
@enterprise 8.0

System Administration

December 2017

Groiss Informatics GmbH



Groiss Informatics GmbH

Strutzmannstraße 10/4
9020 Klagenfurt
Austria

Tel: +43 463 504694 - 0
Fax: +43 463 504594 - 10
Email: support@groiss.com

Document Version 8.0.22989

Copyright c© 2001 - 2017 Groiss Informatics GmbH.
All rights reserved.

The information in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Groiss Informatics GmbH does not warrant
that this document is error-free.

No part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of Groiss Informatics GmbH.

@enterprise is a trademark of Groiss Informatics GmbH, other names may be trademarks of their
respective companies.



Introduction

This manual describes the administration of the Workflow-Management-System @enter-
prise . It is written for readers, who administrate the system, define users or the organization
structure, or define workflows.
The manual is structured as follows:

• System Architecture: The architecture of @enterprise is described.

• The HTML Interface: The structure and usage of the HTML interface for adminis-
tration is described.

• Ids, Names and internationalization: Here you can find information about which
attributes of an object class are used as ids and how the conventions for ids look like
in @enterprise. Furthermore you can find information about the internationalization
of master data and object classes.

• Definition of the Organizational Structure:

Modelling the objects and the structure of the organization is necessary for modelling
workflows. The following object classes are maintained in @enterprise :

– Server: An @enterprise installation can consist of several servers, which co-
operate for workflow execution.

– Roles: Roles define groups of participants exhibiting a specific set of attributes,
qualifications and/or skills.

– Rights: Rights are used to restrict some operations to selected users.

– Permission Lists: It is possible to combine several rights to permission lists.
This permission lists can be assigned to users or roles.

– Users: All persons, which work with @enterprise , must be registered as
"users".

– Organizational units: The structure of the organization is modeled with or-
ganizational units and the hierarchy between them. Organizational units are
abbreviated by OU.

– Organization Class: Organization classes are used to classify the organiza-
tions.



– Organization Hierarchies: OUs can form hierarchies, i.e. one OU can be
subordinate to another one and vice versa. The hierarchy of OUs is defined by
restoring the corresponding OUs into the organization hierarchy. In doing so
one superordinate OU can own several subordinate OUs, but a subordinate OU
(in one organization hierarchy) can only belong to one superordinate OU. A OU
can be arranged in several organization hierarchies (in this way it is possible to
map OUs belonging to several divisions).

• The @enterprise Right System: This chapter describes the right system of @enter-
prise, which enables you to assign the required rights to users.

• Workflow Modelling: Using the organizational structure we can define processes
(workflows). The following object classes are described in the respective chapters:

– Applications: Applications group processes.

– Tasks are the elementary activities of processes.

– Functions are representations of interactive Java-methods used for execution of
activities.

– Forms are the data containers for local data of processes.

– Processes describe the structure of a business process.

– Interfaces allow the start of process instances by submitting an HTML form.

• Process definition: In this chapter, the definition of processes is described. It con-
tains two sections, the definition with the script language WDL and the definition us-
ing the graphical process designer. It is also possible to define processes with XWDL
– an extension of WDL – which is described in the XWDL Handbook of @enterprise.

• Searching in @enterprise: Here you can find cross references to those documents
which are describing the possibilities to find certain information within @enterprise.

• Administration Tasks: The search facility and a set of common administration func-
tions is described.

• Configuration: This chapter describes the configuration of @enterprise–server.

• Dashboard: This chapter describes how you can use the dashboard of @enterprise.



Contents

1 System Architecture 10
1.1 The World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 The System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The HTML–Interface 13
2.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Column picker, Sorting and Filter . . . . . . . . . . . . . . . . . . 15
2.1.2 Standard Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Object details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Tab: History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Tab: Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Tab: Referenced By . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Further functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Ids, Names and Internationalization 22
3.1 Ids and Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Internationalization of Meta Data Objects and Object Classes . . . . . . . . 24

4 Definition of the Organizational Structure 25
4.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Tab: Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Tab: User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 System-defined Roles . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Tab: User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 System-defined Rights . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Role Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Tab: Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4 Tab: Role-Substitutions . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Tab: Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



CONTENTS

4.3.6 Tab: All Permission . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.7 Tab: Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Organizational Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Tab: Super Organizational Units . . . . . . . . . . . . . . . . . . . 35
4.4.3 Tab: Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Organization Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.2 Tab: Organization Hierarchy . . . . . . . . . . . . . . . . . . . . . 36
4.5.3 Function Merge organizational hierarchies . . . . . . . . . . . . . 38

4.6 Organization Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 The @enterprise Right System 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.4 Permission-List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Definition of Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Permissions of Users . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Permissions of Roles . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Administration of Permission-Lists . . . . . . . . . . . . . . . . . 44
5.2.4 Permissions for an Object . . . . . . . . . . . . . . . . . . . . . . 44
5.2.5 Permissions for Permissions . . . . . . . . . . . . . . . . . . . . . 44
5.2.6 Permissions for Role-Assignments . . . . . . . . . . . . . . . . . . 44
5.2.7 Administration of Object Classes . . . . . . . . . . . . . . . . . . 45

5.3 Standard Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 For what you need which rights? . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Permissions and Substitutions . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Workflow Modelling 48
6.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2 Tab: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Tab: Escalations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3 Tab: Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.4 Supplement of forms . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Standard Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6



CONTENTS

6.4.1 Create new formtype . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2 Edit Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.3 Replace HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.4 Create View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.5 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.6 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.7 Tab: Java-Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.8 Tab: Database-Table . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.9 Tab: Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.10 Tab: Standard Permissions . . . . . . . . . . . . . . . . . . . . . . 72
6.4.11 Tab: Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.12 Tab: Folder Settings . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.1 Create new process with the process editor . . . . . . . . . . . . . 75
6.5.2 Edit a process with the process editor . . . . . . . . . . . . . . . . 75
6.5.3 Load WDL / XWDL . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.4 Process overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.5 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.6 Tab: Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.7 Tab: Graphical Representation . . . . . . . . . . . . . . . . . . . . 79
6.5.8 Tab: Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.9 Tab: Visibility of Forms . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.10 Tab: Escalations . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.11 Tab: Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.12 Tab: Folder settings . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.1 Tab: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.7 Function Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.8 GUI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8.1 Tab: GUI Configuration . . . . . . . . . . . . . . . . . . . . . . . 85
6.8.2 Tab: Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.9 Resource Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.9.1 Toolbar functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.9.2 Converting csv-files . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.10 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.10.1 Webservice clients . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.10.2 Webservice server . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Process Definition 97
7.1 WDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Lexical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1.2 Process header . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1.3 Declaration part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.4 Basic Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.5 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.1.6 Event Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1.7 Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7



CONTENTS

7.2 The Process Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.1 The Process Editor Window . . . . . . . . . . . . . . . . . . . . . 115
7.2.2 The Functions of the Menu Bar . . . . . . . . . . . . . . . . . . . 115
7.2.3 Process Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.5 Timeout Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.6 Properties of an Activity . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.7 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.8 The Function List . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.9 Conditions for Ifs, Choice, Loops . . . . . . . . . . . . . . . . . . 132
7.2.10 Properties for System Steps . . . . . . . . . . . . . . . . . . . . . 132
7.2.11 Properties for Batch Steps . . . . . . . . . . . . . . . . . . . . . . 132
7.2.12 Properties of a Subprocess . . . . . . . . . . . . . . . . . . . . . . 132
7.2.13 Properties of an Event . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.14 Properties of a Parallel For . . . . . . . . . . . . . . . . . . . . . . 133
7.2.15 Properties of Web service nodes . . . . . . . . . . . . . . . . . . . 134

8 The Search of @enterprise 136
8.1 Standard Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Document Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Extended Search and Stored Queries . . . . . . . . . . . . . . . . . . . . . 136

9 Administration tasks 137
9.1 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.1.1 Server monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.1.2 Server Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.1.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1.4 Worklist-Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1.5 Class Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.1.6 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.1.7 Object History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.1.8 Interface Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.9 Pending Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.10 Event Registrations . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.11 Manage certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.12 Running Nodes Monitor . . . . . . . . . . . . . . . . . . . . . . . 149
9.1.13 Full-Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.1.14 Query Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.1.15 Duration statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Disable/Enable Login . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.2 Permission Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.3 Expired passwords . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3 Import/Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3.1 Import/Export in XML Format . . . . . . . . . . . . . . . . . . . . 154
9.3.2 Archive Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3.3 Install Application . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8



CONTENTS

9.3.4 File Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.4 Reorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.4.1 Change Role Assignments . . . . . . . . . . . . . . . . . . . . . . 161
9.4.2 Analyze Process Instances . . . . . . . . . . . . . . . . . . . . . . 162
9.4.3 OU History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.5 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.5.1 Mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.5.2 LDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5.3 Batch Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.5.4 WfXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.5.5 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10 Configuration 168

11 Dashboard 169
11.1 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.2 Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.3 Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.4 Save as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.5 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

12 Administration Shell 171
12.1 Architecture and Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

12.2.1 Client commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
12.2.2 Server commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

12.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.3.1 Setting a configuration parameter . . . . . . . . . . . . . . . . . . 173
12.3.2 Restart the server . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.3.3 Add a role to or remove one from a user . . . . . . . . . . . . . . . 174
12.3.4 Set the interval of a timer . . . . . . . . . . . . . . . . . . . . . . . 174
12.3.5 Worklist handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.3.6 Session handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13 Process–Cockpit 176
13.0.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
13.0.2 Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9



1 System Architecture

The workflow system @enterprise is build for using in the intranet and internet and based
on the technologies of the World Wide Web. We briefly describe these concepts before
explaining the architecture of the system.

1.1 The World Wide Web

Three concepts make up the World-Wide Web (WWW): uniform addressing of information
in the Internet via the Uniform Resource Locator (URL), presentation of information in
the Hypertext Markup Language (HTML), and transmission of data using the Hypertext
Transfer Protocol HTTP.
The HTML format allows the integration of different media type into a document. So-
called hyper-links enable the integration and connection to other documents or media types.
Important for using the WWW for workflow systems is the feature of fill-in forms in HTML,
which allows a form based interaction between the user and a program.
HTTP is a simple protocol for transmitting information over the net. The client (browser)
requests a document from a server, by opening a socket connection and sending the URL of
the document to the server. The server sends back the content of this document together with
some status information. If the URL points to an executable program the server executes
this program and sends the output back to the client. Moreover, the HTTP protocol provides
a mechanism for user authorization allowing to restrict access to a group of users or hosts.

1.2 The System Components

Fig. 1.1 shows the components of the system. The components in detail:

• Database: The database contains all data relevant for process execution, process def-
inition, organizational hierarchy, roles, as well as the dynamic data of the process
instances.

• Workflow Engine: This component contains the interpreter for the defined processes,
it is called whenever a process is started or an activity is finished through the user in-
terface. Additionally, the engine comprises services like timers, import-export mech-
anisms, the monitoring component, etc.

10



1.2. THE SYSTEM COMPONENTS

Data-
Repository

Organisational
data

Process
definitions

Process
instances

Process data

Process relevant
Data

- Workflow-Engine
- Document management
- Timer

- Administration functions
- Server Control
- Search and Reporting

H
T

T
P

-S
er

ve
r/

S
er

vl
et

 C
on

ta
in

er

Run-Time component

Administration component

Client
(Browser)

HTTP

HTTPS

JDBCServlet

- Processes
- Data
- Organization
- Applications

Modeling component

Figure 1.1: @enterprise System Architecture

• HTML Interface: The HTML interface creates the HTML pages of the user interface.
It is triggered from the HTTP server whenever a user clicks on a link or a button. On
the back end it communicates with the @enterprise engine via the API. The HTML
interface consists of the following parts:

– Workflow client: It generates the HTML pages and forms used for interaction
with the user (not administrator) of @enterprise . The main page is the user
worklist, which contains links to the other relevant information, i.e. the forms,
process descriptions, history, etc.
See the User Manual for a description of this interface.

– Administration and Monitoring Tool: It contains functions for creating, mod-
ifying and deleting users, roles, and organizational units. It also allows the
inspection and modification of running processes, like terminating instances, re-
assigning steps, etc. Like the other components communicating with the HTTP
Server, the interactions with the user are done by creating and receiving HTML
pages and forms.
Two interfaces are available for process definition: Workflows defined as WDL
scripts can be compiled and loaded into the system. Additionally, the process
editor allows graphical definition of processes. Both components are accessible
using a Web browser.
Forms are created using a standard HTML editor. A parser extracts all input
fields from the form and presents the user with a suggestion for the definition of
the corresponding database table. The user can alter the data-types and creates
the form table. The HTML form is stored in the database.

• HTTP Server: The HTTP server is the interface between the Web and the workflow
system. It translates the requests from the users to calls of the corresponding proce-
dures of the workflow system.

11



1.2. THE SYSTEM COMPONENTS

• Browser: Every interaction with the system is done by a Web browser. This allows
wide availability and platform independence and made system implementation easier.

12



2 The HTML–Interface

For using the @enterprise administration component you must have a web browser in-
stalled on your machine (Internet Explorer, Netscape, Mozilla, etc.).

Login to the system either as sysadm or as another user. In the latter case you will be
redirected to the worklist component. Click the @enterprise menu and "Administration" to
enter the system administration (you will see this link only if you have the right "admin").
Fig. 2.1 shows the structure of the main window.

Figure 2.1: System Administration

The interface is split up in the following parts:

• Information: The top frame contains information about the logged in user and actual
running server.

13



2.1. TABLES

• Toolbar: Directly positioned under the information frame is the toolbar which con-
tains different functions for manipulating the informations displayed in the working-
area. Four functions are always visible on the right end of the toolbar:

– Help: opens @enterprise help in a new window.

– Dashboard: shows your dashboard in the workingarea.

– Worklist: switch to the worklist component of @enterprise .

– Logout: logout from @enterprise .

– Note: If this symbol appears, a modification at the @enterprise-system was
made. By clicking the symbol you will get nearer information, if you have to
restart the server or have to refresh the cache-structures.

– Information: If this symbol appears , news are available. By clicking the
symbol a popup will be opened, which contains the news.

• Navigation: the navigation frame on the left contains the following elements:

– Organization: Contains links for administration of the application-independent
information: User, Organizational Units, Organizational Classes, Organization
Hierarchies, Servers, Permission Lists, Interface and Keywords.

– Applications: This area contains subtrees for every application. For each ap-
plication a link to its Processes, Forms, Tasks, Functions, Roles, Rights, Ob-
jectclasses, Function Group and GUI-Configuration is shown. This area also
contains a link to the overview of all applications, called Application list.

– Search: This folder contains links to the various search functions (Process
Search, Document Search, Extended Search and Stored Queries).

– Admin-Tasks: Shows a list of administration tasks, for example for restarting
the server, exporting data, etc.

– Configuration: All functions for configuring your installation are placed here.

• Working area: The working area is the main part of the interface. It contains dif-
ferent masks and tables for manipulating the master data, configuration etc. After
opening the administration your dashboard is displayed here. You can change the
content of the working area by activating a link of the navigation area.

2.1 Tables

Master data are displayed in tables initially. The table contains the different objects in its
rows and the columns show different information of the respective object.
Detailed information and additional functions for the object are displayed in an own win-
dow (see chapter 2.2). You can open this window by double-clicking a row in the table or
selecting the row first and activating the toolbar-function edit secondly.

Before the table is shown, the system checks the length of the table. If it exceeds the de-
fined limit, the system asks the user whether he will view the full table. The limit can be

14



2.1. TABLES

Figure 2.2: Example for Tabledisplay (Roles)

configured in the system configuration (parameter group Localization).

Following formats are used to display the tablerows:

• Last Changed: The row which is changed at last is colored.

• Inactive Entries: Inactive objects are displayed with grey and italic letters. Addi-
tionally forms, where the formclass can not be loaded are marked as inactive entries,
too.

• Selected Entries: Actually selected entries are colored.

2.1.1 Column picker, Sorting and Filter

You can change the number of displayed columns by using the column picker. The column
picker is placed rightmost of the table header. Activate the functions and a popup-window
containing the names of all actually visible and possible columns opens.

Already visible columns are displayed with a small checkmark. To add a new column to the
table, activate a column name (without the checkmark). The table refreshes and the selected

15



2.1. TABLES

column is displayed. To remove a column from the table, activate a column name (with the
checkmark). The table refreshes without the removed column.

You can change the sorting column and sorting direction by activating a column header.
Which column and direction is actually used for sorting is marked by a small arrow left of
the column name.

The link Filter helps you to keep an overview if your table contains a lot of entries. The
filter can be seen as selection criteria to mask certain entries in your table.

By clicking on the corresponding column header of your table a context sensitive filter menu
with the following entries is shown:

• Order Ascending: The entries of the table are ordered in ascending order by the
current column.

• Order Descending: The entries of the table are ordered in descending order by the
current column.

• All Entries: The use of the column filter of the current column becomes nullified.

• User Defined: By selecting this menu item a HTML–page is shown where you can
enter a certain value. If you confirm your entries in this page by clicking the button
”Ok” the table is filtered by the corresponding value.

• The first 20 different column entries; if you select one of these entries the column
becomes sorted by this entry.

If you want to save the current combination of filters you have to click the link ”Filter” in
the heading of the table. The filter menu is shown:

• Save Filter: By selecting this menu item you save the current combination of column
filters under a name defined by you. You can also enter a description for the filter.

• Delete Filter: By selecting this menu item you delete the filter which is currently
active. There is no undo function for deleting a filter!

• All Entries: The use of the saved filter is nullified.

• A list of all saved filters. If you select one of these entries the table is filtered by
this filter. The list can also contain filter which have been defined by the system
administrator. These filters can only be used but not deleted by you.

When a filter is selected only those entries of the table are displayed which match all the
criteria specified by the filter.

2.1.2 Standard Functions

Following functions are displayed for manipulating most of the tables in the administration:

• New: opens object-details for creating a new object.

16



2.2. OBJECT DETAILS

• Edit: opens object-details for updating, deleting, viewing the history etc. the infor-
mation. Depending on the class of the object further functions may be available on
this page.

• Delete: deletes selected objects.

• View: opens object-details in read-only-mode, excepting forms and processes

• Search: If you insert a search string and click to "Search" button the result list will
contain all objects matching the search string. Normally, the string is matched against
the id and name of the objects, the text left of the input field names the search at-
tributes.

• Extended Search: With the button "Extended Search" you can search in all attributes
of the object.

• All Entries: views the complete list of objects of the class.

• Select All Entries: mark all entries as selected by activation this function.

• Refresh: Refresh the content of the working area.

2.2 Object details

The detail view of an object can be opened by double-clicking the entry in the table, or
selecting the table row and activating the edit-function in the toolbar. The object-details are
buildup as tabbed pane. Each tab has its information and function to the actual object (see
Fig. 2.3).
The main functions of the object details are:

• OK: Activating this button saves the changes in the database and closes the window.
The table refreshes.

• Apply: Activating this button saves the changes in the database and refreshes the
table. You can activate this button only if the actual tab contains a mask where you
can edit the information directly.

• Cancel: Close the window and discard the changes.

• Delete: Delete this object from the database.

2.2.1 Tab: General

In general the tab General is the first tab of the object-details. Here you can view or edit
the general settings of the actual object. After changing the attributes save them through
activating the button Ok, Apply or changing the tab. In this tab the button delete is active,
too. This function is the same as the function Delete in the toolbar outside.

17



2.2. OBJECT DETAILS

Figure 2.3: Objectdetails: Example

Apply changes later

Some objects can be changed so that the changes become effective at a future date. The
field "Apply changes at" on the detail mask provides this functionality.

Insert in the field Apply changes at the date (and time) the changes should get effective.
After activating the button Ok, Apply or changing the tab the deferred changes are saved.

If you view the detail mask of an object with such pending changes, you will see the date
when the changes get effective in the field Object changes at. Activating the icon beside this
field opens the detail-view of the changes. Here you can discard the changes by activating
the button Discard Changes.

Activating / Deactivating objects

Some objects have the attribute "active" indicating whether the object is currently usable or
not. In the detail mask of these objects you can manipulate this attribute with a checkbox.
If the checkbox is not checked, the object is inactive. This means for:

• users: the user cannot log in and cannot receive a worklist entry.

18



2.2. OBJECT DETAILS

• processes: the process cannot be started (except via the API).

• roles, role assignments: the role cannot receive a worklist entry.

In the table of objects, the inactive items have a grey background and italic letters.

Internationalization

The name of application-dependent objects can be translated into the available languages.

The name translated into the actually used language is displayed beside the field Name as
link. After activating this link the internationalization for all available languages is dis-
played. Clicking the button Close closes the window. How you can change the internation-
alization is described in chapter 3.

2.2.2 Tab: History

This tab shows the history of changes on this object (see Fig. 2.4). You can even view the
older versions of the object by activating the function view in the toolbar.

Figure 2.4: Tab: History

2.2.3 Tab: Access

This tab shows you who has which access to the object directly or indirectly via permission
lists (see Fig. 2.5). You can edit the access rights to this object here, see chapter 5.

2.2.4 Tab: Referenced By

If you select the tab Referenced By, an overview about all objects will be shown, which
reference on the current object (see Fig. 2.6). The objects are displayed in a hierarchical
structure. The symbols will be described as follows:

• Plus-sign: this object has one or more sub-objects, which are not shown yet. If you
click on the plus-sign, the sub-objects will be shown. Furthermore the plus will be

drilldown.png

converted into a minus.

19



2.2. OBJECT DETAILS

Figure 2.5: Tab: Access

• Minus-sign: this sign shows, that a hierarchy is already expanded. If you click on thedrillup.png

minus-sign, all objects of this hierarchy will be hidden. Furthermore the minus will
be converted into a plus.

• Expand all: by this sign the whole objects can be expanded or the sub-objects can be
collapsed.

• Blue circle: shows, that a detail view of the object exists.
drilloff.png

2.2.5 Further functions

Some functions are used in the masks again and again. The following chapters describes
this functions.

• Select: Activating this function opens a new window where you can select a object.
The selected value is inserted in the field beside this function. For example: selecting
a user, an organizational unit.

20



2.2. OBJECT DETAILS

Figure 2.6: Tab: Referenced By (Roles)

• Remove: Activating this function removes the value of the field beside. This function
is always combined with the Select-function.

