attribute condition in xml-file, if the WHERE-
clause contains parameter.

• displayAttributes: Attributes to display; if empty: toString

• noClass: If set to true, the selected value will be in form <oid> instead of <class-
name>:<oid> (default: false)

• value: Initial value in form [’label’,’classname:oid’]

If the selection needs a condition with parameter, it must be defined in following way:

Write an action node in application’s xml which has been created by the @enterprise
GUI-Configuration. In our example we need all departments with sub-departments:

<Actions>
...
<Node id="DeptsWithSubdeptsSelect">
<Attrib key="classname" value="com.groiss.org.Dept"/>
<Attrib key="attribs" value="name"/>
<Attrib key="searchAttrs" value="name,id"/>
<Attrib key="title" value="@ep:dept@"/>
<Attrib key="condition" value=

"oid in (select superdept from avw_flatdepttree
where application=?)"/>

<Attrib key="types" value="Long"/>
</Node>
...

</Actions>

177

15.3. USAGE OF CUSTOMIZED DOJO CONTROLS

The attribute condition defines the SQL WHERE-clause. The parameters are represented
by question marks (?). The attribute types is necessary to define the datatypes of the given
parameters. For each parameter in condition, a type is needed, e.g. <Attrib key="types"
value="Long,Persistent,Date"/>. Possible values are:

• Persistent

• Date

• Integer

• Long

• Double

• Integer

• String

After creating an action node we have to set the attributes searchid and parameters in the
appropriate HTML-file. In our example the parameter is the oid of the default-application:

<select name="dept" id="dept" class="ep_select" style="width:400"
tabindex="2" dojoType="ep.widget.ObjectSelect" autoComplete="true"
searchid="<xmlid>.DeptsWithSubdeptsSelect" parameters="1"

</select>

The attributes searchid and parameters can be set via JavaScript by using the functions
dijit.setParameters(String) and dijit.setSearchid(String). Following an example how to use
these functions:

var appl = dijit.byId("application");
var proc = dijit.byId("proctype");
if(appl.value && appl.value!=’’) {
proc.setSearchid("ProcDefOfApplicationSelect");
proc.setParameters(’’+appl.value);

}

The methods getValue() and setValue() should be used in the same way described in section
Date control - ep.widget.DateField. In object selection the method getValue() returns the key
only! If the displayed value of the current selection is needed, the method getDisplayedValue()
has to be used.

178

16 Mobile GUI Client

This chapter describes the possibilities to adapt the Mobile GUI client. The description how
to use the mobile client can be found in the User Manual.

The mobile login window offers the checkbox mobile which is checked automatically on
a mobile device only. After activating the button Logon the appropriate configuration file
(XML) in the default urls are searched with the suffix _mobile only. The default XML for
the mobile client is standard_mobile.xml.

The XML for the mobile version allows the node types worklist and link only. The default
page displays the children of the first level. The html mask and the method for rendering
the tree are interpreted only. The links always open the same window (attribute target is
ignored). The worklist is displayed as list not as table. The html text for a list element can
be declared in element template. This template contains the placeholder %name% which
represents the id of a worklist column.

It is also possible to define a WorklistAdapter (see @enterprise API), but following methods
are not relevant:

• getHTMLPage()

• listFilters()

The detail page of a worklist entry can be modified by adapting the link within the template.

16.1 WorklistAdapter Example

This example shows how to use an own WorklistAdapter. First we need a WorklistAdapter
class like in following example:

public class MobileWLAdapter extends WorklistAdapter {

@Override
/* If subject of a task is empty, show <No subject> */
public void modifyTableLine(ActivityInstance ai, KeyedList line) {
Object o = line.get("subject");

179

16.1. WORKLISTADAPTER EXAMPLE

if(o instanceof String) {
if(StringUtil.isEmpty((String)o))
line.set("subject", "<No subject>"); //the placeholder %subject%

}
}

@Override
/* Get title of worklist */
public String getTitle() {
return "My Mobile Worklist";

}

@Override
/* Get list of all ais which are in itsm-application. If no itsm
* application is installed, show default worklist*/
public List<ActivityInstance> getList() {
WfEngine wfe = ServiceLocator.getWfEngine();
OrgData org = ServiceLocator.getOrgData();
Application appl = org.getById(Application.class, "itsm");
if(appl != null)
return wfe.getWorklist(appl, true);
else
return null;