Since @enterprise version 8.0 drop-down lists are integrated. By activating this sym-
bol, the content of the list is displayed, where you can select the needed object.

• Calendar: After activating this function a calendar is displayed. The calendar helps
you selecting a date. Detailed information can be found in the user manual.

• Classpath-Checker: With the Classpath-Checker you can check URLs. The existing
class and also the existing method and the correct method-signature will be checked.
In special cases will be checked, if the class implements the required interface (e.g.
Logger Class must implement the interface com.groiss.log.ILogger). If the URL can
be found in the classpath, the symbol of the Classpath-Checker changes its color to
green. In any other case the color of the Classpath-Checker is red.

21



3 Ids, Names and Internationalization

3.1 Ids and Names

In @enterprise all master data objects are identified internally with an unique identifier
(id). The name is normally used in the user interface. According to the object class the
following attributes are used as identifiers:

• id

• name

• both the id and the name

• a combination of id and version

• a combination of name and version

The object classes and their corresponding identifiers are listed in table 3.1.

Within @enterprise the id of an object is unique and furthermore the id is also unique for
all applications of @enterprise. Therefore it is not possible to create an object of the same
class in different applications with the same ids (e.g. user A in application X and user A in
application Y).

Another peculiarity of @enterprise is, that the user and roles are sharing their scope, i.e. it
is not possible that within one @enterprise–server there are a user and a role which ids are
identical or where the name of the user corresponds to the id of the role or vice versa.

For a syntactically correct id the following rules apply:

• Ids start with a letter or a $ or / or \. Then, additional characters from the described
set or digits can follow.

• The complete length of an id must not exceed 80 characters.

• Ids can also contain special characters (e.g. email-addresses), but whitespaces, excla-
mation marks and commas are not allowed. In a WDL definition the agent-id must
start with an exclamation mark, if the id is no "simple" id.
Example:

22



3.1. IDS AND NAMES

Object class Identifier
User Id
Organizational Unit Id
Task–Function Id
Access List Name
Object Class Name
Function Group Id
Role Id, Name
Right Id, Name
Organizational Class Id, Name
Organizational Hierar-
chy

Id, Name

Application Id, Name
Server Id, Name
Task Id+Version
Process Id+Version AND Name+Version
Form Id+Version AND Name+Version

Table 3.1: Object classes and their identifiers

!right.user@xy.com do_something(f);

23



3.2. INTERNATIONALIZATION OF META DATA OBJECTS AND OBJECT
CLASSES

3.2 Internationalization of Meta Data Objects and Object Classes

In @enterprise it is possible to internationalize object classes and all meta data where it
makes sense. Meta data which can be internationalized are:

• Applications

• Tasks

• Task Functions

• Roles

• Rights

In implementing a corresponding java.lang.ResourceBundle and putting it into the corre-
sponding application directory, it is possible to internationalize your own applications. For
further details on this topic read the programming handbook of @enterprise. There you
find also informations on how to internationalize the meta data of the default application.

24



4 Definition of the Organizational
Structure

4.1 Roles

Roles define groups of participants exhibiting a specific set of attributes, qualifications
and/or skills. Examples are Supervisor or Insurance Underwriter. To assign a role to a
user you must first define the role, then assign it to one or more users (see the next section).

The object-details of roles contain the following tabs:

• General

• Permissions

• User

• History

• Access

• Referenced By

4.1.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the role.

• Name: Name of the role. By activating the I18n-link beside this field, the translations
(if defined in application mask - tab Properties) of this key are displayed and can be
edited directly by changing the values and activating the button Save. The changes
are stored in the resource file of this application (see section 6.9).

• Application: Application, the role belongs to.

• Type: @enterprise distinguishes three role types:

– local: A local role is assigned to a user in one organizational unit.

– global: A global role is independent of organizational units.

25



4.1. ROLES

Figure 4.1: Objectdetails: Roles

– hierarchic: A hierarchic role is assigned to a user in an organizational unit, but
it is valid also for all sub-OUs, (the organizational units which are below in the
organizational hierarchy).

• Description: Free text.

• Reference Role: Reference roles are used for defining different roles with different
rights but one "reference" role used in process definitions.

1. Example: Assume we have defined the role assi for assistant and use this role
in process definitions. the roles asi_no_rights oder assi_many_rights are assigned to
persons with no or with many extra rights, respectively. Both roles have assi as refer-
ence roles, so that an activity assigned to the role assi is also assigned to the persons
with the other to assi* rights.

2. Example: Our company has assistants and a department manger. The first agent
of process definition P is the role dm_assi. This role is a reference role of roles dm
and assi. The users have the roles dm or assi, but assistants and department managers
are able to start process P and have the same rights in first process step.

26



4.2. RIGHTS

Note, that it is not possible to define reference roles for reference roles.

• Active: see chapter 2.2.1.

4.1.2 Tab: Permissions

In this tab you can add and edit the permissions assigned to the role. Users who are as-
signed to the role have the permissions assigned to the role. Use the toolbar functions for
manipulating the permissions.

4.1.3 Tab: User

This tab shows you which users are already assigned to the role. You can open the details
of this relationship.

4.1.4 System-defined Roles

In @enterprise four system-defined roles exist:

• all: A useful role you can assign to all users. If you define then rights for this role,
everybody has this right. Processes with all as agent of the first task, can be started
by all workflow participants (or more exactly: by everybody, who has the role all
assigned).

• sys: This role is used for system administration, it allows you to perform all system
administration activities.

• home: The home-role connects a user to a "home" organizational unit. A user can
have at most one home OU.

• dept: The role dept is used as "Inbox" of an organizational unit. If you want to send
a process instance to a OU without knowing the specific user, you can send it to the
role dept. Note, that you must assign this role to a user, before you can use it as agent
of a task.

4.2 Rights

Rights are used to restrict some operations to selected users. The assignment of rights to
users is directly or using roles. See chapter 5 for a detailed descriptions of the @enterprise
right system.

The object-details of rights contain the following tabs:

• General

• User

• History

• Access

• Referenced By

27



4.2. RIGHTS

4.2.1 Tab: General

Figure 4.2: Objectdetails: Rights

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the right.

• Name: Name of the right. By activating the I18n-link beside this field, the transla-
tions (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.9).

• Application: Application, the right belongs to.

• Description: Free text.

4.2.2 Tab: User

In this tab you can see a list of users who have the current right. If the right is limited to a
certain object, this object is displayed in the column Target Object.

28



4.2. RIGHTS

4.2.3 System-defined Rights

In @enterprise the following system-defined rights exist:

• create: Create an object.

• edit: Edit an object.

• delete: Delete an object.

• edit-acl: Edit the rights somebody has for an object.

• view: View something.

• execute: Execute the object (for example a function object).

• conf: Right to configure the system.

• admin: Right to enter the system administration. Necessary for some administration
tasks, like viewing the log file.

• view_procinst: View process history, list of documents and notes and all process
forms and versions.

• proc_inst: Edit Process Instances: Necessary to cancel process instances or edit the
agent, view process history, list of documents and notes and all process forms and
versions. The right is resolved in the context of the organizational unit of the process.
If someone has this right for an OU, he may cancel all process instances that have
been started in this OU. Furthermore there is the possibility to add this right to a
process definition. For this purpose the object class Processes has to be extended by
the right proc_inst.

• dept_edit: Used to edit organizational units.

• set_agent: Set the agent in a process instance, view process history, list of documents
and notes and all process forms and versions.

• stat: Create statistics, except user-specific.

• searchable: Search in forms and list stored queries.

• named_user: qualify user as named user.

• abort_step: Abort a step in a process-instance.

• editCal: Used to edit calendar entries.

• insertCal: Used to create calendar entries.

• viewCal: Right to see calendar entries of other users.

• share: Right to allow other users to use its objects (e.g. worklist filter)

29



4.3. USERS

4.3 Users

All persons, which work with @enterprise , must be registered as "users". At the extended
search the number of shown users in the user list can be influenced by different search-
attributes. For example a search-attribute is the Organizational Unit, only these users will
be listed, who have a role in this OU.

The object-details of roles contain the following tabs:

• General

• Role Assignments

• Substitutions

• Role-Substitutions

• History

• Access

• Permissions

• All Permissions

• Settings

4.3.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: unique identifier of the user.

• Surname: Surname of the user.

• First Name: .. of the user.

• Title: some (academic) title

• Description: Free text.

• E-Mail: Email address of the user.

• Phone Number: Phone number of the user (or some other text, we don’t use this
field).

• Server: The @enterprise server, where the worklist is accessible.

• Language: Select the language for the user interface.

• Active: see chapter 2.2.1.

• Order Attribute: free text, can be used for sorting.

• Password: Password for login.

30



4.3. USERS

Figure 4.3: Objectdetails: Users

• Date of the last password change: Date, when the password was changed.

• Password-Policy:

1. Password never expires: The password of this user never expires.

2. Has to change password at next login: The user has to change his password at
the next login.

3. Cannot change password: The user should not able to change his password.

• Apply changes at: see section 2.2.1.

4.3.2 Role Assignments

In the role assignment mask you can specify the following attributes:

• User: The user you want to give a role.

• Role: The role you want to give to the user.

• Organizational Unit: the organizational unit where the role should be assigned. Note,
that this should be left blank for global roles but is mandatory for local and hierarchic
roles.

• Acitve: see chapter 2.2.1.

31



4.3. USERS

Define a Substitute of a Role of a User

To make substitutions more fine-grained, it is possible to define one or more substitutes for
each role-assignment. Use the following steps to define such a substitution:
Activate the tab Substitutions of the role-assignment to add role substitutes.

Hint: The timer CurrentSubstitutes activates/deactivates the substitution, if a from- and/or
to-date has been entered (see section 9.1.6).

4.3.3 Tab: Substitutions

For each user you can define several substitutes, each of them with an optional substitution
interval.
In this tab you can define the personal substitutes. A popup window for the administration
of the substitutes will be opened.

Hint: The timer CurrentSubstitutes activates/deactivates the substitution, if a from- and/or
to-date has been entered (see section 9.1.6).

4.3.4 Tab: Role-Substitutions

The tab Role-Substitutions provides information about role substitutions which concern you.

This HTML–page is divided into two sections:

1. The first section, called Users who substitute my roles, lists all users, who substitute
you in a certain role. If you are substituted in a certain role and a task is forwarded to
this role, then this task also appears in the role–worklist of your substitute.

2. The second section, called Users whose roles I’m substituting, lists all roles you got
due to a substitution. Tasks that are assigned to these roles will appear in your role–
worklist.

The table Users who substitute my roles contains the following information:

• Active: Indicates, if a role is active (= green point) or inactive (= red point).

• Role: Name of the role your substitute have got due to his substitution.

• Organizational Unit: Name of the organizational unit in which your substitute have
got the corresponding role.

• User: Here you find the name of the user who substitutes you in a certain role.

• From: This column shows the point in time when your substitute start having the
role substitution for you.

• Until: This column shows the point in time until when your substitute stops having
the role substitution for you.

32



4.4. ORGANIZATIONAL UNITS

The table Users whose roles I’m substituting contains the following information:

• Active: Indicates, if a role is active (= green point) or inactive (= red point).

• Role: Name of the role you have got due to a substitution.

• Organizational Unit: Name of the organizational unit in which you have got the
corresponding role.

• User: Here you find the user whose role substitution you have got.

• From: This column shows the point in time when you start having the role substitu-
tion for this user.

• Until: This column shows the point in time until when you have the role substitution
for this user.

4.3.5 Tab: Permissions

You can assign rights to users either directly or via roles. See chapter 5 for an introducton
to the @enterprise right system.
Edit the personal rights of a user in this tab. A HTML–page is shown which enables you to
update the actual right.

4.3.6 Tab: All Permission

The overview shows all rights, either assigned directly to the user or via a role assignment.
Furthermore this tab contains a view of rights (of the user) at a specified time stamp.

4.3.7 Tab: Settings

With the help of this function the system administrator is able to update the settings of the
current user. The mentioned settings are described in the user manual of @enterprise.

4.4 Organizational Units

The structure of an organization can be modeled under the links Organizational Units and
Organizational Hierarchy. The first allows the creation and administration of the units of
your organization, the second is used to define the hierarchy between them.

Note, that it is possible to define more than one organizational hierarchy. Each application
uses exactly one of these hierarchies, but one hierarchy can be used in several applications.

The object-details of organizational units contain the following tabs:

• General

• Super Organizational Units

• Roles

33



4.4. ORGANIZATIONAL UNITS

• History

• Access

• Referenced By

4.4.1 Tab: General

Figure 4.4: Objectdetails: Organizational Units

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the OU.

• Name: Name of the OU.

• Description: Free text.

• E-Mail: Email address of the OU.

34



4.5. ORGANIZATION HIERARCHY

• Phone Number: Phone number of the OU (or some other text, we don’t use this field).

• Address: Address of the OU.

• External OU: When checked, the OU is external.

• Dependent: This attribute is used in the right system.

• @enterprise installed: Specifies whether the OU has @enterprise installed.

External OUs and OUs where @enterprise is not installed can not be used in process
instances.

• Organization Class: The organization class the OU belongs to.

• Active: see chapter 2.2.1.

• Follow–OU: It is possible that some organizational units are replaced by other or-
ganizational units due to some reorganization of your company. Through this field
it is possible to adhere by which OU the current OU has been replaced during the
reorganization.

• Order Attribute: Here a free text can be entered. At the implementation of own
application this text can be used for sorting organizational units independent of the
available attributes.

Here you can also use the functions Apply changes later and Activate.

4.4.2 Tab: Super Organizational Units

It is possible to add an organizational unit to several organizational hierarchies. Therefore
a organizational unit can have more than one super (parent) OU, namely one per organiza-
tional hierarchic.

4.4.3 Tab: Roles

Here you can view the role assignments in the OU.

4.5 Organization Hierarchy

After installation the system contains one hierarchy with name default. The default appli-
cation uses this hierarchy.

The object-details of organization hierarchies contain the following tabs:

• General

• Organization Hierarchy

• History

• Access

• Referenced By

35



4.5. ORGANIZATION HIERARCHY

4.5.1 Tab: General

Figure 4.5: Object-Details: Organizational Hierarchies

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the OU.

• Name: Name of the OU.

4.5.2 Tab: Organization Hierarchy

In this tab you can see the buildup of the hierarchy. Every organizational unit attached to
the tree is displayed with its name.

Navigation Through The Hierarchy

The buildup of the hierarchy uses three symbols:

• blue circle: the actual organizational unit has no further sub-units.

• plus-sign: If a plus is displayed in front of a organizational unit in the current hier-
archy this means that it has at least one subordinate organizational unit. If you click
onto the plus the organization hierarchy becomes expanded at this position and all
subordinate OUs of the next level are displayed. Furthermore the plus is converted
into a minus.

• minus-sign: If a hierarchy is already expanded you can collapse it by clicking on
the minus in front of the corresponding hierarchy. By doing so the minus becomes
converted into a plus.

Functions

Functions of the hierarchy are displayed in the toolbar or in the popup-window, which opens
after activating an entry of the hierarchy.

• Expand Hierarchy: opens the whole hierarchy under this node.

36



4.5. ORGANIZATION HIERARCHY

Figure 4.6: Tab: Organizational Hierarchies

• Add existing Organizational Unit: Select an OU and put it in the hierarchy as child
of this OU.

• New Organizational Unit: Create a new OU and put it in the hierarchy as child of
this OU.

• Detail: Edit the attributes of the OU or delete the OU.

• Remove from Hierarchy: removes the OU from the hierarchy.

• Set Position in Hierarchy: You can edit the position of this OU in the hierarchy.

The first function in the toolbar is Add To Hierarchy. Activating this function opens a di-
alog. Here it is possible to search for a organizational unit and to click the button "Apply".
By doing so you add the selected OU at the top level of the hierarchy.

If you have been searching for a certain OU with the help of the function Search in the
toolbar, those OUs which have been found in the hierarchy are displayed in bold font. In
addition there are "next"– and "previous"– links (displayed by >> and <<) which make it
possible to navigate through the found OUs.

37



4.6. ORGANIZATION CLASS

4.5.3 Function Merge organizational hierarchies

With the toolbar function Merge organizational hierarchies it is possible to add an organi-
zational hierarchy to an second one. This could be possible, if there are two @enterprise
installations where the organizational hierarchies should be merged. In the first installation
(A) the tree is managed and should be submitted to second installation (B) via XML export.
Installation B contains also additional OUs with hierarchies which should be kept.
In installation B an own organizational hierarchy is created for the available OUs and re-
lations. After synchronizing the organizational hierarchy with installation A (via XML
import) the relations of installation B will be merged into the organizational hierarchy with
this merge function..

Example:

Organizational hierarchy default (on A):
Dept. A

Dept. A1
Dept. A2

A1 and A2 are Sub-OUs of A.

In installation B the tree should look like this:
Dept. A

Dept. A1
Dept. A2

Dept. X
Dept. Y

Dept. Z

That means that X is under A2 and Z is under Y in an own tree.

For the usage of function "Merge organizational hierarchies" the private
structure of B must be defined in an own organizational hierarchy:

Dept. A2
Dept. X

Dept. Y
Dept. Z

A merge of this structure in the default organizational hierarchy results
in the desired structure.

4.6 Organization Class

Organization classes are used to classify the organizational units. This information is not
used from @enterprise , but can be useful when modeling the structure of big organizations.

38



4.6. ORGANIZATION CLASS

The object-details of organization classes contain the following tabs:

• General

• History

• Access

• Referenced By

4.6.1 Tab: General

Figure 4.7: Object-Details: Organizational Classes

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the organization class.

• Name: Name of organization class.

• Description: Free text.

39



4.7. KEYWORDS

4.7 Keywords

By clicking this link a HTML–page will be opened, where you can administrate a list of
keywords. The entered keywords can be assigned to individual documents in the DMS (see
User Manual). These keywords can be used in the document-search.

4.8 Server

This meta data object is still offered for the reason of downward compatibility to prior
versions of @enterprise. There it has been relevant for the distribution mechanism.
Since version 6.1 @enterprise has a new so called cluster architecture and therefore the
distribution mechanism is not used any longer. However, one server object is still required.
It represents the current installation of an @enterprise–server. If this server is deleted acci-
dentally it has to be inserted again with the attributes which are defined in the configuration
file of @enterprise.

Hint: The settings about HTTP-Port and RMI-Port must be set in Configuration of @en-
terprise.

40



5 The @enterprise Right System

5.1 Introduction

The right system of @enterprise allows a very flexible assignment of rights to users.
The central data structure of the right system is the permission. A permission describes who
has which right on which object.
Permissions can be grouped to so-called permission-lists. They can be used to group per-
missions together and use them for several objects.
Standard-permissions are used to assign permissions to new objects. You define standard-
permissions for an object class. If a new instance of the class is created (an object) the
defined standard-permission is assigned to this object.
In the following section we describe these concepts in detail.

5.1.1 Rights

For the administration of rights see section 4.2.

5.1.2 Object Classes

Object classes define the classes which can be used in the right system. For each object
class you can define two things:

Figure 5.1: Update Object Class

41



5.1. INTRODUCTION

• The rights applicable for the object class. For example the right ’execute’ is useful
for functions but not for persons. The rights specified here can then be selected when
defining permissions.

An additional mode can be selected: either "create", "edit", "view", or "execute".

If one of these modes is selected together with a right r, the right r is used for the
corresponding operation (create, edit, view, execute) instead of the original right.

• The standard-permissions: You can select a permission-list as standard permission
for the object class. Moreover, if you select an organizational unit you can define a
standard permission specific to an organizational unit. This would then be used, when
a new object is created in the context of an OU, for example a document belonging to
an OU.

5.1.3 Permissions

A permission describes WHO has which RIGHT on which TARGET. Therefore, it contains
the following information:

• Who: a user, a role or a role together with an organizational unit.

• Right: a right

• Target: the object, on which the right will be applied or the object class, when the
permission is for all objects of this class.

• The scope of the permission:

1. The permission is for all objects, no target is specified.

2. The permission is for all objects of a class, the target class is specified.

3. The permission is for one object, which is specified as target.

4. The permission is for all objects belonging to an organizational unit. As target
the OU is specified.

5. The permission is for all objects belonging to the organizational unit, where the
agent has the role specified under "Who".

• The scopes 4 and 5 of the previous list can be refined with an OU-Scope. The set
of OUs where the permission is valid can be modified or extended in the following
ways:

1. local: The permission is given for the specified organizational unit.

2. hierarchic: The permission is given for the specified OU and all sub-OUs.

3. dependent hierarchic: The permission is given for the specified OU and all de-
pendent sub-OUs.

4. independent: The permission is given for the next upper independent OU.

5. independent and dependent-hierarchic: The permission is given for the next
upper independent OU and all dependent sub-OUs.

42



5.2. DEFINITION OF PERMISSIONS

6. super-OU: The permission is given for the next upper OU.

• Yes/No: The permission is given or not given.

To understand the different OU-scopes see the following example. Fig. 5.2 shows an orga-
nizational hierarchy with independent and dependent OUs. The grey circles represent the
dependent OUs.

Figure 5.2: Organizational Hierarchy with independent and dependent OUs

A permission for the organizational unit OE2 comprises the following units in the different
scopes:

• local: OE2

• hierarchic: OE2, OE3, OE4, OE5, OE6, OE7, OE8, OE9

• dependent hierarchic: OE2, OE4, OE6, OE7

• independent: OE2

• independent and dependent-hierarchic: OE2, OE4, OE6, OE7

• super-OU: OE1

5.1.4 Permission-List

Permission-lists are aggregations of permissions. They can be attached to several objects
to define identical access rights to this objects. For each object one permission list can be
defined.
The permissions relevant to an object are therefore the permissions where the target is the
object plus the permission where the target is a permission list and this permission list is
used for this object.

5.2 Definition of Permissions

In the @enterprise system administration permissions can be defined from two sides: The
permissions of an agent (user or role) can be defined in the respective detail masks. The
permissions applied to an object can be edited from the detail mask of the object ("Access"
button). The permission-lists can be administrated from the link in the navigation frame of
the administration main window. The standard-permissions can be edited via links in the
tables of the object classes.

43



5.2. DEFINITION OF PERMISSIONS

5.2.1 Permissions of Users

In the table of users there is a link to the permissions of the selected user. If you click on
the link a window opens with a list of the permissions of the user. Note that you only see
the permissions directly assigned to a user, the permissions assigned to the user via the role
assignments can be edited in the role administration.
You can insert, edit and delete table entries in the usual manner.

5.2.2 Permissions of Roles

The permissions of roles are edited in the same way as the permissions of users.

5.2.3 Administration of Permission-Lists

Click on the link "Permission-List" in the navigation frame. You can create permission-lists
when clicking at the add button, insert the name in the "General" tab and administrate the
permissions in the second tab.
The permissions for the list can be created by clicking the link in the table line of a permission-
list. But to assign a permission to a permission-list you must have right edit-acl for that list.
See the next section for the usage of permission-lists.

5.2.4 Permissions for an Object

Objects underlying the right system have the tab "Access" in the detail mask. If you click
the button, a window opens where you can see two frames:

• In the first frame you can edit the permissions for the object.

• In the second frame the permission-list of the object can be viewed and changed.

In the mask for the permission you can select the agent (user, role, organization) who has
the permission, the right and the organization scope.

5.2.5 Permissions for Permissions

To edit permissions which refer not to a specific object a agent must have the right edit-acl
for all objects.
If a permission refers to an object, the agent must have the right edit-acl for the object or
the object class.
Additionally, the agent needs the right execute for the right which is used in the permission.
This allows to restrict the permission of assigning rights to specific rights.

5.2.6 Permissions for Role-Assignments

The manipulation of role-assignments is also a special case, because a user can change
his permissions by adding roles. Therefore, for changing role-assignments two rights are
necessary: First, the right to edit the user, second the execute right for the role.

44



5.3. STANDARD SETTINGS

5.2.7 Administration of Object Classes

Object classes are used to define the usability of rights to object classes. Only when a right
is assigned to an object class, the right is usable for objects of this class.
Furthermore, the standard-permissions (see above) of object classes are defined here.
Informations of the Object Class detail window (required fields are bold):

• Name: The name of the object class. Detailed information to ids and names can be
found under 3.

• Class: The Java–class implementing the object class.

• To Application: Application, the object class belongs to.

For object class objects the functions available under 2.2 are available. Furthermore it is
possible to define rights and standard permissions respectively for object classes.

5.3 Standard Settings

The @enterprise standard rights are listed in section 4.2.
The role sys has the rights edit, execute, edit-acl, create, and admin for all objects. The user
sysadm has the role sys. Additionally, sysadm has the right conf.

All changes of master data can be performed from users with the sys role.
For changing the configuration, viewing the logfile, shut down the server, and some similar
tasks the conf right is necessary.

5.4 For what you need which rights?

The tables 5.1 and 5.2 will give you an overview for what you need which rights:

5.5 Example

This section contains an example for using the right-system.
Problem: The user John Smith should get the permission to administrate users of the or-
ganizational unit "Service". He should be allowed to edit the user attributes and the role-
assignments.
For editing users he receives the right edit for objects of the organizational unit "Service".
The admin right is needed to go to the administration.
For editing the role-assignments, we define the role edit-roles: With this role every role-
assignment except for the role sys can be edited.

45



5.6. PERMISSIONS AND SUBSTITUTIONS

User A wants ... Necessary Right (Id) Apply ...
to create a new object create on all objects or the objectclass

to edit or delete an object edit on the object, the objectclass, all objects or
the OU (if the object is assigned to an OE).
True for all objects apart from OUs.

to edit or delete an OU dept_edit on all objects, the objectclass Organiza-
tional Units or a defined OU

configurate conf on all objects

to work in the adminis-
tration

admin on all objects

to view the log-file admin on all objects

to enter, edit or delete a
permission

edit_acl AND execute on the object, the objectclass or all objects
(edit_acl); on the right (execute)

to enter, edit or delete a
role assignment

edit AND execute on user (edit); on the role (execute)

to execute a function execute on all objects, the objectclass Application
or a defined application

to abort a process proc_inst on all objects or all OUs or the OU, the pro-
cess is started in

to change the agent in the
history

proc_inst OR set_agent on all objects or all OUs or the OU, the pro-
cess is started in

to view process history,
list of documents and
notes and all process
forms and versions

view_procinst on one process or all

to archive processes conf on all objects

to search for process in-
stances

view AND proc_inst on all objects or all OUs or the OU, the pro-
cess is started in

to create statistics stat on all objects

to execute stored queries execute on all objects, the objectclass Stored
Queries or a defined query

to delete master data delete on all objects, the objectclass

delete a standalone form delete on the form class

see changes of forms in
process instance pi

proc_inst OR set_agent on the OU/process definition, where pi is
running

see changes of forms in
process instance pi

view OR user A is agent of the
stepinstance

on the OU only, where pi is running

Table 5.1: For what you need which right?

5.6 Permissions and Substitutions

The behavior of the rights system in context for substitutions is worth considering. The
implementation follows the following two basic rules:

1. If a user takes a substitution he should not loose rights.

2. After taking a substitution the user should not have more permissions than both users
together.

46



5.6. PERMISSIONS AND SUBSTITUTIONS

User A wants ... Necessary right (Id) Apply ...
to create an object create AND edit on the objectclass and edit on the folder

to edit an object, edit
the metadata or replace a
document

edit on the object

to delete an object, delete
a folder with content

edit on the object, the folder and if the object is
a folder on the whole content

to view an object view on the object

to move an object edit on the source-folder and the destination-
folder

to copy an object edit AND view on the destination-folder (edit); on the ob-
ject or the if the object is a folder on the
whole content (view)

to rename an object edit on the object

to change the permis-
sions on the object (ac-
cess)

edit_acl on the object

to create a version edit on the object

to view a version view on the object

to delete a version edit on the object

to view the properties no right necessary

to delete a form delete AND edit on form class (delete), on the folder which
contains the form (edit)

to delete a subform delete AND edit on form class (delete), on the parent/main
form (edit)

Table 5.2: For what you need which right in the DMS?

Figure 5.3: Example: Permissions

The evaluation algorithm for permissions works as follows:

• Step 1: Evaluate the set of permissions without consideration of substitutions.

• Step 2: For all substituted users: Compute the set of all positive permissions (not
"denies") for the substituted user in the substituted roles.

Subtract all negative permissions of this user, regardless whether the right belongs to
a substituted role or not. Add the resulting set to the result.

47



6 Workflow Modelling

In the following chapter we describe the object classes necessary to define processes. In
principle, the definition of a process is the answer to the following question:
WHO does WHAT WHEN with WHAT?

• WHO: Who is responsible for the processing of a workflow? The agents must be
defined for every single activity in a workflow. It is usually defined using roles.

• WHAT: What is done in the workflow? The work is decomposed in activities, which
are done by one agent. The description of the tasks answer the WHAT question.

• WHEN: If you know which activities have to be done and who performs these activ-
ities, the order of execution must be defined. Often it is a simple sequence but can
have a complex structure containing loops, branches, and parallelism.

• WITH WHAT: For performing the activities some informations are necessary. It
must be defined, which activity needs which information and what new information
is produced in an activity.

We use forms to structure the information and describe the information exchange
between the activities.

The definition of workflows contains the following objects:

• Applications: Applications group processes belonging together.

• Tasks elementary activities in processes.

• Functions are representations of interactive Java-methods used for execution of ac-
tivities.

• Forms contain the local data of a process.

• Processes describe the structure of a business process.

• Interfaces allow the start of process instances by submitting an HTML form.

48



6.1. APPLICATIONS

6.1 Applications

Applications group processes belonging together. All workflow elements belong to an ap-
plication.

The object-details of application contain the following tabs:

• General

• History

• Access

• Properties

6.1.1 Tab: General

Figure 6.1: Object-Details: Applications

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the application.

49



6.1. APPLICATIONS

• Name: Name of the application. By activating the I18n-link beside this field, the
translations (if defined in tab Properties) of this key are displayed and can be edited
directly by changing the values and activating the button Save. The changes are stored
in the resource file of this application (see section 6.9).

• Organization Hierarchy: The hierarchy used for resolving hierarchic roles and
rights.

• Description: Free text.

• Application Class: A class, which implements the interface
com.groiss.wf.ApplicationAdapter can be specified. See the API documentation
and the Programming Guide for details.

• Client Application Class: Analogous to the Application class, for usage on the Java
Client.

• Application Directory: where the application is installed. Activate the icon View
Configuration to display the content of the appropriate configuration file.

• Version: Version of the application. It could be helpful in case of an upgrade to differ
applications of an older version of @enterprise.

• Startup Position: Applications are loaded due to this position in ascending order. It
could be necessary, if application A2 has references in application A1 and application
A1 has to be loaded before A2.

• Button Upgrade: This button is visible only, if a newer version of the application
has been found on the file system. By activating this button all defined upgrade-
actions will be performed. For further information about upgrading applications,
please take a look in the API of @enterprise (ApplicationAdapter.getVersion() and
ApplicationAdapter.upgrade()).

6.1.2 Tab: Properties

In this tab it is possible to define properties for this application. You can edit following
attributes:

• Resource Strings: Enter a path to a resource-bundle (*.xls- and/or *.properties-files)
which is used by this application, e.g. com.groiss.itsm.resource.Strings. If no resource-
bundle exists on file-system, the resource editor is able to create a new one (see chap-
ter 6.9). Further information about resource-bundles are available in Application De-
velopment Guide - chapter Internationalization of Applications.

• Application-Parameter: Here you can define parameters, which are used by this appli-
cation. These parameters are stored in a XML-file (properties.xml) and are accessible
by the Configuration of @enterprise (see section 10).

• User-Parameter: In this area you can define parameters for users, who use this ap-
plication. These parameters are also stored in a XML-file (properties.xml) and are
accessible by the Settings of each user (see User Manual - section The group Extras).

50



6.2. TASKS

This tab does not provide the creation of all HTML elements (e.g. textfields, radio-buttons,
etc.). For this purpose you have to create or adapt the file properties.xml of the correspond-
ing application (see Application Development Guide).

Hint: The functions of this tab are available only, if an Application Directory has been
specified.

6.2 Tasks

Tasks are the elementary activities in processes. The can appear in different processes of
the same application and on different positions in one process.

The object-details of tasks contain the following tabs:

• General

• Escalation

• Functions

• History

• Access

• Referenced By

6.2.1 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the task.

• Name: The name of the task. This name is shown in the task column in the worklist.
By activating the I18n-link beside this field, the translations (if defined in application
mask - tab Properties) of this key are displayed and can be edited directly by changing
the values and activating the button Save. The changes are stored in the resource file
of this application (see section 6.9).

• Version: Version number of the task, a positive integer.

• Application: Application, the task belongs to.

• Description: Free text, visible in the worklist via the link to the task details. It can
contain a short help text or instructions to the task.

• Preprocessing: Enter the name of a Java-method. The method is called, before the
task is put into the worklist of a user. Furthermore it is possible to enter a GROOVY
script in this field - enter groovy: <groovy-script> in this field. See the Programming
Guide for details of such methods.

51



6.2. TASKS

Figure 6.2: Object-Details: Tasks

• Postcondition: The condition which is entered here is checked at run-time when a
user finishes the task (sends it to the next agent). This condition could be also a
GROOVY script or XPath condition. If the condition is not true, finishing the task is
not possible. The syntax of such conditions is described in section 7.1.5. When using
Xpath conditions the prefix xpath: is needed analog to Groovy.

• Postcondition-Message: In this field you can insert the text of an error message, which
will be shown when the postcondition evaluates to false.

• Compensation: This method or GROOVY script is executed when the activity is
passed when going back to an earlier step in the process. It can be used to reestablish
a consistent state.

52



6.2. TASKS

• Take: This method or GROOVY script is called when the task is taken (from the
role-worklist to the personal worklist).

• Untake: This method or GROOVY script is called when the task is given back to the
role worklist.

• Max. Duration: The maximum duration of the task (in days, hours, or minutes).

• Cost: The costs of the task. This field is not used from @enterprise , but can be used
in some statistics.

• Set First Agent at Run-Time: specifies, whether the agent can be set at run-time.

• Set Further Agents at Run-Time: specifies, whether further agents can be specified at
run-time.

Hint: The last two attributes have the value ranges "none" "within Dept.", "all
Depts.". That means, no agents can be set at run-time, only agents belonging to
the same organizational unit can be set, or no restrictions apply.

• Active: Indicates, whether the task is active. Further information about (de)activation
of objects can be found under 2.2.1.

• Overwrite Current Version: On each update of a task, a new version is generated.
This can be suppressed, when the checkbox "Overwrite Current Version" is checked.

Hint: If you delete one task the assigned escalations and functions are deleted also.

6.2.2 Tab: Escalations

With the help of escalations it is possible to react on timeouts during the execution of tasks.
It is possible to define four different types of actions which determine what should happen
in the case of a timeout. The system timer "Escalations" of @enterprise is responsible for
checking the timeouts. If this timer is not running the system does not check if timeouts
occur or not! Please notice that every escalation object will be executed one time only!

This tab shows all already defined escalation-objects. You can edit them or add new one by
activating the functions in the toolbar.

You can edit the following attributes (required fields are bold):

• Escalation Type: Here you can select between 3 escalation types:

1. Activity due time: This escalation type is set as default and will be triggered in
the Worklist, Role-Worklist, Suspension List or Role Suspension List. For each
task the Maximum Duration in the tab Common can be set. This escalation type
will be fired, if this value was transcended.

53



6.2. TASKS

Figure 6.3: Object-Details: Escalations

2. Activity idle time: This kind of escalation will be triggered, when the task
remains for a while (Delay) in the Role–Worklist. This type works in the Role–
Worklist only. It is possible to enter a negative delay, but it makes no sense in
this case!

3. Activity unseen: This escalation type will be triggered, when the current task
is unseen in worklist or role-worklist.

• Step: Steps are not selectable in task escalations, only in process escalations.

• Delay: The period of time going by after the timer "Escalations" has noticed a time-
out (in hours or days). This value can be negative to react early enough on a deadline.
You can select between hours, days and Working days. Non-working days are Sat-
urday and Sunday. It is also possible to specify additional non-working days under
Configuration→ Calendar (see chapter 10).
Example:
If 2 working days (48h) are entered, today is Thursday at 4pm and the process has the
due date at the following Monday at 4pm, the escalation must be triggered (Assump-

54



6.2. TASKS

tion: Only Saturday and Sunday are non-working days).

• Action: In @enterprise four kinds of actions are distinguished:

– Send an Email: An e–mail is send to the recipient entered in the field "Recip-
ient". If the option Current Agents is selected, an e–mail to the agents of the
current task will be sent (if a valid e–mail address is entered on user detail-
mask). If the current agent of the task is a role, all users which have the role (in
this organizational unit) will be informed per e–mail.

In order to function properly a valid mail server has to be entered into the field
"SMTP Host" in the section "Communication" of the server configuration (see
Installation Guide of @enterprise). As sender of the mail appears either the
default value "enterprise@hostname" whereas the host name is the host name
of the @enterprise–server. If you don’t want to use the default sender enter the
desired sender into the field "Mail sender" which can be found beneath the field
"SMTP Host".
Example: enterprise@lima.groiss.com

– Customized Action: A Java–method which will be started at timeout. The pack-
age name has to be specified too. See the example in the Application Develop-
ment Guide.
Example: com.groiss.DemoClass.demoMethod

– Start a Task: Starts the selected task. If you entered a value into the field "Role"
the task will be started for this role. If this field remains empty the task is started
for the user who caused the timeout. The new task belongs to the same process
as the task which timeout caused the escalation action.

– Start a Process: Starts the selected process as subprocess of the current process.

• Description: Free text.

6.2.3 Tab: Functions

In this tab you can define relations of the task to functions (see Fig. 6.4). General informa-
tions about functions can be found in section 6.3.

You can add all functions of the list Available Functions to the task. The functions of the
list Selected Functions are already assigned to the task. To add a function select a func-
tion of the list Available Functions and activate the button >. To remove a function select a
function of the list Selected Functions and click the button <.

Your changes are saved after activating the button OK, Apply or when changing the tab.

6.2.4 Supplement of forms

Forms are typically editable by the current users of a process step corresponding to the form
visibilities. The most simplest corrections (e.g. setting another value in a read-only field)
needs to go-back to the appropriate agent/step.

55



6.3. FUNCTIONS

Figure 6.4: Object-Details: Functions

With the aid of the predefined Supplement-Task the handling can be simplified. This task
will be assigned to the process definition Process editor: Process→ Tasks. Now forms can
be assigned to this task and also form-field visibilities can be defined.
Users with rigth proc_inst or set_agent are able to edit forms via the process history.
The process history contains an icon Supplement which allows to start a supplement task
for the current process instance. This task will displayed in the worklist of the current user
who is able to change the form and finish the task. The changes are displayed in the process
history.
If the user ist not the current agent of the process instance (but contains one of the rights
above), then the creation of supplement task (and also finishing) can be triggered by chang-
ing and saving the form directly via the process history.

6.3 Functions

Task–Functions (or Functions) are representations of interactive Java-methods used for ex-
ecution of activities. Links to the functions appear in the worklist when working on a task.
The object-details of task-functions contain the following tabs:

• General

• History

• Access

• Referenced By

56



6.3. FUNCTIONS

6.3.1 Tab: General

Figure 6.5: Object-Details: Task-Functions

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the function.

• Name: Name of the function. By activating the I18n-link beside this field, the trans-
lations (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.9).

• Application: Application, the function belongs to.

• Apply to: Here you can select the type, if the function is a global or local function.

– no item: The function is a global one, i.e. no entry must be selected (e.g. work-
list entry)

57



6.3. FUNCTIONS

– one item: The function is a local one, i.e. only one entry must be selected

– multiple items: Analog to one item, but more than one entry can be selected

• Show:

– To all tasks: The function is automatically assigned to all tasks of the applica-
tion.

– Worklist: The function appears in the function menu of (role-)worklist.

– To Role Tasks: The function is applicable also in the process form of role-
worklist.

– History: The function appears (corresponding to its type) in the process history.

– To function list: The function can not be assigned to a task, for example an
administration or search function. This task function appears in the main frame,
when the link Functions will be activated in the navigation tree.

• Description: Free text.

• Method: The signature of the Java–method implementing the function. Parameters
can be added by adding a ? and the parameterlist.
Example: com.groiss.DemoClass.demoMethod?param1=val1&param2=val2

Furthermore it is possible to enter a GROOVY script in this field - enter groovy:
<groovy-script> in this field.

• Target-Window: The content of this field contains the name of the window or the
frame where the output of the function will be placed. If the field is empty, the output
is sent to the frame where the worklist resides. If you enter another name, the output
is sent into a separate window with this name. In addition to this name you can
add several parameters like width, height etc. by adding a semicolon and write the
parameters like the javascript method window.open syntax. If you specify the target
"_top" the output will be shown in the current browser window.

• Order Attribute: Enter an attribute as order attribute.

• Function Group: Select a self defined function group here.

• Icon Name: Define a icon for the function. Enter a absolute path name or a relative
path name in the classpath.

Hint: Note, that a user must have the right "execute", to execute a function.

6.3.2 Standard Functions

@enterprise contains the following predefined functions:

• toggle_seen – Set Read/unread: Mark an worklist item as read/unread.

Apply to: One entry, Show: assign to all Tasks, Worklist, to Role Tasks

58



6.4. FORMS

• from_clipboard – Insert from Clipboard: Add the content of the clipboard to the
process documents.

Apply to: One entry, Show: assign to all Tasks, Worklist

• into_clipboard – Into Clipboard: Copy the process instance into the clipboard.

Apply to: One entry, Show: assign to all Tasks, Worklist

• make_copy – Copy to ...: Send a copy of the worklist entry to another user in read-
only mode.

Apply to: One entry, Show: assign to all Tasks, Worklist

• attach_note – Process Note: Add a private or public note to the process instance.

Apply to: One entry, Show: assign to all Tasks, Worklist

• note_global – Process Note: Same as note_all, but applicable when the task is not in
the worklist

Apply to: No entry, Show: Worklist, in Function List

• set_duedate – Set Duedate: Set the due-date of the process or the current activity.

Apply to: One entry, Show: Worklist

• addRelation – Add Relation: Add a relation between two processes.

Apply to: One entry, Show: Worklist

• setPriority – Set Priority: Set the priority of a process instance.

Apply to: One entry, Show: assign to all Tasks, Worklist

Further informations belonging to this function can be found in the programming
guide of @enterprise.

Further information to this functions can be found in the @enterprise Users Guide.

6.4 Forms

Forms contain the local data of a process. In the user interface they are represented as
HTML forms. Besides the functions described in chapter 2.1.2 the following functions can
be found in the toolbar:

• Create new formtype

• Edit formtype

• Replace HTML

• View

• Create View

59



6.4. FORMS

If the form classes of a form cannot be loaded, they will be shown as inactive table entries.
The process for creating and editing a form is shown in figure 6.6.

The object-details of forms contain the following tabs:

• General

• Java-Class

• Database-Table

• Rights

• Standard Permissions

• History

• Access

• Preview

• Folder Settings

• Referenced By

Step 1

Step 2

Step 3

New Formtype

Replace HTML

Edit Formtype

No file selected File selected

Step 4

Step 5

No changes

Figure 6.6: Process for creating and editing a form

60



6.4. FORMS

6.4.1 Create new formtype

By clicking this function the form-wizard for creating and editing formtypes opens.

Step 1

In the first step of the wizard you define the main attributes of the new form. The meaning
of the fields is described in chapter 6.4.6. If you want to create a view onto an existing form,
select a form in the select list Base Form. Go to the next step by activating the button Next.

Figure 6.7: Form-Wizard: Step 1

Step 2

In this step you can choose the html-form which is the base of your form.
You can use HTML-forms , XHTML-forms or XFORMS. XHTML is a reformulation of
HTML in XML, therefore XHTML files must be in correct XML syntax. If you do not
want to use a file for creating a form, select the Template Type XFORMS and click on the
button Next and the form-wizard will be opened (see section 6.4.1). If a path is entered in
step 2, the template file on file-system can be adapted with button Edit, if activated (see
Installation- and Configuration Guide), i.e. the HTML-code can be adapted.
If you supply an HTML file, the file is parsed and the result is stored in the database. The
source file is no longer needed.
If using an XHTML-file, the file must be in the classpath of the server, for example in the
classes directory. The file will be parsed too, to continue the form definition, but the source

61



6.4. FORMS

Figure 6.8: Form-Wizard: Step 2

file is used at run-time to show the form. The advantage of XHTML forms is, that changes
in the source file immediately take effect when showing a form.