}

@Override
/* Set new line style for RM processes - placeholder %linestyle% */
public String lineStyle(ActivityInstance ai, String style) {
WfEngine wfe = ServiceLocator.getWfEngine();
ProcessInstance pi = wfe.getMainProcess(ai);
if(pi.getProcessDefinition().getName().equalsIgnoreCase("RM")) {
return "rm_linestyle";

}
return null;

}
}

This class replaces the subject placeholder defined in the configuration file (XML) below by
an own defined string <No subject>, if no subject is available. The getList()-method operates
like a worklist-filter which displays tasks of a particular application only. Furthermore the
line-style of a worklist-entry is changed, if a task of a particular process is displayed in the
worklist.

After creating a WorklistAdapter the configuration file (XML) must be prepared like in
following example. For this purpose open the GUI configuration in Administration of @en-

180

16.1. WORKLISTADAPTER EXAMPLE

terprise and make a copy of the entry with id standard_mobile. Rename it and edit the
entry by adding the WorklistAdapter class MobileWLAdapter to the worklist-node. For more
information about GUI Configuration please take a look into System Administration Guide -
chapter GUI Configuration.

Snippet of configuration file:

...
<Node id="wl" class="com.dec.avw.lclient.WorklistDescription">

<name>
@@@worklist@@
</name>
<Attrib key="type" value="USER" />
<Attrib key="actions" value="untake,finish,finishAndSelect,

goBack,seeLater,setAgent" />
<Attrib key="worklist" value="MobileWLAdapter" />

<columns>
<column id="id" />
<column id="process" />
<column id="task"/>
<column id="subject"/>
<column id="started" />
<column id="seen"/>
<column id="forms"/>

</columns>
<template><div class="%lineStyle%">
<table width="100%">
<tr><td style="width:15px">%seen%</td>

<td>
%id%: %subject%
%process% / %task%

</td>
<td valign="middle" align="right">%forms%</td></tr>

</table></div>
</template>

</Node>
...

181

Bibliography

[1] Java 2 Enterprise Edition, Version 1.3, http://java.sun.com

[2] World Wide Web Consortium: XHTML 1.0, http://www.w3c.org

[3] Internet Engineering Task Force: RFC 1867, http://www.ietf.org/rfc/rfc1867.txt

[4] Workflow Management Coalition: Workflow Standard - Interoperability, Wf-XML
Binding Version 1.1, http://www.wfmc.org

[5] Modularization of XHTML; http://www.w3.org/TR/xhtml-modularization/

[6] http://www.jdom.org/

[7] Axis2 Web Service framework; http://ws.apache.org/axis2/

[8] Apache Axis2 Tools http://ws.apache.org/axis2/tools/index.html

[9] Apache Axis2 Codegen Tool
http://ws.apache.org/axis2/tools/1_4_1/CodegenToolReference.html

182

	1 Overview
	2 Servlet Methods
	2.1 The Dispatcher Servlet
	2.2 Demo Package
	2.3 Page
	2.4 HTMLPage
	2.5 XHTML
	2.6 XForm
	2.7 Velocity Page
	2.8 File Upload
	2.9 Authorization

	3 Persistence Layer
	3.1 Database Connection Pool
	3.2 Persistent Objects
	3.3 Lazy filling
	3.4 Optimistic Locking
	3.5 PersistentEventHandler

	4 Utilities and Data Structures
	4.1 Data Structures
	4.1.1 KeyValuePair
	4.1.2 Pair
	4.1.3 MultiMap
	4.1.4 KeyedList
	4.1.5 CountedSemaphore

	4.2 StringUtil and FileUtil
	4.3 Date/Time Handling
	4.3.1 CalUtil
	4.3.2 Holidays
	4.3.3 Application dependent calendar-events

	4.4 ThreadContext
	4.5 Logging
	4.6 Timer
	4.7 Beans
	4.8 Resource Files
	4.9 Error Handling

	5 Structure of Applications in @enterprise
	5.1 Organization of Files
	5.2 The Configuration File
	5.3 The Application Class
	5.4 Documentation of Applications
	5.5 Internationalization of Applications
	5.6 Startup and Shutdown
	5.7 Installation
	5.8 Upgrading/Patching
	5.8.1 Creating patch archives