Step 3

If a file has been entered into the field File, the file gets parsed and is loaded onto the server.
The result is shown in this step. A form field is defined by a Name, Label, Type and Length.
If you have not supplied a file, the form-wizard will be available in tab Layout at this step
(see section 6.4.1).

Information about the tab Form fields of step 3:

• Name: The name for the field in the database.

• Label: Specifies the string used as header for this column, when the contents are
shown in a table. If you do not want to show this column (field) in the table of a
superordinate form, keep this header empty.

• Type: The database type for the field. Note that the type information is used for
creating a Java class and a database table. The default value for this field is read from
the HTML–file. There it can be defined with the help of the attribute "dbtype" of the
"input"–tag of the form field. Table 6.4.1 shows to which Java type the entered dbtype
will be converted at the creation time of the Java class for the form. The restrictions
of the database, for example length of varchar fields, have to be considered. The
datatype char is used for strings with fixed length, If you store the String ’sw’ in a
field with type char(3) it will contain ’sw ’ (a trailing space), the comparison with
’sw’ will fail.

• Length: The length of the field in the database.

After defining all form fields you can change to the next step by clicking the button Next.

Hint: XForms allow to define fields with binary DB types. This field should be filled via
API only.

62



6.4. FORMS

dbtype DB Java–Type
VARCHAR VARCHAR String
CHAR CHAR String
LONG LONG (Oracle < 8.1) String

CLOB (Oracle > 8.1)
Text (SQL–Server)

DECIMAL DECIMAL longa

doubleb

DATE DATE (Oracle) datec

DATETIME (SQL–Server)
DATETIME DATETIME dated

NONEe

Class Namef DECIMAL(20) — oidg Class Name
VARCHAR(200) — Class
Nameh

aIf an integer has been entered for the attribute Length (e.g. 3).
bIf a real number has been entered for the attribute Length (e.g. 3,4).
cOnly the date is shown.
dThe date and the time are shown.
eThe field does neither appear in the Java class nor in the database. It is used to store extensions in forms.
fThis class has to implement the interface com.groiss.store.Persistent or it has to be a subclass of a class

which implements this interface.
gThe oid is kept in the form. The result of the method "toString()" of the corresponding object is shown.
hoptional, if a class has been specified, which implements an interface, an abstract class or the interface

com.groiss.store.HasSubclasses.

Table 6.1: dbtype of a HTML–form–field and its representation in the database
and in the corresponding Java class respectively

63



6.4. FORMS

Figure 6.9: Form-Wizard: Step 3

Form-Wizard: Tab Layout

The form-wizard is very comfortable for creating and editing forms (see Fig. 6.10). The
form-wizard is available only, if the Template Type XFORMS is selected in Step 2.

Hint: Forms created in @enterprise 7.0 are XHTML-forms. If you want to adapt them
with form-wizard of @enterprise 8.0, you have to convert it to Template Type XFORMS by
selecting the form and activating the toolbar-function Edit Formtype. If you do not convert
the form, you will not be able to edit it with form-wizard.

In the menu bar under the header (Form–Id, Name, Version) the standard functions are pro-
vided for processing the formfields. Furthermore you can change the order of a field by
clicking on the arrow-buttons. An other mentionable menu point is Properties, where you
can assign titles to the form. The toolbar-function Create new layout generates a standard-
layout with the existing form fields.

64



6.4. FORMS

For the creation of forms the form-wizard offers following elements:

• Text: Simple text without an input option.

• Line: Horizontal Line.

• Form Fields: Contains all form fields, which will be described in the following.

• Table: It is possible to embedding subforms by entering a Classname and an Id. If
you have already created a subform, you can select it by clicking on the symbol beside
Classname. You can label the table by entering a text in the inputfield Label.

Figure 6.10: Form-Wizard: Step 3

The Form Fields consist of several elements, whereas the same following properties are
available in all form fields:

• Label: Free selectable identifier. By activating the I18n-link beside this field, the
translations of this key are displayed and can be edited directly by changing the values
and activating the button Save. The changes are stored in the resource file of this
application (see section 6.9). The link is visible only when the checkbox Localize is
activated and a resource has been entered in application mask - tab Properties.

65



6.4. FORMS

• Localize: Activate this checkbox to localize the field label.

• CSS-Class: CSS-class for style sheets.

• Database Field: Unique identifier, which identifies the field - has been created in this
step (see 6.4.1)

Figure 6.11: Form-Wizard: Field Properties

Each form field has further specific properties, which will be explained in the following:

• Output: Only output-field, where no data can be entered.

• Text Field and Password Field: Input-field, where data can be entered. The field
Columns is for the size of the textfield.

• Text Area: The fields Columns and Rows are for the height and width of the text
area.

• Select List: You can select between Radio-Buttons, Dropdown-List and Select-List.
You have to add several values to the list Values, which are shown as selectable op-
tions, or you enter the ID of a Valuelist. A valuelist can be created in the DMS (form
Valuelist, which exists of an ID and the values. If no integer value is entered in the
field rows, a dropdown list will be shown as default, otherwise a select list.

• Multi-Select: Analog to Select List, but you can choose between Checkboxes and
Select-List only.

66



6.4. FORMS

Information about the tab Table View of step 3:

This tab allows to set the columns, which are visible in subtable, if the form is embedded
as subform. The list Available Columns contains all available formfields. By selecting an
entry and activating the Add-button, the field will be added to the list Table Columns. All
fields of this list are shown as subtable-columns in the (superior) form. By activating the
Sort-buttons beside the list Table Columns, the order of the columns can be changed.

After defining all settings you can change to the next step by clicking the button Next.

Step 4

Figure 6.12: Form-Wizard: Step 4

This step shows you the following information:

67



6.4. FORMS

• Ordered by: This attribute is used to define the order of the entries in the table which
represents a subform of a form.

• Name attribute: The content of this field is shown as form name, for example in selec-
tion windows or in a DMS folder. Furthermore a regular expression can be entered,
e.g. {formfield} (display_text), {formfield2}. The curly brackets are necessary to
show values of formfields, i.e. the previous example could generate following out-
put: Joe (firstname), Russel. Jose and Russel are values of the entered formfields,
firstname is a free defined text (= display_text).

• Table: The database statement for creating the table which is used to store the content
of the new form.

• Class: The fields and types of the Java class which represents the new form in @en-
terprise.

By clicking the button Finish the table and Java class are created and the new form is avail-
able in @enterprise. The Java class is always stored in forms directory of @enterprise
(e.g. com.dec.avw.appl.myform_1). The form is also stored in forms directory, but with an
exception: if the form is created in a self-defined application where the application direc-
tory is set (see chapter 6.1), the form is stored in the classes directory of the application
directory.

Step 5

In the last step of the wizard you can see if any problems occurred while creating the form.
If no errors occurred the form loading process is finished.

6.4.2 Edit Table

By clicking the function Edit Table the form-wizard opens. This is the same wizard as
described above, but starts at step 3.

6.4.3 Replace HTML

The function Replace HTML in the detail mask of a form allows to change the HTML
text of the form. The form can be already in use. You just have to load the new HTML file.
It is not possible to change the database types of an existing field by executing this function!

If the new form contains no new fields or fewer field respectively, the form-wizard in step 3
is shown. By clicking the button Next the replacement of the HTML–form is finished. The
Java class and the database table will not be changed.

If the new form contains some new fields the form-wizard in step 3 is shown. By clicking
the button Finish the replacement of the HTML–form is finished. The Java class and the
database table are also adapted.
If your form points to a XHTML file, you have to use this function only if you want to add
fields to the form.

68



6.4. FORMS

6.4.4 Create View

In @enterprise it is possible (via the extended search) to search for form field contents
independent of the form versions. Therefore it is necessary to create a database view over
all version of the form. This database view contains all form field which exist in all form
versions.

By clicking this function a HTML–page is shown which contains the following informations
(required fields are bold):

1. Create View: formid: The SQL–statement which will be used to create the database
view. By clicking the button "Create View" the view is created.

2. Replace Existing View: formid: The SQL–statement which will be used to replace
the current database view by a new one. By clicking the button "Replace Existing
View" the old view is replaced by the new one.

Hint: Depending upon whether there exists already a database view or not, you can either
use the function Create View or the function Replace existing View.

6.4.5 View

After activating this function the object-details of the selected form opens and the tab Pre-
view is active.

6.4.6 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the form.

• Name: Name of the form. By activating the I18n-link beside this field, the transla-
tions (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.9).

• Version: Version number of the form, a positive integer.

• Application: The form belongs to this application.

• Type: With the help of this attribute you can define in which context the form should
be used. There are three different possible usages:

– Process Form: The form is attached to a process and can be used at correspond-
ing tasks.

– Document Form: This form is used to describe the meta data of documents
within the DMS.

– Folder Form: This form is used to describe the meta data of folders within the
DMS.

69



6.4. FORMS

Figure 6.13: Function: Create View

• Mask type: Here you can define one of the following formats:

– HTML

– XHTML

– XFORMS

• Form Description: Free Text.

• Active: see chapter 2.2.1

70



6.4. FORMS

Figure 6.14: Object-Details: General

• Usable in DMS: If this checkbox is checked the form can be used within the DMS.

• Versioning: Here it is possible to define when a version of the form should be created.
This setting is only relevant for forms which can be used within the DMS. Further-
more this setting takes effect only if the form is not used as a process form, because in
this case a new version is created automatically every time when the function "finish"
is carried out. There are four possibilities to configure the versioning:

– according to configuration: the versioning happens as defined in the system
configuration under section "DMS" (see the installation guide of @enterprise).

– not automatically: in this case the user has to create a version manually with the
function "Make Version".

– on agent change: the versioning happens every time when the agent of the form
has changed.

– on every change: the versioning happens every time when the form has been
changed.

• Order attributes: This attribute is used to define the order of the entries in the table
which represents a subform of a form.

• Name attributes: The content of this field is shown as form name, for example in
selection windows or in a DMS folder. Furthermore a regular expression can be en-

71



6.4. FORMS

tered, e.g. {formfield} (display_text), {formfield2}. The curly brackets are necessary
to show values of formfields, i.e. the previous example could generate following out-
put: Joe (firstname), Russel. Jose and Russel are values of the entered formfields,
firstname is a free defined text (= display_text).

• Search attributes: Here you can define the attributes which are used for quick search.
It is possible to define the quick search function for each DMS folder (see section
6.4.12). If no search attributes are entered, the name of the DMS object is used by
default.

• Icon: The icon representing the form. Specify the path in the class path.

• EventHandler: A Java–class implementing the interface "com.groiss.dms.FormEventHandler"
or "com.groiss.dms.XHTMLFormEventHandler. So the application programmer has
the possibility to react on several events (onDelete, onInsert, onShow and onUpdate)
which are triggered during the manipulation of the form.

• Base Form: The current form can be derived from a base form, whereas this field
contains the name of the base form.

• XHTML-File: A reference to the XHTML-Page in the Classpath.

• Width and Height: Specifies the size of the page.

By clicking the button Download HTML you can store the HTML–form of the current
form to your local file system. There you can edit it and afterwards you can upload it to the
system via the function Replace HTML (see 6.4.3).

6.4.7 Tab: Java-Class

This tab shows the fields and types of the Java class which represents the new form in
@enterprise .
The button Re-generate Java classes creates/regenerates a new Java class of this form (re-
generating is also possible without existing java class) and stores it in the forms directory of
your @enterprise installation.

6.4.8 Tab: Database-Table

This tab shows the database statement which has been used to create the table of the form.

6.4.9 Tab: Rights

see chapter 5

6.4.10 Tab: Standard Permissions

see chapter 5

6.4.11 Tab: Preview

This tab displays the HTML-view of the form.

72



6.4. FORMS

Figure 6.15: Object-Details: Java-Class

Figure 6.16: Object-Details: Database-Table

73



6.5. PROCESSES

6.4.12 Tab: Folder Settings

If the form is a folder, you can modify the design, how the folder content is displayed, in
this tab (see figure 6.17). It is possible to

• Add columns, edit and delete them and change the order

• Add functions, delete them and change the order

• Add forms, delete them and set their allowance (allowed or denied)

Further information about can be found in the @enterprise User manual. The changes of
this page are used for all folder instances of this formtype.

Figure 6.17: Form-Details: Folder Settings

6.5 Processes

Processes describe the structure of business processes. Besides the functions described in
chapter 2.1.2 the following functions can be found in the toolbar:

• Create new process with the process-editor

• Edit a process with the process-editor

• Load WDL / XWDL

74



6.5. PROCESSES

• Process overview

The object-details of application contain the following tabs:

• General

• Source

• Graphical Representation

• Components

• Visibility of Forms

• Escalation

• Functions

• History

• Access

• Folder Settings

• Referenced By

6.5.1 Create new process with the process editor

After activating this function, the process-editor starts. You can create a new process. De-
tailed information about the process-editor can be found in chapter 7.2.

6.5.2 Edit a process with the process editor

By clicking this function the process editor is started with the selected process as argument.
With the help of the process editor you can edit the process graphically.

6.5.3 Load WDL / XWDL

With this function you can load a process from a WDL or XWDL script file. A window is
shown where you may enter the following information (see Fig. 6.18):

• First chose, if you want to load a WDL file. Enter (or select) the name of the file
containing the process specification.

• The checkboxes Generate Tasks and Generate Roles allow you to specify whether
tasks and/or roles unknown to the system should be generated automatically.

• Click "Compile" to load the script file and save the process in the database.

After the compilation the system informs you whether the operation has been successfully
or whether errors have occurred.

75



6.5. PROCESSES

Figure 6.18: Load Script

6.5.4 Process overview

This function shows an overview of all used components of the process (see Fig. 6.19).
Each component is divided in blocks which can be hidden or displayed. This mask allows
to manipulate the referenced components (e.g. tasks, roles, etc.) by activating the corre-
sponding links. Furthermore it is possible to generate a PDF.

6.5.5 Tab: General

You can edit the following attributes (required fields are bold):

• Id: Unique identifier of the process.

• Name: Name of the process. By activating the I18n-link beside this field, the trans-
lations (if defined in application mask - tab Properties) of this key are displayed and
can be edited directly by changing the values and activating the button Save. The
changes are stored in the resource file of this application (see section 6.9).

• Version: Version number of the process, a positive integer.

• Application: The application, where the process is running.

• Subject: A form field, which content is used as subject of the process instance at
runtime. @enterprise offers the possibility to enter a pattern (regular expression).

• Instance Id: Here you can define an Instance Id which identifies the started process in-
stance uniquely. It is also possible to enter a pattern (regular expression) in following
format:

{ letter* "{" ("n" | "nn" | "ny" | "nny" | "y" | "yy" | "ou" ) "}" letter* }*

Explanation:

– n.....next number

– nn....next number for this process

– ny....next number per year

76



6.5. PROCESSES

Figure 6.19: Process overview

– nny...next number for this process for this year

– y.....year with last 2 digits only

– yy....year

– ou....organizational unit

Hint: If the Instance Id contains spaces and the parameter webdav.show.subject (see
Installation- and Configuration Guide - chapter Parameters without GUI) is set to 1 in
configuration file avw.conf, attached dms-documents of the process instance cannot

77



6.5. PROCESSES

Figure 6.20: Object-Details: General

be opened and following error occurs: Error 1002: The document could not be
found!

• Priority: The priority of the process.

• Route Orthogonal: If this Checkbox is active, the edges of the process are routed
orthogonally in the process editor.

• Model in BPMN: If this Checkbox is active, the process is opened in BPM-Notation.
If a process painted in WD-Notation is opened in process editor and this checkbox
will be activated, the user will be asked, if he wants to change the notation. If the user
confirms, the painted process will be transformed to BPM-Notation. In this case the
buffer for functions Undo/Redo and Copy/Cut/Paste in process editor will be cleared!
More details can be found in chapter 7.

• Description: Free text.

• Max. Duration: Maximum running time of the process, specified in days, hours or
minutes.

• Active: see chapter 2.2.1

• Apply changes at: see section 2.2.1

6.5.6 Tab: Source

In this tab the WDL-Script of the selected process is shown (see Fig. 6.21).

78



6.5. PROCESSES

By clicking the button view XWDL the XWDL–Definition of the process is shown in a new
window. Activating the button download XWDL you can download the XWDL–Definition
of the process to your local file system.

Figure 6.21: Object-Details: WDL View

6.5.7 Tab: Graphical Representation

This tab shows the graphical representation of the process like in the process editor.

6.5.8 Tab: Components

This tab lists the version of the tasks and forms used in the process (see Fig. 6.22). Further-
more roles, subprocesses, webservice operations and imported files by the web service are
shown. By activating a link (e.g. task) within the tab a new detail-window of the object is
opened.

6.5.9 Tab: Visibility of Forms

The tab Forms gives you an overview about all forms, which are assigned to the process.
For each form a further tab is displayed, where the visibilities are listed of the individual
tasks. In this overview a task appears only, if a form was assigned at the process definition.

If you want to change the visibility of a form field in a task, activate the link of the appro-
priate task. The HTML–page Formfield Modes will be shown.

Information of the HTML–page Formfield Modes:

• Form Type: The listed formfields under Form Field refer to this form.

79



6.5. PROCESSES

Figure 6.22: Object-Details: Components

Figure 6.23: Object-Details: Process forms

• Task: The form is assigned to this task.

• Process: The previous mentioned tasks is assigned to this process.

• Take Visibilities from..: The visibility of an other task in this process can be taken, if
there are differences between the tasks with reference to the visibility of forms.

• Form Field: Name of the form field, whose visibility should be specified.

80



6.5. PROCESSES

• Invisible: If this radio–button is activated, the form field will not be shown.

• Readonly:

1. Disabled: If this radio–button is activated, the form field can not be changed
and it will dye grey.

2. Text: If this radio-button is activated, the form field can not be changed, but it
will not dye grey. This option does not work with XForms, because it is not
supported!

• Writeable:

1. Optional: If this radio-button is activated, the form field can be changed.

2. Mandatory: If this radio-button is activated, the form field is changeable and
must be filled.

If a subform is existing, whose visibility should be set, the information on the HTML–page
Formfield Modes looks as follows:

• Form Type, Task, Process and Take Visibilities from are the same.

• Table: Name of the subform, whose visibility should be set.

• Invisible: If this radio-button is activated, the table of the subform will not be shown.

• Readonly: If this radio–button is activated, the table of the subform will be shown,
but cannot be changed.

• Optional: If this radio–button is activated, the table of the subform will be shown and
can be changed by the button New Table Entry.

• No Insert/Delete: If this radio–button is activated, no further entries can be added or
deleted.

Additional you have the possibility to set the visibility of a form field for all tasks. You have
to click on the link of the adequate form field and the HTML-page Formfield Modes will be
shown. This site is analogue to the HTML–page for form fields, but the visibilities will be
set for tasks and not for form fields.
By clicking the button Preview a new window will be opened, where the form with the
made settings will be shown.
By clicking the button Ok your changes, which belong to the visibilities of the form fields,
are saved.
By clicking the button Close your changes are not saved and the current HTML–page will
be closed.

81



6.5. PROCESSES

6.5.10 Tab: Escalations

With the help of escalations it is possible to react on timeouts during the execution of pro-
cesses. It is possible to define four different types of actions which determine what should
happen in the case of a timeout. The system timer "TimeoutTimer" of enterprise is respon-
sible for checking the timeouts. If this timer is not running the system does not check if
timeouts occur or not!

This tab shows all already defined escalation-objects. You can edit them or add new one by
activating the functions in the toolbar.

You can edit the following attributes (required fields are bold):

• Escalation Type: Here you can select between following escalation types:

1. Process due time: This escalation relates to the due date of a process, which
was entered at the process-start.

2. Activity duedates: Analog to Activity due time of tasks, but this escalation is
used by every task in the process (see section 6.2.2).

3. Batch unfinished: This escalation relates to unfinished batch-steps within this
process. The step is specified via the steplabel.

4. Sync unfinished: Analog to Batch unfinished, but for Sync-step.

5. Receive unfinished: This escalation type relates to unfinished Receive-steps
within this process. The step is specified via the steplabel.

• Step: If more steps are using the same task in process definition, you can define one
step which will be triggered. Steps are selectable only, if escalation type is Batch
unfinished, Sync unfinished or Receive unfinished.

• Delay: see section 6.2.2

• Action: See section 6.2.2. For action Send an E–mail to current agents all agents of
active tasks will be collected (excepting tasks of subprocesses) and informed. The
definition of action Start a task in process escalations is different to task escalations,
because role and task must be entered in process escalations.

• Description: see section 6.2.2

Note: The process–escalation is an improved form of the timeout–handling of the process–
editor. If you have created a new process, you should use this form.

6.5.11 Tab: Functions

This mask is analog to 6.2.3, but the functions are used in whole process instead of single
tasks.

82



6.6. INTERFACES

6.5.12 Tab: Folder settings

This tab offers the possibility to adapt the DMS folder settings for this process. This func-
tion is equal to the folder-form settings in section 6.4.12. It is possible to

• Add columns, edit and delete them and change the order

• Add functions, delete them and change the order

• Add forms, delete them and set their allowance (allowed or denied)

6.6 Interfaces

Interfaces allow the start of process instances by submitting an HTML form. The URL
looks like following:

http://host:port/wf/servlet.method/
com.groiss.storegui.FormWrapper.showProcessStartForm?formclass=<formclass>

Perform the following steps to create such an interface:

1. Define a process p which uses a form of type ftyp as input form (i.e. the form is
specified in the argument list of the process).

2. Add an entry in the interface list, which specifies that process p will be started when
a form ftyp is submitted. The organizational unit of the created process instance is the
third information piece necessary.

3. Test the interface with the link "Interface Forms" in the administration task list. Click
on the link for the form, fill in the form and start the process by clicking the submit
button.

The object-details of interfaces contain the following tabs:

• General

• History

• Access

6.6.1 Tab: General

In the interface mask you can edit the following attributes (required fields are bold):

• Form: Select a form type.

• Process: Select the process you want to start.

• Organizational Unit: OU where the process instance will be started.

83



6.7. FUNCTION GROUP

Figure 6.24: Object-Details: Interfaces

• Answer Mask: Contains the HTML text, which is returned to the user, who started
the process. The fields %pid% and %process% will be replaced by the process id
and process name.

• Active: Indicates whether the interface is active. Further information about (de)activation
of objects can be found under 2.2.1.

The following string is an example for such a answer text:

<h3> Thank you for your order!</h3> Your order number is %pid%.

6.7 Function Group

Function Groups allows the grouping of task–functions. A function group consists of an
unique Id and an arbitrary Name and has to be assigned to an application. By activating
the I18n-link beside the name-field, the translations (if defined in application mask - tab
Properties) of this key are displayed and can be edited directly by changing the values and
activating the button Save. The changes are stored in the resource file of this application (see
section 6.9). Optionally an order attribute can be entered for sorting the function groups. If

84



6.8. GUI CONFIGURATION

several task–functions belongs to different groups, they will be displayed as groups in the
worklist under Functions. A function group can be deleted only, when it is not assigned to
a Task-Function or a Stored Query.

6.8 GUI Configuration

With GUI configuration it is possible to define masks for users (worklist, dms, etc.) and
the appropriate rights via the tab Assignments to users or rights. The elements of the mask
are stored as XML files in classes directory of the current @enterprise installation or in
classes directory of the application directory. With @enterprise it is possible to

• create new masks

• edit and delete available masks

• copy available masks

6.8.1 Tab: GUI Configuration

This tab allows to create and adapt masks for users. New masks need an Id and optionally
a Name. Furthermore a Description can be entered. Selecting an Application is mandatory
and also setting an URL or selecting the radio-button Tree for creating a XML-tree (see fig.
6.25). The Id is the filename of the XML, which is stored in classes directory.

The toolbar for creating a XML-tree offers following possibilities:

• New: Add a new node for example worklist, dms, functions, etc. (see section 6.8.1)

• Edit: Adapt an existing nodes; double-click on the element result in the same function

• Delete: Remove existing nodes and their subnodes

• Up: Selected node is moved one position upwards on the same level

• Down: Selected node is moved one position downwards on the same level

• Right: Selected node is moved one level downwards

• Left: Selected node is moved one level upwards

• Properties: In this window it is possible to set diverse properties for the current mask
(see section 6.8.1)

• Preview: Displays the adapted mask like the users would it see.

85



6.8. GUI CONFIGURATION

Figure 6.25: Tab: GUI Configuration

Node properties

By choosing the function New or Edit a new window is opened, where a new node can be
added or an existing node can be edited (see fig. 6.26). Nodes always contain a Label. If the
checkbox Localize is activated and the entered string is found in the default- or a specified-
resourcebundle, the name will be translated (name must not contains @). By activating the
I18n-link beside this field, the translations (if defined in application mask - tab Properties)
of this key are displayed and can be edited directly by changing the values and activating the
button Save. The changes are stored in the resource file of this application (see section 6.9).
If checkbox XML is activated, HTML tags can be used in Name field, i.e. <b>MyNode</b>
will be displayed as bold text. If this checkbox is not activated, the html code (if entered)
will be displayed. Further static elements are the checkbox Clickable and the selectlist
Access. If the checkbox Clickable is activated, the node and its subnodes will be displayed
as tree. The selectlist Access allows to set roles. Users, who has this roles, are permitted to
access this node, i.e. the node is visible and/or selectable on the mask.
Furthermore there are fix elements for each node:

86



6.8. GUI CONFIGURATION

• Id: Unique identification of the node. If no Id is entered, @enterprise will assign an
Id automatically.

• CSS-Class: Possibility to enter a css-class.

• Default: If this option is activated, the page of this node is loaded in the right frame
when the frameset is initially loaded (after login). This option should be assigned to
one node in navigation tree only!

You can select between following node types:

• Text: Free text, which is displayed in the navigation tree; could be used for making
groups.

• Link: Creates a link the navigation tree. Following attributes can be set:

– Target Window: The content of this field contains the name of the window or
the frame where the output of the function will be placed. If the field is empty,
the output is sent to the frame where the worklist resides. If you enter another
name, the output is sent into a separate window with this name.

– URl: This field offers the possibility to enter an URL oder to select a @enterprise-
link by activating the search-icon beside the field.

• Start process: With this node you add a link to the list of all startable @enterprise-
processes. Further properties like at node Link. Furthermore a Worklist Id can be
entered (e.g. standard.wl), which is the wlid in XML. If such an Id is set, the worklist
with the corresponding Id is shown after process start.

• Function List: By adding this node global functions of one or more applications can
be displayed.

• Function: This node allows to add several functions to the navigation tree. The added
function does not know the context of the right frame, so global functions should be
used (apply to no entry).

• Report: Here you can set a stored query, which will be executed by activating this
link in navigation tree (analog to 8.3)

• Worklist: Defines the worklist with following attributes:

– Worklist-Adapter: Enter your own worklist adapter here. For further informa-
tion about worklist adapter please take a look into the Application Development
Guide - chapter Customizing the Worklist.

– Type: Set the worklist-type (e.g. worklist, role-worklist, suspension, role-
suspension, etc.). It is possible to select more types simultaneously for a node.

– Columns: The columns, which are displayed in the table. You can add, edit and
delete columns and change their order. Columns contains an Id and a Name,
which can be translated by activating the checkbox Localize, or an Icon. If
the checkbox Visible? is activated, the column is displayed at the first call,
otherwise you can add it by using the column picker. The Id can contain the

87



6.8. GUI CONFIGURATION

option, which tab should be opened when activating the link in the worklist, e.g.
process-form0 means, that the column Process is displayed with a link to the
first form in the tab view (default is a link to process history).

– Functions: Here you can add available Task Functions or set Action Keys (e.g.
new, cut, copy, etc.). It is also possible to change the order of the functions.

– No documents/notes: Activating this checkbox avoids selection of documents
and notes of processes when worklist is displayed. Activate this checkbox only,
if no documents or notes are used in processes and the performance of the work-
list table should be optimized!

– No userfolder filter: Activating this checkbox avoids filtering by userfolder
contents when worklist is displayed. Activate this checkbox only, if no user-
folders are used and the performance of the worklist table should be optimized!

• User Folder: Definition of a user folder in the navigation tree, which is a placeholder.
Attributes are analog to node type Worklist, but without the possibility to set a Type.
This node can be added to navigation tree once only!

• DMS: This node allows to create and adapt a DMS-folder. You can set following
attributes:

– Columns: Analog to node type Worklist

– Functions: Analog to node type Worklist

– Forms: In this list you can define which form types are allowed or denied for
this dms-folder. If the list is empty and the radio-button Denied is activated,
all available form types of @enterprise are available for the users. Selecting a
radio-button option is valid for the whole list only.

– Paging: If this checkbox is activated, the paging mechanism of @enterprise
for DMS tables is used (analog to worklist-paging).

– Items per page: This defines the maximum number of entries in this DMS
(folder) tables when paging is enabled.

This node can be added to navigation tree once only like node User Folder!

• Table: With this node a link to a table can be created. This table can be a form-class
(selectable via icon). Following attributes can be adapted:

– Classname: A form-class can be selected here

– Columns: Analog to node type Worklist

– Functions: Analog to node type Worklist

– Detail Window Properties: Here you can add several parameters like width,
height etc. by adding a semicolon and write the parameters like the javascript
method window.open syntax.

Note: Only form-classes created with wizard can be used correctly!

88



6.8. GUI CONFIGURATION

Figure 6.26: Node properties

Properties

With this function it is possible to define mask-specific properties. Following attributes are
available:

• HTML-Mask: Equal to attribute framepage in XML-file standard.xml.

• HTML-Mask (right-to-left): Analog to HTML-Mask, but for attribute framepageRTL.

• Use buttons for first tree level: All tree-elements of first level are represented by
buttons (default behavior of @enterprise). Do not use this function, if external links
(e.g. link to another website) are used - @enterprise-links are possible!

89



6.9. RESOURCE EDITOR

• Show Folder icon: A folder icon is displayed at each element. Checkbox Clickable
must be activated.

• Clickable: Representation as tree (expandable); cannot be used with function Use
buttons for first tree level simultaneously!

• Refresh Interval (sec.): Timeintervall in seconds until site will be refreshed.

• Tree Rendering Method: A method can be entered here, which manipulates the
tree rendering. This method must consist of a return value Page and a parameter
com.groiss.ds.Pair, e.g. public Page createTree(Pair pair). This method is called
without entering the parameter, e.g. <package>.<class>.createTree. An example
of such a method can be found in Application Development Guide in chapter Config-
uring the Worklist Client.

6.8.2 Tab: Assignments

When using different client configurations you can now specify which user and/or role uses
this configuration. The scope is either a user or a role, if more than one record matches, the
one with the higher preference is chosen.

Following the description of the detail mask:

• Agent: The tree or URL is set for this agent. You can select between a User or a Role
(with Organizational Unit).

• Preference: It is possible to assign more than one tree or URL to an agent. For this
purpose you can set a preference whereas the settings with the highest preference is
used at the login.

6.9 Resource Editor

This section describes the usage of the @enterprise Resource Editor. This tool allows to
view the Resource Bundles of @enterprise and adapt the resource files (Strings) of installed
applications. The resource editor is active only, if a resource has been entered in detail mask
of the application (see section 6.1 - Tab: Properties). The application Default does not
need these entries, because the standard @enterprise resources are always displayed (in
readonly-mode). The standard @enterprise resources can be enhanced by a new language
by activating the toolbar-function New column (see section 6.9.1)

Hint: The resource editor creates/adapts a csv-file (Strings.xls) and property-files when
storing the changes (depending on the entered path on detail mask of the application). Re-
sources can be adapted only, if a csv-file and/or property-files exist on the file-system. For
further information about resource files please refer to @enterprise Application Develop-
ment Guide.

Activate the link Resources to get a spread sheet of the application resource data (Strings).
If this link is activated in application Default, a new page will be displayed where you

90



6.9. RESOURCE EDITOR

can select between Strings and Errors which are the standard @enterprise resources. The
toolbar functions are explained in section 6.9.1. Following columns are available in the
spread sheet (see figure 6.27):

• LN: Symbolizes the row number.

• Key: This column contains all keys of the resource file which should be translated.
Existing keys cannot be changed in this view.

• Language columns: A set of columns is displayed whereas each column represents
a language. Select the appropriate cell to edit the value. The fist language column is
the default language (= Strings.properties).

The behaviour of the table (sorting, column picker, etc.) is equal to the standard @enter-
prise behaviour described in section 2.1.

Figure 6.27: Resource Editor spreadsheet

6.9.1 Toolbar functions

This section describes the several functions for adapting the resource file. If the resource
could not be adapted (e.g. if resource is within a jar-file), most of this functions are not
allowed to execute. The toolbar contains following functions:

91



6.9. RESOURCE EDITOR

• New line: This function adds a new row to the spread sheet. If no row is activated,
the first available empty row on last page will be activated or, if no empty row is
available, a new page with an empty row will be created. If a row is selected and
this function is activated, the new row will be inserted at a position depending on the
sorted column.

• Edit line: Select a row and activate this function to get an overview of the selected key
and its translations in a popup-window. This overview allows to adapt the translation
strings and to step to the next or previous row. Activating the button Apply leads in
refreshing the spread sheet (= changes are stored temporarily). The changes will be
persistent when the toolbar-function Save will be activated (= changes are stored in
resource files).

• Delete line: Activating this function leads in removing the selected row from table.

• Copy line: The selected row is copied when this function is activated. The copied
row is inserted at a position depending on the sorted column.

• Save: If this function is activated, all changes of the current spread sheet are saved to
the appropriate csv- and property-files. The csv- and property-files are stored in the
same directory which has been defined on application mask (see section 6.1). If the
files are read from a jar-file and this function is activated, only new columns (= new
languages) will be stored in the classes-directory of the appropriate application.

Hint: The created csv-file is encoded in UTF-16LE after activating this function.

• Discard changes: If this function is activated, all not saved changes are discarded
(removed from session).

• Shortsearch: Enter a string into the textfield and activate this function to get a re-
stricted result. This search works analog to the standard short search of @enterprise.

• All entries: Activate this function to display all entries of the table (spread sheet).

• Sort table for resource files: If the temporary sorting order of the spread sheet should
be used for the csv- and property-files, this function should be activated. The changes
are persistent only when activating the function Save in toolbar.

• New column: A popup-window will be opened where a new column can be added
by selecting a value of the dropdown-list and activate the button Create. The default
languages are displayed, if no further languages has been configured in @enterprise
Configuration → Localization → List of Locales. This function can be executed
always even though existing resources are read from a JAR-file.

6.9.2 Converting csv-files

If csv-files are used, they must be encoded with character set UTF-16LE. Following function
is available to convert from Cp1252 to UTF-16LE:

92



6.10. WEB SERVICES

http://’host’:’port’/’context-root’/servlet.method/
com.groiss.reseditor.ResourceEditorService.convertXLS?resource=<reurl>

The parameter resource must be the URL to the appropriate csv-file, e.g. for application
myappl Strings:

http://’host’:’port’/’context-root’/servlet.method/
com.groiss.reseditor.ResourceEditorService.
convertXLS?resource=com/dec/myappl/resource/Strings.xls

6.10 Web Services

This chapter describes the creation of web service server/client objects which can be used
for one of the web server nodes in process editor (see section 7.2.15. The requirement for
creating server/client objects are existing WSDL-files in the classpath of @enterprise.

Please notice that WSDL files must correspond to the WS-I Basci Profile 1.1 (http://www.ws-
i.org/profiles/basicprofile-1.1.html).

If you want to offer web service which are not corresponding to the WS-I Basic Profil (e.g.
RPC web services, ...), these services can be added/activated via the function Admin-Tasks
→ Communication→Web services→ Local services (see chapter 9.5.5). This kind of web
services cannot be used (automatically) in processes.

Webservice Server/Client objects can be defined in every application.

6.10.1 Webservice clients

With client objects it is possible to define which web service with its parameters (IN-/OUT-
parameter) is called. OUT-parameter are submitted to web service and IN-parameter are
received from web service. Client objects are applicable for submitting data to an other
server for processing.

The object-details contain following tabs:

• General

• Callable Operations

• History

Tab: General

You can edit the following attributes (required fields are bold):

• Id: A free assignable ID of the web service client object. The ID must be unique per
application.

93



6.10. WEB SERVICES

Figure 6.28: Tab: General

• WSDL file: The path to a WSDL file in @enterprise classpath.

• Webservice: A selection of web services is offered depending on the definition in
WSDL-file. Selection is available only, if a correct path to a WSDL file has been
entered.

• Port: Depending on the select Webservice a appropriate port can be selected which
was defined in the WSDL file.

• URL: The URL of the web service which should be called. If nothing is entered, the
URL defined in the WSDL file is used.

• Required modules: If needed, a comma separated list of AXIS2 modules can be
entered, e.g. rahas,rampart,scripting

• Application: The application where the client object should be stored.

After storing the information on tab General an Operations object should be created in tab
Callable Operations. This object allows to define IN-/OUT-parameter.

Tab: Callable Operations

In this tab a table of all operations of the current client object is displayed. This table con-
tains the default toolbar functions and the function Execute webservice operation which
allows to test the selected operation object with its OUT-parameter.

Activate the toolbar function New to create a new operation object. A new dialog will be
opened where you can select an Operation which has been defined in WSDL file (see figure
6.29). Afterwards a XML should be created by using the function Generate XML which is
stored in field XML.

94



6.10. WEB SERVICES

Figure 6.29: The Operation-Objekt

After successful creation of an Operation object, IN- and OUT-parameter can be defined.
For web service client objects OUT-parameter are parameter which should be submitted for
processing. IN-parameter are parameter which are received form web service (e.g. status
notification about processing). A parameter is defined by an Id, a Name and a Path (XPath)
which are required fields. Prefixes, which are defined in root-element of the WSDL file,
can used as namespace-prefix in XPath expression . Parameter can be created manually
by activating the toolbar function New or automatically by activating the toolbar function
Generate Parameters. It is not possible to create duplicates (identified by ID)!

6.10.2 Webservice server

With server objects it is possible to provide web services at the server. Other systems are
able to call these services.

The Webservice server dialog is analog to object Webservice clients:

• General: Contains the same attributes as Webservice clients, but no URL can be
entered.

• Callable Operations: Analog to Webservice clients, but the toolbar function Exe-
cute webservice operation is not available. IN-parameter are parameter which are

95



6.10. WEB SERVICES

received for processing and OUT-parameter are parameter which should be submit-
ted (e.g. status notification about processing). Optionally a Message handler can be
entered which has to implement the interface com.groiss.ws.server.MessageHandler.
If a handler is entered, this operation cannot be used in a process definition.

• History: Analog to Webservice clients.

96



7 Process Definition

In this chapter we describe the definition of processes. @enterprise provides two ways for
defining processes.

1. graphical definition using the process editor,

2. definition of the process as a script in the Workflow Definition Language (WDL).

Both options have the same expressiveness - you can define a process with the process
editor, save it as a WDL-script, edit the script, load it again, and make additional changes
in the process editor1.
In the next section we describe the script language WDL, afterwards the handling of the
process editor is shown.

7.1 WDL

In the following we describe the syntax and semantics of the language elements of WDL.
The language has resemblance to a structured programming language and allows the defi-
nition of workflow processes. Each WDL script consists of a process header, a declaration
section, and a statement section. Example:

process jobproc()
name "jobproc";
description "simple process";
version 1;
subject f.subj;
forms f Jobform;
begin

<label_order> all order(f);
loop

f.recipient a_task(f);
exit when (f.finished = 1);

end;
label_order:user inform(f);

end;
1Graphical layout and annotations are not preserved across notations.

97



7.1. WDL

The process definition starts with the keyword process, followed by the process id and a list
of arguments. The declaration section contains a set of keyword-value pairs, for example
version 1;.
The statement section begins with the keyword begin and ends with end. In between the
structure of the workflow, containing task calls, subprocesses, system steps and control
structures is described.

7.1.1 Lexical Conventions

In WDL the following lexical rules apply:

• Ids

Ids are identifiers for tasks, roles, users, and similar entities. The following conven-
tions apply:

Ids start with a letter or $ or / or \. After the first character more of these characters
plus digits can follow. The length of an id must not exceed 80 characters.

• Strings

Strings are character sequences enclosed in double quotes. A double quote within a
string is denoted as two consecutive double quotes.

Example: "This is a string." "This is a string with two ""double quotes""."

• Comments

All characters between "/*" and "*/" are ignored. Comments can span lines. 2

• Case-Sensitivity

WDL is case-sensitive, this means "If" is not equal to "if". All keywords use lower
case characters.

• Keywords

The WDL keywords are listed in table 7.1. A keyword enclosed in single quotes is
no longer interpreted as a keyword, but as an id.

7.1.2 Process header

Syntax:

processdef =
"process" id "(" [formdecl{ "," formdecl}] ")"
{ pdeclaration ";" }
"begin" [nodename]

statseq
"end" [nodename] .

Description:
2Comments are ignored when loading the WDL script, therefore they are not visible in the system.

98



7.1. WDL

abort adhocTasks and andpar application
autofinish baseform batch begin branch
call choice corr correlation current_tx
days description do else elsif
end exception exit for forms
gobackonerror goto hours if in
instanceid invoke loop maxtime minutes
name new_tx newthread none not
null or orpar out owner
parallel priority process raiseEvent receive
registerForEvent repeat reply skipable start
startfunction startnow subject success sync
system then timeoutaction timeouttask unregister
until version when while

Table 7.1: Keywords in WDL

• Id: id (internal name) of the process.

• Parameter list: Forms which are parameters of the process. These are used when the
described process is called as subprocess from another process. The forms are passed
by reference, this means the form data are not copied.

• pdeclaration: declarations, see below.

• statseq: sequence of statements.

7.1.3 Declaration part

In the declaration part some general information about the process is specified.
Syntax:

pdeclaration =
"name" string

| "description" string
| "version" number
| "subject" ( formfield | expressionstring )
| "maxtime" number ("days" | "hours" | "minutes" )
| "timeoutaction" ("none" | "abort" )
| "timeouttask" taskstmt
| "forms" formdecl { "," formdecl}
| "application" application
| "instanceid" string
| "priority" number
| "adhocTasks" adhoctask { "," adhoctask }

.

Description of the declarations:

99



7.1. WDL

• name: Name of the process, is displayed in the end user interface.

• description: free text

• version: Integer, declares the version of the process

• subject: specifies the content of the subject column in the worklist. Can be a sin-
gle formfield designation (formid.fieldid), or an expression referencing several form-
fields. More information can be found in section 6.5.

• maxtime: intended maximum running time of the process, specified in days, hours,
or minutes.

• timeoutaction: Reaction in case of timeout, two possibilities:

– none: no reaction
– abort: Process termination

• timeouttask: definition of an action, which is performed in case of timeout.3

• forms: declaration of forms as process local data containers. The definition of a local
form is:

formid formtype [ "baseform" baseformid] [ "formname" ]

– formid: is the id of the local form in this process
– formtype: is the id of a formtype defined in the system
– formname: is the local display name of a form in this process (optional)
– baseform: if the declared form is a view-form, the base form must be specified

here

Example: forms rg bill, ls item_list, rgsum shortbill baseform rg;

• application: id of the application the process belongs to.

• instanceid: Id which identifies the started process instance uniquely. It is also possi-
ble to enter a pattern which allows to specify a numbering scheme. More information
can be found in section 6.5.

• priority: The priority of the process.

• adhocTasks: Can be used to declare additional tasks which may be instantiated
programmatically during the execution of the process. They provide a means to define
form and field visibilities. Syntactically, they are task statements (see below) without
a declared agent list, since the agents will be specified at run time. Each adhoctask is
defined as:

taskid "(" [ formlist ] ")" [ nodename ]

All declarations, except the name, version and application are optional.
3 The specification of a timeoutaction and a timeouttask is deprecated. Escalations are a much better way to

formulate events along the process execution timeline with corresponding actions.