	5.9 Mapping of URLs to files or methods

	6 Organizational Data
	6.1 Users, their Roles and Rights
	6.2 Dababase operations
	6.3 Password Policies
	6.4 Adding tab Additional Info
	6.5 Deleting master data with references

	7 HTML Components
	8 The Workflow Engine
	8.1 Process definition and execution
	8.1.1 Structure of run-time data

	8.2 Forms
	8.3 The @enterprise workflow API
	8.3.1 Create a process instance
	8.3.2 Find process instances
	8.3.3 Get information about a process instance
	8.3.4 Manipulation of process instances
	8.3.5 Getting the context
	8.3.6 Methods for process instances

	9 Using the Workflow API
	9.1 Application Methods Called by the Engine
	9.1.1 Usage of script-language GROOVY
	9.1.2 XPath-Conditions

	9.2 Interactive Functions
	9.3 Application Adapter
	9.4 The Form Event Handler
	9.4.1 Using Form Event Handler with XHTML forms and XForms

	9.5 The Form Table Handler
	9.6 Utilities for building an HTML interface
	9.6.1 Show the worklist
	9.6.2 Show the form

	9.7 Object Selection
	9.8 Task-Functions in forms
	9.9 Batch Processing
	9.10 Event Mechanism
	9.10.1 WDL extensions
	9.10.2 The Event API
	9.10.3 Event Processing
	9.10.4 Cluster
	9.10.5 Administration

	9.11 Examples
	9.11.1 Start a Process
	9.11.2 Find running Processes

	10 Configuring the Worklist Client
	10.1 Introduction
	10.2 The Elements of the Configuration File
	10.2.1 Replacing the HTML templates
	10.2.2 Restricting access to clients
	10.2.3 Tree Nodes
	10.2.4 Default-page
	10.2.5 Internationalization
	10.2.6 Adding HTML Code Between the Links
	10.2.7 Configure user parameters
	10.2.8 Change style and logos

	10.3 Customizing the Worklist
	10.3.1 Link to forms and documents

	10.4 Displaying Additional Data

	11 Document Management
	11.1 Objects of the DMS
	11.2 Life Cycle of a DMSObject
	11.3 Storage and Versioning
	11.4 The @enterprise DMS API
	11.4.1 Create DMS objects
	11.4.2 Managing Relations
	11.4.3 Manipulate DMS Objects
	11.4.4 Navigate within the DMS
	11.4.5 Permissions in DMS
	11.4.6 Utility Methods

	11.5 Using the DMS API
	11.5.1 Utilities for DMS related HTML Interface
	11.5.2 Adding a Document to a Process
	11.5.3 Adapting Folder and Table View
	11.5.4 Build your own DMS Pages

	12 Communication with other Systems
	12.1 E-Mail
	12.2 Remote Method Invocation
	12.3 Wf-XML 2.0
	12.3.1 ASAP Overview
	12.3.2 Wf-XML Overview
	12.3.3 Administration
	12.3.4 Wf-XML Web client

	12.4 LDAP
	12.4.1 Basic Aspects of the Synchronization Mechanism
	12.4.2 Default Schema Mapping
	12.4.3 Customizing the Synchronization

	13 XWDL
	13.1 Introduction
	13.2 Usage
	13.2.1 HTML-Client

	13.3 API
	13.4 The basic DTD
	13.5 An Example
	13.5.1 WDL
	13.5.2 XDWL

	13.6 The extension model
	13.6.1 The extension DTD
	13.6.2 An Example

	13.7 Extension API

	14 Web services
	14.1 Components
	14.1.1 WS-Framework
	14.1.2 EP-Context
	14.1.3 Partner Links

	14.2 Providing web services
	14.2.1 Contract-first with Axis2

	14.3 Web service security
	14.3.1 WS-security with UserNameToken
	14.3.2 WS-security with SAMLToken

	14.4 Demos

	15 AJAX and JavaScript in HTML pages
	15.1 The @enterprise JavaScript library
	15.2 Using DOJO in @enterprise
	15.2.1 Add DOJO to a page

	15.3 Usage of customized DOJO controls
	15.3.1 Date control - ep.widget.DateField
	15.3.2 Object selection - ep.widget.ObjectSelect

	16 Mobile GUI Client
	16.1 WorklistAdapter Example