100



7.1. WDL

7.1.4 Basic Statements

The statement section is the central part of the process specification, it is enclosed between
the keywords begin and end. It contains at least one statement. Statements are terminated
with a semicolon.4

Syntax:

statseq = { [ "<" labelid ">" ] statement [ nodename ] ";" }.

statement =
(

batchstmt
| branchstmt
| choice
| exitstmt
| gotostmt
| ifstmt
| invokestmt
| loopstmt
| par
| parforstmt
| raiseEvent
| receivestmt
| registerForEvent
| repeatstmt
| replystmt
| subproccall
| sync
| systemstmt
| taskstmt
| unregister
| whilestmt )

.

labelid: An id of this step within the process definition. Must be unique and can be used as
exact reference to this step.
nodename: A string used as the display name for the statement (and the corresponding node
in the process editor). Does not need to be unique.
e.g. <ordertask> all order(form) "place the order";
In the following we describe the different statements:

Manual Tasks Specifications

Manual tasks are denoted as:
4 The first statement should be a task statement, because the agent definition of the first statement is used to

determine the agents who may start the process. For example, if a process starts with a loop, the process cannot
be started with the normal user interface because it will not appear in the list of startable processes of any user.
However, such processes can be started using the API or can be used as subprocesses.

101



7.1. WDL

Syntax:

taskstmt =
( "none" | agentlist ) taskid "(" [ formlist ] ")" [ "skipable" ].

agentlist = agent { , agent }.

Description:
agentlist: There are several possibilities to define the agents of a task:

• The agent can be a user, specified as the id of an user. Should be used only in spe-
cial cases, because the process definition should usually stay independent of specific
users.

• The agent can be a role, the id of the role is specified. Each user who has the role is
a potential agent of the task. The task will appear in the role-worklist of these users.

• Additional to the role an organizational unit can be specified. The notation is:

org_unitid "!" roleid. Example: marketing!sek.

The organizational unit of the current task is changed to the given OU. The organiza-
tional unit of the overall process does not change.

• Agent of a previous step: The agent of this task is the last agent of another task. The
other task is referenced via its labelid according to the syntax: labelid ":user"

Example:

ordertask:user sek task1();

• Agent from a form field: The agent is taken at run-time from the content of a field
in a process form. the content is either a role id, a user id, a role id together with an
organizational unit id, or the specification of an agent of a previous step.

• Empty agent, Syntax: none.

At run-time the agent must be set either programmatically or manually by the agent
of the previous step.

• Java-Method: Name of a Java Method which returns either a role id, a user id, a
role id together with an organizational unit id, or the specification of an agent of a
previous step or a user or role object.

• Sequence of agents: Can be formed by a comma separated list of agent definitions
in the variants stated above. The task is routed to the agents of the list in a sequential
manner5.

Note that the agent of the process definition can also be overwritten at run-time by a pre-
processing method of the task.
taskid: The id of a task defined in the application. If you specify an id which is not the
id of an already defined task, you can use the option "Generate Tasks" when loading the

5Preprocessing is executed once before the first agent, postconditions are executed once after the last agent

102



7.1. WDL

process. The task is then generated with the id from the process definition (and the same
name, all other fields empty).
formlist: Comma separated list of formids. Forms, which have been defined either in the
argument list of the process or were declared as local forms.6

skipable: If a taskstmt has the empty agent ("none") and is marked as skipable and no
agent is set at runtime, the corresponding task is simply omitted. The task would be instan-
tiated only if an agent has been set via a preprocesing method.

Subprocess Call:

A process can be called as part of the execution of another process. This allows to design
processes in a reusable and modular manner or to build layers of abstraction to provide a
proper level of detail.
Syntax:

subproccall =
"call" subprocid "(" [formlist] ")".

The call statement instantiates one process of the definition denoted by subprocid as part of
the current process execution. Execution is synchronous, the called process will get control
and when it ends, the control recommences in the calling process after the call statement.
Forms can be passed along the call. The formlist is a comma separated list of form ids.
The forms are passed by reference, no data is copied. The formids of the call refer to form
variables in the calling process (actual parameters) and must match the forms declared in
the parameter list of the called process.

System Step

A system step is used to execute a Java method without any manual intervention. The name
of the method is specified after the keyword system and followed by a comma separated
list of string literals which is enclosed in parentheses. Since such methods are executed
synchronous, they should be rather short in terms of execution time.
Syntax:

systemstmt =
"system" methodname "(" [ string { "," string } ] ")".

Note, that you must specify the full-qualified method name including the package name.
Example: system com.groiss.demo.Step.exec("p1","p2");

Batch Steps

Like system steps, batch steps are also executed automatically by the engine. The main
difference is that batch steps are called asynchronously and can have an arbitrary long ex-
ecution time. A handler class must be specified to be able to react to events during this

6At run-time, the icons for those forms will appear in the worklist for instances of this task. The form
content is visible and editable in this task. See section 6.2 for a description how to restrict the rights to view
and edit forms in a task.

103



7.1. WDL

asynchronous execution. Detailed information concerning batch jobs can be found in the
Application Programming Guide and in the API-documentation.
Syntax:

batchstmt =
"batch" batchAdapterClassName "(" [ paramstring ] ")

{ "startnow" | "newthread" | "autofinish" | "gobackonerror" }.

Note, that you must specify the full-qualified class name, including the package name.
Example: batch com.groiss.demo.DemoBatchAdapter("param").

7.1.5 Control Structures

The flow of control in a process is defined using the control structures of WDL. All the usual
control structures like sequence, alternative execution and repeated execution are provided
along with the crucial ability to specify parallel execution.

Sequence

Sequential execution of statements is specified by simply listing the statements one after
another.

Example:
Execute first the task insert_order() from role sec. After this activity is finished, the
activity survey should be performed by a member of the role clerk. After this, in the
organizational unit production the task manufacture should be performed by users in the
role worker.

...
sec insert_order(order);
clerk survey(order);
production!worker manufacture(order);
...

Conditions

Conditions are used in WDL in the following control structures:

• Alternatives: if, choice

• Loops: while, repeat, loops - exit when

• Postconditions in tasks

Comparisons of form values and literals and boolean Java methods can be combined in
the usual manner via logical operators to form complex conditions. Additionally, WDL-
conditions can be defined in Groovy and via XPath-Conditions. For more information about
Groovy and XPath-Conditions see the Application Development Guide.
Syntax:

104



7.1. WDL

cond = expr1 { "or" expr1 } .

expr1 = expr2 { "and" expr2 }.

expr2 = [ "not" ] expr3.

expr3 =
"(" cond ")"

| methodcall
| booleanformfield
| formfield relop (number | string | formfield | "null").

relop = ( "=" | "<>" | "<=" | ">=" | "<" | ">" ).

formfield = formid "." fieldid.

Examples:

• f.recipient = null

• f.ordervalue > 100000

• com.groiss.Check.isAvailable("f.amount") and f.class > 3

• (f.recipient <> null or f.value > 10000) and f.class = 4

• groovy: form_f.subject == "Book"

• xpath:$form_f/subform[@id=’1’]/form/status = ’ok’

Java methods should have 0 to n literal string parameters and a return value of type boolean.
See the @enterprise Programming Guide for details on writing such Java methods.

If: system evaluated alternatives

if and elsif constructs allow the conditional execution of process parts. Syntax:

ifstmt =
"if" cond
"then" [nodename] statseq
{ "elsif" cond "then" [nodename] statseq }
["else" statseq ]
"end".

Description:

• cond: A condition as defined above.

• statseq: a statement or a sequence of statements.

Example:

105



7.1. WDL

if order.amount <= 2000 then "small orders"
clerk write_confirmation()

elsif order.amount <= 5000 and order.class = 4 then "medium orders"
manager approve()

elsif ...
...

else
...

end

Choice: mixed automatic and manually evaluated alternatives

Choice statements allow the user to choose the process path from a predetermined but run
time dependent set of available paths.
Syntax:

choice =
"choice" [ nodename ]

{ branchname [ "," cond ] ":" statseq }
"end".

Description:
Each path has a name (denoted with branchname), where an arbitrary string can be given,
and an optional condition. The engine first checks the conditions of all potential branches,
only the branches where no condition is specified or the condition evaluates to true are
presented to the user for the final selection. When no conditions are given, the selection is
done purely manual.

Example:

choice "manual selection"
"order now", f.sum < 5000:

sec order(f);
"check again":

clerk check(f);
"archive":

system Archive.insert();
end;

While: repeated execution

Syntax:

whilestmt =
"while" cond "do" [ nodename ]

statseq
"end"

.

106



7.1. WDL

Description:
The statements in the loop body (between "do" and "end") are executed over and over again,
as long as the condition evaluates to true. Since the condition is evaluated before the body
of the loop, the body may never be executed zero or more times.
Example:

while f.proved = 0 do
sec correct(f);

end;

Repeat: accepting repeated execution

Syntax:

repeatstmt =
"repeat" [ nodename ]

statseq
"until" cond.

Description:
The statement sequence in the body is executed repeatedly until the condition evaluates to
true. Since the condition is at the end of the statement block the statements are executed at
least once.
Example:

repeat
clerk insert_data(order);
call check_data(order);

until order.data_ok = 1;

Loop - exit when : generalized repeated execution

Syntax:

loopstmt =
"loop" [ nodename ]

[ statseq1 ]
"exit" "when" cond;
[ statseq2 ]

"end".

Description:
The statements in statseq1 are executed. The condition of the "exit when" is evaluated. If
this result of the evaluation is false, the statements of statseq2 are executed and the loop is
executed again. If the evaluation result is true, the loop terminates without further execution
of statseq2.

107



7.1. WDL

Andpar and Orpar: parallel execution

Parallel execution of process paths can significantly reduce the overall processing time. The
two control structures andpar and orpar allow the definition of a predetermined number of
parallel execution paths.
Syntax:

par =
( "andpar" | "orpar" ) [ nodename ]

statseq
{ "|" statseq }

"end" [ "do" parmethod ].

Description: The parallel branches are separated by the bar "|". When the par is reached,
all parallel branches are instantiated simultaneously. Continuation depends on the kind of
parallelism:

• andpar: Process is continued, when all parallel branches are finished.

• orpar: Process is continued, when one parallel branch is finished.

The parmethod is described down below.
Example for andpar:
For the handling of a complicated business case the consultation of three assessors is nec-
essary. After they make their assessment, a final judgment can be performed.

...
andpar

assessor1 make_assessment(s_form1);
| assessor2 make_assessment(s_form2);
| assessor3 make_assessment(s_form3);

end
s_ou!manager judge(s_form1, s_form2, s_form3)

...

Example for orpar:
When calculating the route for a business trip two route planners are consulted. However,
the result of one of them is sufficient for going on in the process:

...
clerk insert_tripdates(flyform);
orpar

clerk check_routeplanner1(flyform);
| clerk check_routeplanner2(driveform);

end
...

The (paramethod) can be specified at the end of an andpar and is used to implement gen-
eralized forms of parallelism.
When a fixed number of branches (n of m) have to be finished, the method

108



7.1. WDL

com.groiss.wf.SystemAction.join(n,action)

can be used. Both parameters are strings:

• n: the number branches that must be finished, in order for the whole par construct to
be finished

• action: contains the value none or cancel. Active branches will be aborted by setting
the value cancel.

Example for an andpar with n of m finished branches:
For the handling of a simpler business case, the consultation of two assessments out of three
are necessary:

...
andpar

assessor1 make_assessment(s_form1);
| assessor2 make_assessment(s_form2);
| assessor3 make_assessment(s_form3);

end do com.groiss.wf.SystemAction.join("2","cancel");
...

If overall completion of parallelism can not be defined by completion of a fixed number of
branches, but is rather computed at run time, an arbitrary Java method can be called. More
about that can be found in the Application Development Guide.

Parallel For: runtime determined number of parallel branches

The parallel for statement can be used to split the process execution into a number of
identical parallel paths where the number is determined at runtime.
Syntax:

parforstmt =
"parallel" "for" (localformid "in" formid"."subformtableid | iteratorclass)
"do" [ nodename ]

statseq
"end" [ "do" parmethod ].

With the help of this control sequence it is possible to either generate a parallel branch
for each row of one of the subform tables of a main table or to generate parallel branches
according to an iterator.
Description:

• localformid: new local variable referring to the corresponding sub form within the
parallel branch.

• formid: id of the mainform.

• subformtableid: id of the sub form table as defined in the tablefield for the formtype
of the mainform.

109



7.1. WDL

• iteratorclass: name of a class which implements the interface com.groiss.wf.ParForIterator.

The end node of a parallel for can take an optional parmethod in order to implement
specific end conditions: When a fixed number of branches (n of m) have to be finished, the
method

com.groiss.wf.SystemAction.parforJoin(n,action)

can be used. Both parameters are strings:

• n: the number branches that must be finished, in order for the whole par construct to
be finished

• action: contains the value none or cancel. Active branches will be aborted by setting
the value cancel.

If overall completion of parallelism can not be defined by completion of a fixed number
of branches, an arbitrary Java method can be called. More about that along with exam-
ples of parfor constructs with subforms and with iterators can be found in the Application
Development Guide.

Branch Statement:

The branch statement allows one to split the process execution into a main path and into an
ancillary flow (the branch).
Syntax:

branchstmt =
"branch" [nodename]

statseq
"end".

Statements in the branch execute in parallel to the statements in the main flow. Termination
of either one does not terminate the other one, so branches may outlive the main execution
path of the process.
Example:

begin
..
clerk enter(f);
supervisor check(f);
branch "hold in evidence"

recordkeeper inform(f);
...

end;
worker build(f);
...

end

110



7.1. WDL

Goto Statement:

Gotos allow to deviate from the structured flow of control and to jump to other parts of the
process specification.
Syntax:

gotostmt =
"goto" labelid.

The flow of control resumes at the statement denoted by the labelid.
Example:

<entry> clerk enter(f);
supervisor check(f);
if (f.quality <> "OK") then /* denotes exceptional case */

goto entry;
end;
worker build(f);

In this script the goto statement causes that the tasks enter and check to be repeated when
the quality is not acceptable. Note that a repeat until would usually be a better formula-
tion of the flow, but the designer might have chosen the goto explicitly to distinguish the
exceptional flow from the usual execution sequence.
When used excessively or with poor judgment, gotos can severely harm the readability of
a process description and make it almost unmaintainable. If at all, use them with care and
only in well founded cases.

7.1.6 Event Mechanism

The event mechanism allows to signal process progress to (other) process instances which
expressed interest in such an event. On arrival of such an event a handler can be called or
the execution of a stalled process can be continued. Detailed information about events can
be found in the Application Development Guide.
Syntax:

An event can be raised with:

raiseEvent =
"raiseEvent" "(" eventname "," "current_tx" ["," form] ")".

Events can be waited for with:

sync =
"sync" "(" eventname "," eventhandler ["," form] ")".

Registration of a handler for an event is done via::

registerForEvent =
"registerForEvent" "(" eventname "," eventhandler ["," form] ")".

Handlers can be unregistered with:

111



7.1. WDL

unregister =
"unregister" "(" eventname ")".

Description:

• eventname: the name of the event.

• current_tx: the event handler should be carried out in the same transaction (no other
value possible).

• form: either a form or a form field which serves as the context object.

• eventhandler: a Java class implementing the interface com.groiss.event.EventHandler.

7.1.7 Web services

The WDL provides elements to incorporate Web Services into process descriptions in a
straightforward manner. Web services can be called via invoke, process execution can be
stalled with receive until a web service is called by an external entity, or a reply can be
send as an answer to a webservice invocation issued earlier.
Web services nodes must reference the service operation to be used and provide a mapping
between the message elements and the process data containers (the forms). Web services
and operations are defined via the admin interface in @enterprise manually or on the basis
of a WSDL file.
Details can be found in the Application Development Guide.
Syntax:

Incoming Message (RECEIVE):

receivestmt =
"receive" [ "start" "process" ] operationspec "(" [incorrparams] ")" ["end"].

Reply Message (REPLY):

replystmt =
"reply" operationspec "(" [outparams] ")".

Outgoing Message (INVOKE):

invokestmt =
"invoke" [address "."] operationspec "(" [inoutparams] ")"

["success" statseq ]
["exception" statseq]

["end"].

Common statement-parts, which are used by the webservice-nodes are:

operationspec =
serviceid "." operationid.

112



7.1. WDL

incorrparams =
incorrparam {"," incorrparam}.

incorrparam =
inparam | corrparam.

corrparam =
("corr" | "correlation") xpath "=" messagecomp.

inoutparams =
inoutparam {"," inoutparam}.

inoutparam =
inparam | outparam.

inparam =
["in"] xpath "=" messagecomp.

outparams =
{"," outparam}.

outparam =
["out"] messagecomp "=" xpath.

Short description of the syntactical elements:

• serviceid: The ID of the web service.

• operationid: The operation-ID of the web service.

• address: The URL of the web service.

• messagecomp: The ID of the (IN/OUT)-parameter of the message.

• xpath XPath expression denoting the form element to map.

• statseq: Sequence of statements.

Example for webservice nodes:

...
invoke mywebservice.SendMessage(

MessageTemplate="form_ticket/messageTemplate",
MessageType="$form_ticket/messageType", enterpriseid="$pi/id",
xeoxid="$form_ticket/xeoxId", reporter="$form_ticket/reporter",
’subject’="$form_ticket/subject", """0"""=SendMessageResult)

exception
administrator inform(ticket);

end;
...

113



7.1. WDL

receive kserver.sendMessage(
corr "$pi/id"=enterpriseId,
"$form_ticket/messageTemplate"=messageTemplate,
"$form_ticket/messageType"=messageType,
"$form_ticket/enterpriseId"=enterpriseId,
"$form_ticket/xeoxId"=xeoxId,
"$form_ticket/reporter"=reporter,
"$form_ticket/subject"=’subject’,
"$form_ticket/text"=text,
"$form_ticket/analyst"=analyst

) waitforincomingmessage;
...
reply kserver.sendMessage(’out’="""0""");
...

114



7.2. THE PROCESS EDITOR

7.2 The Process Editor

The @enterprise process editor provides you an easy way to define workflows. The process
editor supports the notations BPMN (Business Process Modeling Notation - see figure 7.1)
and WDN (Worklist Definition Notation - see figure 7.2).

To start the process editor, go to the system administration, select the application where you
want to define the process and click on the link "Processes":

• Click on the toolbar icon "Create" to create a new process with the editor. The editor
is opened in BPM-Notation by default (can be changed in process editor settings).

• If you want to edit a process, select it in the list and click "Edit". The process editor
will start and show the selected process definition. The representation of notation
depends on the set notation during creation of the process.

7.2.1 The Process Editor Window

The main window of the process editor has the following sections:

• Title bar: In the title bar you see the name of the process you edit.

• Menu bar: The menu bar contains the following menus:

– Process

– Edit

– View

– Help

– Symbol Bar

• Drawing area: In this area you see the graphical workflow definition.

• Function list: The function list shows the function buttons for editing the process
definition.

Hint: To avoid problems with popup-blocker, we recommend to turn it off!

7.2.2 The Functions of the Menu Bar

The Process Menu

• New: With this function you discard the current contents of the process editor and
start editing a new process.

• Open: With this function you can open existing processes for modification.

115



7.2. THE PROCESS EDITOR

Figure 7.1: Process Editor in BPM-Notation

• Save: You save the changes. This means the process is stored in the server’s database.
The system informs you, whether the operation was successful. If steps are not speci-
fied sufficiently (e.g. no task is assigned to an activity), the process will be saved and
set on inactive. Then the process has to be enabled manually, if you want to use it
(see chapter 6.5).

Note: Saving a process is possible when at least the name and the id has been set (see
function Properties).

• Save as...: Save the current process under a new name. A dialog window for speci-
fying name and id will appear (Fig. 7.3).

116



7.2. THE PROCESS EDITOR

Figure 7.2: Process Editor in WD-Notation

• Page Setup: The page format dialog appears and allows the setting of paper format
properties.

• Print: Print the process with the format properties defined in the "Page Format"
menu.

• Properties: This function opens the process-properties (see section 7.2.3).

• Tasks: With the help of the task mask you specify those task which can be assigned
to a recipient of a task while you are changing the agent of a task.

• Timeout-Task: The reaction to process timeouts is defined here (see section 7.2.5).

117



7.2. THE PROCESS EDITOR

Figure 7.3: Function "Save as"

• Exit: With this function you leave the process editor. If you have unsaved changes a
dialog appears which allows discarding the changes or saving them.

The Edit Menu

• Undo: With this function the last n steps can be undone in the drawing area.

• Redo: This function is analog to Undo.

• Cut: With this function it is possible to cut elements from a place in the process and
paste it to an other place in the process. Click on the elements first and then select
this function. If you cut elements, you can paste it one time only. All settings will be
kept for the cut elements.

• Copy: With this function it is possible to copy elements from a place in the process
and paste it to an other place in the process. Click on the elements first and then select
this function. If you copy elements, you can paste it more than one time, but not all
settings will be kept (e.g. visibility of forms).

• Paste: This function pastes previous cut or copied elements at the selected place.
Select this function first and then click on the desired place to insert the element. The
element in the clipboard is displayed beside the mouse cursor until you have pasted
the element, selected another function or you have pressed the key Escape.

• Delete: This functions allows to delete individual elements. If a node (e.g. Loop)
contains further elements, a popup windows appears and asks you, if you really want
to delete. Click on the element first and then select this function.

• Activity properties: This function opens the detail-view of this task, where you can
add actors and forms.

• Task properties: This function opens the task-properties for this activity (see chapter
6.2).

118



7.2. THE PROCESS EDITOR

• Time Management: If you have activated this function for a step or batch, you can
select a previous created duration statistic or you have the possibility to enter values.
Furthermore an overview of the step related histograms can be displayed (see section
7.2.7).

• Annotate: This function allows to annotate each node in process editor (node must
be selected first). The annotation will be linked with the selected node. Perform a
double-click on the textfield to add a text and then confirm with Return.

• Exception Handling: This function is available for node Outgoing Message (IN-
VOKE) only. It allows to add (and remove) an exception flow to this node which will
be executed, if the invoke-function fails (e.g. server does not reply).

• Additional Edge: With this function additional edges can be added to Choice, AND-
Parallelism and OR-Parallelism. Select one of this object first and the choose this
menu point.

• Select All: All elements in the drawing area are selected by this function.

• Invert Selections This function selects all elements in the drawing area, which are
not selected before.

The View Menu

• Mini Map: By activating this function a popup-window will be opened, where an
overview about the drawing area will be shown. So it is possible to keep a better
overview. By moving the red square, the position in the drawing area will be changed.
If you want to zoom in or out in the mini map, you have to use the following explained
zoom–function (changes are also shown in the drawing area).

• Zoom: This function contains following 3 subfunctions:

1. Normal viewing: The drawing area is shown in the size, which is given at the
start of the process-editor.

2. Zoom In: The shown area will be enlarged.

3. Zoom Out: The shown area will be reduced.

• Align: With this function the elements of the drawing area can be aligned.

• Show End-Node: This function marks the end-node of the selected element.

• Route Automatically: You have the possibility to remove edges, when the function
Route Orthogonal is activated. Select the edge and move it in the desired direction.
For automatically routing of the edge, select the edge and then this function.

• Settings: With this function you can set following properties:

– Snap to Grid: The elements and edges will be aligned by the grid.

– Grid Style: You have the choice between 4 possible grid styles:

1. Invisible: Switch grid off.

119



7.2. THE PROCESS EDITOR

2. Dot Grid: Display of dots.
3. Cross Grid: Display of crosses.
4. Line Grid: Display of lines.

– Rulers: At the top and left margin of the drawing area a ruler can be displayed.
You can select between:

1. none: No rulers are shown.
2. in centimeter: The measurement of the rulers is centimeter.
3. in inch: The measurement of the rulers is inch.

– Show Page Borders: This function shows margins in the drawing area.

– Model new processes in BPMN: If this checkbox is active, new processes
will be created in BPM-Notation.

– Route New Processes Orthogonal: If this function is active, the edges of
new created processes will be displayed orthogonally.

– Hide Control Edges: This function allows to hide light grey dotted edges in
process editor, e.g. the control edge of a GOTO node.

– Hide goto-Help: If this function is activated, the help–window will not appear
when you insert a goto.

– Printer-Zoom: You can define the print-zoom of the process here.

– Applet Look-and-Feel: Specify the Look-and-Feel for the process editor:

1. according to configuration: This schema will be used, which was set under
Administration→ Configuration→ Localization (see Installation Guide -
Chapter 3).

2. metal
3. windows

The Help Menu

• Help: The help–page of @enterprise will be shown (see section 2).

• About @enterprise Process Editor: Shows you information about the process editor
and the used libraries.

The symbol bar

You can reach the most used functions in a faster way than using the previous described
menus:

• New: see section 7.2.2

• Open: see section 7.2.2

• Save: see section 7.2.2

• Undo: see section 7.2.2

• Redo: see section 7.2.2

120



7.2. THE PROCESS EDITOR

• Cut: see section 7.2.2

• Copy: see section 7.2.2

• Paste: see section 7.2.2

• Delete: see section 7.2.2

• Mini Map: see section 7.2.2

• Normal viewing: see section 7.2.2

• Zoom In: see section 7.2.2

• Zoom Out: see section 7.2.2

• Show activity properties on node double-click: If this function is activated and you
make a double-click on a node, the Activity Properties will be displayed.

• Show task properties on node double-click: If this function is activated and you
make a double-click on a node, the Task Properties will be displayed.

• Show time management on node double-click: If this function is activated and you
make a double-click on a node, the Time Management will be displayed.

The context menu

The context menu is a fast and comfortable form of handling in the drawing area. By
clicking the right mouse button on an element in the drawing area the menu will be opened.
The context menu includes some components of the menu bar:

• Cut: see section 7.2.2

• Copy: see section 7.2.2

• Delete: see section 7.2.2

• Activity Properties: see section 7.2.2

• Task Properties: see section 7.2.2

• Time Management: see section 7.2.2

• Annotate: see section 7.2.2

• Exception Handling add: see section 7.2.2

• Additional Edge: see section 7.2.2

Hint: If you want to work faster with the process editor, you can use Shortcuts or Mnemon-
ics. The particular shortcut of a function is displayed beside the function.

121



7.2. THE PROCESS EDITOR

7.2.3 Process Properties

On the process–properties mask you have the possibility to set properties relating to the
process. The tabs are described here:

• Common: Analog to 6.5, but the field Apply changes at is not available.

• Forms: Here you can set the forms for the process. With a click on the button Add
a new window appears (see figure 7.4), where you can select a form type and define
some information about the usage of the form in the process. The window Add Form
contains following information:

– Id: You have to give the form a local id in the process.

– Name: Here you can enter a name for the form (optional).

– Type: Select one of the listed types for the process form. You can add additional
forms by clicking on the button New beside the list (see section 6.4).

– Mode: Here you can specify the purpose of the adding form.
local: An instance of the form is created when the process is started (a process
instance is created). This is the default.
inout: The form is handed over from another process. This means that the
currently edited process is used as subprocess.

– Baseform for View: Select here the baseform for the view. The type of the
form currently defined and the base form must be compatible, i.e. the form
must be a view to the baseform.

The buttons Ok and Cancel work in the usual manner.
Use the button Remove to remove a form from the process. Use the button Edit
to change the Mode or Id of the process-form. If you change an existing form-id,
the id’s will be replaced automatically in objects like activity. In structures like If
where a condition field exists, the id must be changed manually, otherwise you will
be informed when saving the process. If you use the button Remove or Edit, a form
must be selected first.

• Source: Analog to 6.5.

• Components: Analog to 6.5.

• Visibility of Forms: Analog to 6.5.

• Escalation: Analog to 6.5.

• History: Analog to 6.5.

• Access: Analog to 6.5.

• Referenced By: Analog to 6.5.

122



7.2. THE PROCESS EDITOR

Figure 7.4: Add form to process

Figure 7.5: WDL-Source

7.2.4 Tasks

With the help of the task mask (see figure 7.6) you specify those task which can be assigned
to a recipient of a task while you are changing the agent of a task. This function is not
activated for the worklist by default. For this purpose add the action key adHoc in the gui-
configuration at the node type Worklist→ Functions. More details can be found in section
6.8.1.

123



7.2. THE PROCESS EDITOR

Figure 7.6: Tasks

Add Task

The following steps are necessary:

1. Select the menu item "Process→ Tasks". The dialog of figure 7.6 is shown.

2. Select a task of the list "Tasks".

3. Click the "Add Tasks"–button. Now the added task appears in the list "Added Tasks".

4. If you want to assign a form to a task then do the following:

(a) Select a task of the list "Added Tasks".

(b) Select a form of the list "Forms".

(c) Click the "Add Form"–button. Now the added form appears in the list "Added
Forms".

5. Click the button "OK". Now your entries are stored in the database and the dialog is
closed.

Delete Task

The following steps are necessary:

124



7.2. THE PROCESS EDITOR

1. Select a task of the list "Added Tasks".

2. Click the button "Delete" right beside the list "Added Tasks". If you want to delete
more than one task repeat the steps 1 and 2 as often as required.

3. Click the button "OK".

Delete an assigned Form from a Task

The following steps are necessary:

1. Select the task of the list "Added Tasks" to which the form you want to delete has
been assigned. Now you can see the form in the list "Added Forms".

2. Select the form you want to delete of the list "Added Forms".

3. Click the button "Delete" right beside the list "Added Forms". If you want to delete
more than one form repeat the steps 1 to 3 as often as required.

4. Click the button "OK".

7.2.5 Timeout Task

With the menu entry "timeout handling" you can define an activity which is started, when a
process timeout occurs, i.e. the process is still running after the time span defined in max.
duration (see chapter 6.5).

The following information must be provided for the definition of a timeout activity:

1. On selection of the menu item Timeout Task the dialog shown in figure 7.7 appears.

2. Specify the activity by inserting a task id or using the task selection window.

3. Choose an agent, which should receive the timeout activity in his worklist.

4. Add the forms necessary for the timeout activity.

5. Confirm your choices with the button OK or cancel the operation with the Cancel
button.

Hint: This form of timeout-handling is available for downward compatible reasons only.
Use for new created processes either the process–escalations (see section 6.5.10) for the
whole process or task–escalations (see section 6.2.2) for single tasks. The process–escalations
are available under Process→ Properties→ Escalation. The task–escalations can be found
by selecting an activity and clicking on Edit→ Task properties.

125



7.2. THE PROCESS EDITOR

Figure 7.7: Timeout–Mask

7.2.6 Properties of an Activity

You can edit the properties of an activity, when you perform a double–click on the node
(if function Show activity properties on node double-click is activated only) or click with
the right mouse–button on the node an select in the context menu Activity Properties - the
property window will appear (see Fig. 7.8).

• Activity: Specify the activity by inserting a task id or using the task selection window.

• Step name: Specify the name of the node which can be localized, if the value starts
with @@@ and ends with @@, e.g. @@@myname@@.

• Label: Must be unique within the process and has the same syntactical conditions as
a @enterprise-id.

• Icon: The icon which will represent the activity in the drawing area of the process
editor. If no icon is specified here the default icon of @enterprise is used. An
icon is handled like a resource in @enterprise, i.e. the icon is part of the classpath.
Example: Path lang/default/images/pred/nodes/event_register.png shows the icon for
node Register-Event.

• Agent(s): Add an agent by clicking the "+" button besides the agent list. The agent
selection window appears. You have several possibilities to define an agent, the tabs
on the window let you choose between them:

126



7.2. THE PROCESS EDITOR

Figure 7.8: Properties of an Activity

– User: Select a user in the list and click apply. The user id appears in the agent
line on the bottom of the window.

– Role: Select a role and click apply.

– Task: Select a task in the list. The agent will be set at run-time to the last agent
of the selected task. Note, that you can only select a task which is performed
before the current task.

– Form field: Select a form and then a field in the form. The agent is taken at
run-time from the content from a field in a process form. The content must be
either a role id, an user id, a role id together with an organizational unit id, or an
agent of a previous step. See the WDL description for the syntax of the agents.

– Organizational Unit: Org. units can be combined with role and user. At run-
time, the organizational unit of the current task will be set to the given OU. The
organizational unit of the overall process will not change.

– Method: Define a JAVA method (no Groovy script). Return value must be an
Agent or a String in WDL syntax.

To remove an agent, select it in the list and click the "x"-button right or the list.

127



7.2. THE PROCESS EDITOR

• Skipable: When the checkbox is activated,the task is skipable, this means when no
agent is set at build-time and run-time, the task is skipped.

• Available Forms: Add and remove process forms to/from the activity. To add a
process form, select the form in the list an click on the arrow button. To remove it,
select it in the "Added form" list and click the "x"-button. You can set the visibilities
of a form by selecting an entry in the list of Added Forms and click on the Edit-icon
beside this list (analog to process). The order of process forms can be changed by
using the buttons beside the list, i.e. the form at the top of this list is displayed as
leftmost tab in worklist.

7.2.7 Time Management

The time management allows to see Duration and Result about the time graph, which was
created in the chapter 9.1.15. Every interactive task (activity or batch) should contain as-
sociated time graph information (TimeNode). If not, you can enter the values manually (or
select a statistic from the drop–downlist) or let mining task generate it for you by activating
the link Create. The tab Result contains an overview of the step related histograms. For
each step and iteration there are 5 types of time histograms:

1. Duration histogram (blue): Shows, how long it takes to complete this step.

2. Earliest possible start (green): Shows, when this task can be started in best case.
This histogram is generated, if the parameter Create Start Histograms under Config-
uration→ Time Management has been set at graph generation.

3. Earliest possible end (yellow): Shows, when this task can be completed in best case.

4. Latest allowed start (orange): Contains time information about last allowed time
(from process completeness perspective). Negative values are calculated from process
deadline.

5. Latest allowed end (magenta): Contains time information about latest allowed end
of this step (from process completeness perspective).

Positive values are given from process start, negative values from process deadline.

Each histogram can be presented in following variants:

• Normal view

• Accumulated view

The accumulated view makes it easy for user to find out such integrated values like: how
long will be the duration of Y% of steps, or how much percent will be done at time X (see
figure 7.9).

128



7.2. THE PROCESS EDITOR

Figure 7.9: Result of time graph

7.2.8 The Function List

The function list contains the functions for the graphical modelling of processes.
After selection of a function you can perform the action in the drawing area of the process
editor window. If the orthogonal routing is activated, the nodes can be moved only vertically
or horizontally by pressing the Shift-Key and moving with the mouse.

• Selection: In this mode you can move and edit the objects in the drawing area.

• Task: This function allows the insertion of new activities. After selection of this
function you can drop an activity on en edge in the process graph by simply clicking
on this edge. A new activity will appear. On a double–click on the activity a property
window for setting the activity properties appears.

• Subprocess: Subprocesses can be inserted in the same way as above.

• System Step: System steps can be created and the method to be called can be speci-
fied. Enter the fully qualified name of a Java method which should be executed in the
step.

129



7.2. THE PROCESS EDITOR

• Batch Step: Batch steps can be inserted, the name of a Java class (the batch adapter)
can be specified. The class provides a callback interface for events during the life
cycle of a batch step. For details, please consult the Application Programming Guide
and the API documentation.

• If: The if control structure consists of two nodes, an if node and a corresponding end
node. These two nodes are connected with two edges, a green and a red one. The
green edge is the path followed when the condition of the "if"-node evaluates to true,
the red edge is the path followed when the condition evaluates to false.

A double–click on the "if"-node opens a window where you can edit the condition.

If you click in the if-mode on the red edge you add an additional if-node without
a corresponding end node. This control structure corresponds to the if-elsif control
structure:

if condition 1 then
action 1

elsif condition 2 then
action 2

elsif condition 3 then
action 3

else
action 4

end

Note: Use the WDL-Script window to see how the graphical definition corresponds
to the WDL script.

• Choice: Every choice branch has a name and an optional condition. At run-time
the engine first checks the conditions of all branches, only the branches where no
condition is specified or the condition evaluates to true are shown for selection.

Insert the choice in the usual way. You see a black arrow, whereas the black arrow is a
possible choice branch, where you can add activities. If you want to add alternatives,
select the choice and activate Additional path in the menu Edit or click with the right
mouse button on the choice and select in the context menu Additional path.

• While Loop: With this control structure you create a condition node, where the green
edge goes in a loop back to this node, the red edge goes to the original following
node. Activities dropped onto the green edge are the loop body. Process execution
goes through the body until the condition of the while node becomes false.

• Loop: The loop control structure consists of two nodes, the loop node, and the exit
node. The exit node is a conditional node, so two edges leave this node: The red one
goes back to the loop node, the green one goes to the original follower.

• Parallel for: The parallel for control structure consists of two nodes in WD-notation,
the parfor node and the end node. In BMP-notation this control structure is repre-
sented as BMPN-subprocess. If you click within the Parallel for border, but not on
an element, the whole frame will be selected. In this case e.g. you can move the

130



7.2. THE PROCESS EDITOR

whole Parallel for-structure or delete it. A double–click opens the same dialog as
double–clicking on Parallel for start-node.
See the section about "Parallel For" in the WDL chapter of this book for an example
of an parfor.

• AND-Parallelism: With this control structure you can create parallel process execu-
tion paths. Between the nodes "par" and "andjoin" several paths can be created. To
add alternatives, select "par" and activate Additional path in the menu Edit or click
with the right mouse button on "par" and select in the context menu Additional path.
See the section about parallelism in the WDL chapter of this book for an example of
an andpar.

• OR-Parallelism: Works like the AND-Parallelism above, the only difference is at
run-time: The process execution continues after one parallel path has been finished.

• Branch: The branch allows to add an additional path which is processed indepen-
dently by the main process flow. For example the main process flow is finished, but
the branch can be processed furthermore.

• Goto: Use the goto function to jump to an arbitrary node in the process structure.
For inserting a goto do the following: Activate the goto function by clicking it in the
function list. Click on the edge where the goto should start. Then take the arrowhead
of the drawn through line and put it by pressed left mouse button to the destination
node and leave the left mouse button. The dashed line from the goto shows the orig-
inal way of the process. If the drawn through line shows on an activity, the label of
this activity is shown in the detail view of the goto. In the detail view of a goto you
can set the Target Label. If the drawn through line shows on an element in the process
editor and you change the label in the goto, the changes will be accepted in the target
node.

Hint: In BPM-Notation the drawn through line cannot cross the borders of a Paral-
lel for.

Be careful when using gotos! Jumping out of and-parallelism can cause strange ef-
fects.

• Events: This event control structures consists of a single node which stands for a
special action in the context of events. The event control structures are Raise-Event,
Sync-Event, Register-Event and Unregister-Event. See the section about "Events" in
the WDL chapter of this book for an example of an event.

• Web services: In this area following nodes can be selected:

– Outgoing Message (INVOKE): If this node is selected, the defined web service
is called during run-time and the appropriate data will be submitted. If this
action fails and an Exception Handling has been defined, the exception flow
will be performed (see definition of exception handling in section 7.2.2).

131



7.2. THE PROCESS EDITOR

– Incoming Message (RECEIVE): If this node is selected, it will be waited for
data of the (previous called) web service. If data are received, they will be
processed according to the definition.

– Reply Message (REPLY): If this node is selected, a reply message will be send
when node Incoming Message has been processed successfully.

The properties of each node are described in section 7.2.15.

• Annotation: If you have selected this function, you can add a textfield at any place
in the drawing area. Perform a double-click on the textfield to add a text and then
confirm with Return.

7.2.9 Conditions for Ifs, Choice, Loops

Perform a double–click on the node, the property window will open. See section 7.1.5 for
the syntax of conditions.

7.2.10 Properties for System Steps

Perform a double–click on the node, the property window will open. Insert the full-qualified
method name, including the optional parameters in the input field of this window.

7.2.11 Properties for Batch Steps

Perform a double–click on the node, the property window will open. Insert the full-qualified
class name of the BatchAdapter, including the optional parameter in the input field of this
window. The execution of the batch steps can be modified using the checkboxes. Details
can be found in the Applications Programming Guide and in the API documentation.

7.2.12 Properties of a Subprocess

Perform a double–click on a subprocess and a property window opens, where you can select
the process and the forms handed over to the subprocess.

• Process: Specify the process by inserting a process id or using the process selection
window.

• Node name: Self defined name for this node which replaces the default name. Can be
localized, if the value starts with @@@ and ends with @@, e.g. @@@myname@@.

• Icon: Path for displaying an alternative icon which is a resource in @enterprise
classpath.

• Available Forms: Add and remove process forms to/from the subprocess. To add a
process form, select the form in the list an click on the arrow button. To remove it,
select it in the "Added form" list and click the "x"-button.

132



7.2. THE PROCESS EDITOR

7.2.13 Properties of an Event

There are four following events:

• Raise: raise an event.

• Synchronize (Sync): stop process execution and wait for an event.

• Register: register for a certain event.

• Unregister: unregister for a certain event.

Perform a double–click on an event and a property window opens. where you can edit the
following properties of the event:

• Event Name: the event name.

• Event Handler: a Java–class implementing the interface "com.groiss.event.EventHandler".

• Context: the context object.

• Step Name: The name for this node which can be localized, if the value starts with
@@@ and ends with @@, e.g. @@@myname@@. If nothing is entered, the default
step name is used.

• Label: Must be unique within the process and has the same syntactical conditions as
a @enterprise-id. The label is relevant for process escalations of type Sync unfinished
(see section 6.5.10).

By clicking the button "Ok" your entries are stored and the current dialog will be closed.

By clicking the button "Cancel" your entries are discarded and the current dialog will be
closed.

7.2.14 Properties of a Parallel For

Perform a double–click on the "parfor"–node and a property window opens, where you can
edit the following properties of the parfor statement:

• for each Subform in: If this radio button is checked the parallel for statement is
executed for the sub form entries of a form, like it is described in the WDL sub
section (see case one of Parallel For under 7.1). Select the appropriate subform
(Mainform.Subform-Id) from the dropdown-list.

– Form Id within the Loop: The id of the selected subform within the parallel for
construct.

– Form Name within the Loop: The name of the subform within the parallel for
construct.

• Iterator: If this radio button is checked the parallel for statement is executed for the
specified class, like it is described in the WDL sub section (see section Parallel For
under 7.1)

133



7.2. THE PROCESS EDITOR

• Label: Must be unique within the process and has the same syntactical conditions as
a @enterprise-id.

Furthermore it is possible to define a method in end-node of parfor (see section Parallel For
in chapter 7.1).

7.2.15 Properties of Web service nodes

Select a web service-node and perform a double–click on the node to open the appropriate
property window. For each node you can define a Step name which can be localized, if the
value starts with @@@ and ends with @@, e.g. @@@myname@@. If nothing is entered,
the default step name is used. Furthermore a Label can be defined which must be unique
within the process and has the same syntactical conditions as a @enterprise-id. The label in
node Incoming Message is relevant for process escalations of type Receive unfinished (see
section 6.5.10).
Following properties can be defined for node Outgoing Message:

• Webservice operation: Select an existing web service client operation which was
created previously (for this application). See section 6.10.1 for more details.

• Address: Select an address to call the web service. You can choose between reading
the address from WSDL-file, enter a XPath-expression or enter an URL.

Example for XPath-expression: Read from configuration parameter of application
myappl:

string($configuration_myappl/property[@name=’webservice.address’])

• Out-parameter: Here you can enter a list of parameter as XPath-expression which
should be submitted. The parameters are defined in WSDL-file and has been defined
during the creation of the web service client.

• In-parameter: Analog to Out-parameter, but for data which should be read from
web service.

Following properties can be defined for node Incoming Message:

• Webservice operation: Select an existing web service server operation which was
created previously (for this application). See section 6.10.2 for more details.

• Start process: If this checkbox is activated and this node is the first step in the
process flow, a new process instance will be started. If this checkbox is no activated
in this case, no instance can be created. If this node is not the first step in process,
this checkbox must not be enabled!

• In-parameter: Here you can enter a list of parameter as XPath-expression which
should be read. The parameters are defined in WSDL-file and has been defined during
the creation of the web service server.

134



7.2. THE PROCESS EDITOR

• Correlation parameter: Here you can enter a list of parameter as XPath-expression
which has been defined during creation of the web service server. A mapping can be
defined to assign automatically an Incoming Message to a process instance.

Following properties can be defined for node Reply Message:

• Webservice operation: Select an existing web service server operation which was
created previously (for this application). See section 6.10.2 for more details.

• Out-parameter: Here you can enter a list of parameter as XPath-expression which
should be submitted. The parameters are defined in WSDL-file and has been defined
during the creation of the web service server.

By clicking the button "Ok" your entries are stored and the current dialog will be closed.
By clicking the button "Cancel" your entries are discarded and the current dialog will be
closed.

For more information about the wdl-syntax please take a look in section 7.1.

135



8 The Search of @enterprise

8.1 Standard Search

Find process instances, see the User Manual for a description of this function.

8.2 Document Search

For finding documents, see the User Manual for a description of this function.

8.3 Extended Search and Stored Queries

This function offers extended functionality for finding process instances. Here you can also
find statistics, which have been predefined by an administrator.Read the Monitoring Manual
for details.

136



9 Administration tasks

9.1 Server

9.1.1 Server monitor

The server monitor provides an overview about the following server activities:

• the database connections.

• the HTTP–threads. How many threads and database connections are currently in use.

• the user sessions (HTTP–sessions).

• the memory usage.

• the number and kind of the errors occurred so far (log file content).

• date and time when the server has been started.

• the number of server requests since the server has been started last time (both RMI
and HTTP).

• the number of carried out database statements.

• the content of log files.

• the system properties and Thread-Dumps

• additional server informations like version, configuration, licence etc.

• the number of active process steps (tasks) in the whole system (worklist-cache must
be started or activated)

User-Sessions

With the help of the administration function User Sessions it is possible to get information
about the logged in users and when they was logged in.

When a user is logged in, the number of the logged in users will be checked with the licence
(Concurrent-User). If the login is possible, an user-session will be generated. This user-
session is as long as valid, until the user activates the Logout button. If no logout happens,

137



9.1. SERVER

the user-session is valid for 24 hours and will be finished automatically. Only user-session
which are inactive less than 4 hours, will be checked with the licence.

You can display the user-sessions as user list or in form of a histogram. Further you can set
the time horizon for better display.

User List: For displaying the user list, you have to take further restrictions.

• Logged in users: All user-sessions which are active.

• All users: All user-sessions, also inactive sessions.

• User: All user-sessions of the selected user.

With option Last access (minutes) you can define (depending on selected User list option)
which users should be displayed where last access was done x minutes before.
You will find following information in the result table:

• User: Contains the first and last name of the user.

• Client IP: The IP-adress of the user.

• Date of Initialization: The initialization-date of the user-session (login date of the
user).

• last access: The date, when the user was active in the system. By activating the
link (only visible when a thread is running) a new window opens, where you can see
details about this activity (inter alias HTTP–sessions).

• Date of Logout: You can see the date of logout or the link Logout, when a thread
is running. This link kills the session and the user will be logged out (can be killed
clusterwide).

Histogram:

• hour: The time interval starts with 0 minutes..

• day: The time interval starts at 12pm.

• week: The week starts with the start-day of the time horizon at 12pm.

9.1.2 Server Control

Here you can control the server with the following functions:

• Shutdown server: Shut down the @enterprise Server.

• Restart Server: Restarts the @enterprise Server.

• Show patch files: Checks the local system, if a patch is needed and displays all
possible changes.

Further information regarding the patch-mechanism can be found in the installation
manual.

138



9.1. SERVER

• Execute Database Upgrade: Use this link to check whether your software installa-
tion is consistent with the database (the version numbers are compared).

• Reload Database Connections: All database connections (of the current node) will
be marked as "old". Before assigning a connection to a transaction the "age" will be
checked first, then old connections will be closed and new ones opened.

• Initialize Log File: When activating this function the current log file will be closed
and a new log file will be created. Use this function if you want to record some events
in a log file.

• Reload Configuration: This function allows to search for changes in fileavw.conf
and appl.prop of each application (not configuration parameter definition in XML
file!) which has not been changed via GUI and load the changed values into the
Configuration object. After loading the method reconfigure() is called for each service
(and each application where application class implements the interface
com.groiss.component.Service). More information can be found in the Application
Development Guide - chapter The Configuration File.

• All passwords have to be changed on next login

• Show reporting schema: Displays the reporting schema (XML file) in a seperate
window.

• Reparse Reporting schema

9.1.3 Events

In the section Events you can search for all recorded system events of @enterprise:

• From and To: Here you can set time restrictions

• Type: The event type startup or shutdown can be selected

• Search: This function searches all recored system events, depending on the search-
options. If no option was set, all recorded events will be displayed in a table.

• Delete all: With this function you can delete all recorded events which are displayed
in the table.

9.1.4 Worklist-Cache

In the cache administration the functions Update, Refresh and Check Cache (each of them
described below) are available.

The engine constructs the worklists via heavily cross-linked in-memory structures. Database
operations are hardly ever invoked.

The worklist cache can be in one of three states:

139



9.1. SERVER

• Switched Off: In this state, the cache is completely switched off. It does not con-
sume any memory, the worklists are still constructed via the previous DB-intensive
approach.

• Started: This state is an intermediate state in which the in memory cache structures
are build and maintained, but where the worklist operations do not actually use the
cache. This mode of operation might be useful to compare the worklists with and
without cache.

• Activated: This is the full operations mode of the worklist cache component. All
suitable worklist construction operations use the memory cache structures1.

The initial state of the worklist cache can be configured via the server configuration in sec-
tion tuning.

Figure 9.1: Worklist-Cache

Update

With the help of this function you can change the state of the cache to one of the three
states described above. The state transition from off to started or to activated is relatively
expensive in terms of time. All other state transitions (in particular between started and
activated and vice versa) are quite fast.

1A notable exception are worklist methods which make use of SQL-WHERE-clauses via the API. Such calls
will consult the database in each case, independent from the particular state of the worklist cache.

140



9.1. SERVER

Refresh Cache

A refresh of cache structures is needed in the following cases: new applications, new de-
partments, changes in the department-tree, new roles.
For this purpose following functions are available which can be executed manually:

• Refresh cached Org. Structures: With the help of this function you can refresh the
organizational structures of the cache.

• Refresh Activity Instances: This function refreshes the Workitems. This would be
also accomplished by switching the worklist cache off and then on again.

• Repair WLCache: If there have been inconsistencies in the worklist cache of one
Node N due to "stop the world" garbage collection pauses, they can be repaired with
this function. By entering a time interval (e.g. start and end of the GC-Phase of the
inconsistent node) and by selecting another node M, node N gets information from
node M which step instances changes during the interval. Nod N uses this information
to update its internal state to the current data base state of those step instances.

For each function the timstamp of last execution is displayed within the brackets.

When a user logs in, his current roles and substitutions are accounted for. So changes in the
assigned roles of the user (or the users he substitutes) are reflected after the login.
Changes in the substitutions are accounted for immediately after the changes (without the
need for the substitute to log in again). This is the case for manual changes of substitutions
as well as for changes made by the CurrentSubstitutesTask because the period of substitu-
tion starts or ends. Please note that the CurrentSubstitutesTask must be set to active in the
Timer administration.
During a refresh of the cache structures, some of the structures are instantiated twice (the
old and the new version). So additional memory usage during cache refresh and after it
should be expected until garbage collection kicks in.
Two methods are available to refresh cache structures:

• com.dec.avw.wlcache.WLCache.getInstance().refresh() This takes into account all or-
ganizational changes. Corresponds to the link "Refresh" in Administrative Tasks /
Cache Administration. Use e.g. after importing a batch of users programatically.

• com.dec.avw.wlcache.WLCache.getInstance().refreshUser(User u) This function con-
siders changed roles and changed substitutions for one user. It does not take into
account new applications, departments, depttrees, roles, . . .

Check Cache

With the help of this function you can check the cache consistency for a certain user. The
system compares the contents of the users personal worklist, role worklist, suspension list,
role suspension list and pending items list according to the worklist–cache to the contents
of the corresponding lists according to the database state.

141



9.1. SERVER

If no discrepancies could be detected, the lists will show an icon in the form of a green tick.
In case of discrepancies, the affected lists are marked with a red cross and the offending
items are displayed. The administrator can then fix such discrepancies by clicking the pro-
vided Update-links or using the button Refresh Cache for User which refreshes the whole
cache for the current user. The changes are reflected immediately, that is the worklist cache
is updated with the latest state of the stepinstance in the database. Display refresh must be
triggered explicitly by the administrator.

9.1.5 Class Path

For the convenience of application programmers we support the reloading of classes. A pre-
condition for doing this, is to distinct between system classes and application classes (and
resources). System classes are loaded by the system class loader and can not be unloaded.
They reside in the lib directory of the installation.

The application classes are in the lib and classes directories of the applications. The form
classes generated by the system are in the forms directory. These classes are loaded from
the application class loader and are reloadable.

To enable class reloading check the checkbox in the configuration (parameter group tuning).
To check your classpath use the Classpath link in the administration.

Show shadowed classed

This method lists all resources, which name is found more than once in the class path or in
subfolders of the class path entries. resources, which are found more than once, are shown
in the following syntax.

relative path of resource Number of found resource with this relative path
Absolute Path of the resource used by the system
Absolute Path of shadowed (unused) files
...

9.1.6 Timer

The timer triggers time-controlled events. It is used for some system tasks but also open
for application timers. If you click the "Timer"-Link you see the list of timers already de-
fined. You can add entries or change the properties of existing entries in the usual manner.
Furthermore the toolbar-function Execute is available which allows to execute the selected
timer.

The object-details of timer contain the following tabs:

• General

• Access

• History

142



9.1. SERVER

Figure 9.2: Tab: General (Timer)

Overview of Standard–Timers

Standard-timers are:

• ArchiveTimer: Archives finished processes. For more information see the Installa-
tion Guide.

• BatchManager: Starts and finishes batch jobs. Only needed, when batch job steps
are used in process definitions.

• CalendarReminder: Checks, if there are any calendar entries which specified re-
minder time is reached and sends mail notifications for those entries. Keep it switched
on, if the DMS is used.

• CleanUpDMS: Deletes empty directories in the checkout area and also deletes ACLs,
which where DMS-object specific, but are now unreachable. Keep it switched on, if
the DMS is used.

143



9.1. SERVER

• ClusterCheck: Checks whether other nodes are running and reassigns cluster timer.
This timer is only needed, when using the @enterprise cluster. For more information
about @enterprise cluster and related times see the Installation Guide.

• CurrentSubstitutes: Checks, if some substitution specifications have to be enabled
or disabled due to the time periods specified at those substitution. Needed when user
or role substitutions are used.

• DeferredUpdate: On each run this timer takes a look, if there are any deferred up-
dates of master data for which the time to execute has been reached. And if so, those
updates will be performed by this timer. Keep it switched on.

• DeleteUserSessions: This timer deletes user sessions which are expired. The param-
eter avw.keep.user.sessions defines the duration (in days), how long a user session
should be active.

• Escalations: This timer checks on each run, if there are any timeout tasks to start or
any escalations to fire. For detailed information see section 6.2.2 or 6.5.10. Needed
when any escalations or timeouts are used in the process definitions.

• Expiration: In BPEL it is possible to define an expire date for an activity (not a
task). If this expire date is reached, the activity will be finished automatically even
when this timer runs.

• HeartBeat: Informs the cluster that this node is alive. This timer is only needed
when using the @enterprise cluster. For more information about @enterprise cluster
and related times see the Installation Guide.

• IndexRefresh: Refresh the full-text search index in ORACLE. This timer is only
needed, if you use full-text search under ORACLE.

• LDAPDirSyncTask: Synchronizes with LDAP Directory Servers. For detailed infor-
mation see section 9.5.2. Needed when periodic LDAP synchronization is configured.

• Log: This timer will remove all log entries (excepting the current log entry/the last
change) which are older as specified in Configuration→ Localization→ Keep object
changes (days). An alternative way is to use the field Parameter of the timer which
overrules the configuration parameter. If the timer parameter is a positive integer
D, then all log entries older than D days will be removed. If the timer parameter is
a property string, the retention period can be specified for individual classes. The
property string consists of elements of the form classname=Dn (separated by line
break). If zero is used as Dn, then the classes log entries will not be removed. If *
is given as a classname, the corresponding Dn parameter applies to log entries for all
classes not explicitly mentioned in the property (all other classes). e.g.

*=30
com.groiss.org.User=0
com.groiss.org.OrgUnit=1000
com.groiss.org.Role=1000
com.groiss.org.UserRole=365

144



9.1. SERVER

• MailGetter: Download mails and perform the configured actions. For detailed infor-
mation see section 9.5.1. Only needed, if any mailbox contents should be processed
automatically.

• SeenObjectCleaner: Removes all see-information which is not needed anymore.
The seen-information is used to indicate, if a work item is new (=unseen) or not.
Keep it switched on.

• Suspension: This timer will investigate all suspended work items, if it is time to see
those items again in the various worklists (i.e. it performs a time triggered automatic
’see again’). Keep it switched on.

• WfXMLTask: Sends WfXML messages from outgoing buffer and gets messages
from passive partners. This timer is only needed, if WfXML is used. For detailed
information see section 9.5.4.

Tab: General

You can edit the following attributes (required fields are bold):

• Id: Short name of the entry.

• Classname: Name of the class which contains the timer action. The class should
implement the interface com.groiss.timer.TimerTask

• Parameter: A String parameter for the "run" function.

• First Run: The time of the first run.

• Period: Interval in seconds or in form of cron-pattern (see section 9.1.6).

• Active: Only when checked, the timer task is performed.

• Run on Startup: When checked, this timer task is started on startup.

• Run on every Node: The timer is running locally on every node of the cluster.

• Thread Id: If you specify a non-empty string, the string is used as thread identifier.
All timers with this string as thread id are executed in the same thread. Default is,
that all timers are executed in one thread.

• Description: Free text.

• Last Run: Shows, when the timer had its last run (start- and end-time) and the dura-
tion (in seconds).

• passivated at: Time, when no connection to the server existed and the timer was set
temporarily inactive.

Activating the button Execute, executes the actual timer immediately.

Activating the button Reactivate, releases the timer of the passive status.

145



9.1. SERVER

By clicking on this symbol a popup-window will be opened, where you can enter the period
in seconds or in form of cron pattern (see section 9.1.6).

If you click on this symbol, a popup-window will be opened, where the next five invocations
are shown.

Cron-Pattern

The cron-pattern comes from the UNIX-world and is used for tasks, which should be exe-
cuted automatically in recurring intervals.
@enterprise uses this pattern to start timers as desired. @enterprise adheres to the V7-
standard of cron.

A row consists of five defined columns. These columns contain the time data (minutes,
hours, days, months, weekdays), whereas the columns are separated by spaces. The entries
for the time data are shown in the following table:

Minutes 0-59 and * for all minutes
Hours 0-23 and * for all hours
Days 1-31 and * for every day
Months 1-12 and * for every month
Weekdays 0-7 and * for every weekday (0 and 7 for Sunday)

Furthermore cron offers following advanced functions:

• A comma , allows more time data

• A hyphen - specifies a period

• A slash / divides into a time range

Examples:

• Every day at 9h and 15h the timer will be executed: 0 9,15 * * *

• On the 15th of every month at 09:50h the timer will be executed: 50 9 15 * *

• The timer will be executed every Saturday at 00:00h: 0 0 * * 6

• The timer will be executed every 30 minutes: */30 * * * *

• Every day from 8h to 20h the timer will be executed every 20 min: */20 8-20 * * *

For further information about cron, please take a look at http://en.wikipedia.org

9.1.7 Object History

View the history of the objects in the database. You can see who has changed which objects
and view older versions of objects.

146



9.1. SERVER

9.1.8 Interface Forms

You can view the list of the interface forms you have defined, see chapter 6.6. Upon click
on a form you can fill it and start the associated process.

9.1.9 Pending Changes

In the administration task list you find the entry Pending Changes showing a list of objects
having queued changes. You can also withdraw the changes in this list.

9.1.10 Event Registrations

In the administration you can view the list of registrations and you can add and remove
registrations. Processes waiting in a sync can be finished manually from the process history.
The following informations are displayed in the event table:

• Registrant: The id of the process registered for the event.

• Event Name: The name of the event for which the registration took place.

• Context: The context object for the event.

• Event Handler: The Java–class handling the event.

9.1.11 Manage certificates

To use SSL you need a certificate, which is stored in a keystore. First, you have to set
the SSL Parameter (e.g.: keystore path, port) in the Configuration and ensure that the
com.groiss.ssl.SSLHttpd is in the list of services (see Installation and Configuration
Guide - chapter Configuration). To communicate in a secure manner @enterprise server
needs a certificate which proofs the integrity of the server’s public key. You may gener-
ate a self signed certificate, which covers the needs for internal communication, or request
an official certificate from a certification authority (CA). Anyway the server needs a RSA
key pair (public and private key), which can be generated by clicking the button “Gener-
ate self signed certificate”. @enterprise generates the key pair by using the keytool, which
automatically generates a self signed certificate to this key pair.

Generate selfsigned certificate

To generate a key pair, the following parameters have to be specified.

• Alias name: The alias name is so to say the id of the specific entry in the keystore.

• Country: a two-letter country code, e.g., "US"

• Company Name: The official name of the company.

• Organizational Unit: the specific department

• E-Mail: E-Mail address of the administrator.

• Hostname: The hostname of the server

147



9.1. SERVER

Figure 9.3: Generate selfsigned certificate

• Company Site: The city where the specific department of the company is located

• State/Province: The state of the company site.

• Days the key is valid: The key and the assigned certificates may expire. The valida-
tion time of the entry can be specified in days. The default value is 90 days.

• Key Length (in bit): Can be chosen: 512, 1024 or 2048 bit of length.

Create Certification Request

Choose the entry of the keystore, which you want to use to create a CR. You can download
the CR by double-clicking it or by choose it and click the "create Certification Request"
button. If you have created the CR you can request a certification at a certification authority
(CA). How to do this can be found in the documentation of your CA.
You can get some example certificates at "www.secude.com/trustfactory/" or "www.trustcenter.de".

Import Certificate

hen the CA sends the requested certificate, you need to import it into the keystore. To do
so, click on the button “import certificates” and specify the following parameters.

• Alias name: Ensure that the alias name is the same as the alias of the key pair for
which the request was generated.

• Encoding of the certificate
According to the encoding of the received certificate, there are 2 different ways to
import.

148



9.1. SERVER

Figure 9.4: Import Certificate

– Binary (DER, PKCS#7): in this case you have to specify the file, which holds
the certificate.

– Base64 encoded: just copy the certificate including header and footer lines in to
the textarea

• Certificate type: The certificate to import can be either the certificate of the server or
the certificate of a trusted organization (also called trust anchors). A trust anchor is
the root of a certificate chain an is needed, if the “require client certificate” option is
selected. The server accepts only client certificates, which are signed by a certification
authority, which certificate is stored in the keystore as a trust anchor. If the client can
not provide a certificate which is signed by one of the trustanchors in the keystore,
the connection will be refused.

If any entry of the keystore is not needed any longer, you can delete the entry by clicking
on the delete button.
Note: After any modification of the keystore the server needs to be restarted.

9.1.12 Running Nodes Monitor

A cluster is a set of @enterprise engines which share a common database schema and
which are configured identically. The aim of this configuration is to provide enhanced
availability and scalability. Further informations on clusters can be found in the Installation

149



9.1. SERVER

manual.

Informations about the cluster architecture of @enterprise can be found in the installation
guide. The attributes of a cluster and node respectively are described there also.

9.1.13 Full-Text Search

The status of the full-text search may be administrated in the system configuration. There
you can activate or deactivate the full-text search and if you are activating it, you may
initialize it afterwards. Initialization must be done if you want to use full-text search for all
documents and forms which were last amended while the full-text search was not active.
The full-text search will be available for all forms and documents created or changed after
the specified date (or for all if no date is specified).

9.1.14 Query Tool

A simple interface for executing SQL-queries has been implemented. You find it in the
Administration Tasks, group Server. Because direct database access may be an enormous
security risk, the functionality is only available when the following two conditions met:

• The configuration parameter database.direct.access has value 1. There is no user
interface to set this parameter, you must directly edit it in the configuration file.

• The user must have the execute right on all objects (every user having the sys role has
this). Substitutions are not considered here.

9.1.15 Duration statistics

The duration statistics contains a list of all collected time data. By activating the tool-
barfunction New you can collect time data for the timemanagement (see figure 9.5). The
purpose of mining is to extract duration statistic information from process history. This
duration statistic will be used later to generate time management run-time structures (time
graph).
If you want to collect time data, you have to specify a process type, activate the checkbox
Perform Process Mining and optionally specify a timer interval when the process instance
was started. Additionally a name should be entered, so that this statistic can be found in the
Duration statistics table. The mining gathers the duration for each task in this process and
determinate branching information. After finishing of mining task, you will get a page with
status information.

You can get details by selecting an entry in table Duration statistics, or delete some of them,
that are no longer needed. The detail view of an entry contains some common information
in tab Common, shows Duration histograms for each task in a process and also Branching
probabilities (see figure 9.6). The tab Time graph contains a visualized representation of the
collected data by activating a link (mask is the same as described in section 7.2.7). For each
duration statistic it is possible to define an own implementation class which has to extend
the adapter-class com.groiss.timemgmt.DefaultTimeManagementImpl. More details can be
found in the @enterprise API.

150



9.1. SERVER

Figure 9.5: Process Mining

Hint: Be note that in case of an own implementation class no timegraph will be generated
and the function Regenerate the graph is not active anymore!
The tab Duration histograms contains the probabilities for each task in the process. The
tab Branching probabilities contains the probability for each branch, how often this branch
was run through. In this case the process has an IF–construct, which only has one activity
in the TRUE–branch (green line in the process editor). The probability of this branch is 0,
because the activity was never called. The ELSE–branch (red line in the process editor) has
the probability 1.

Duration statistic from mining can be used at run-time after generation of a time graph. This
task is separated from mining task, because each process type is able to use only one set
of time data (duration statistic). Thus you can make unlimited number of mining snapshots
and decide which one you will use for run-time later.
This appropriate function is available in the detail view of duration statistic. You have to
transfer the Process Definition from inactive to active. After that you will be asked, if you
want to create a timegraph. After finishing the generation, the status logs of the generation
process will be displayed (see figure 9.7). If you want to save the result of the timegraph
generation, please activate the button Save. For regenerating a timegraph for the selected
process of the list of active processes, please activate the button Regenerate the graph.

151



9.2. USER

Figure 9.6: Duration statistics

9.2 User

9.2.1 Disable/Enable Login

This function disables the login to the server, only the users, which have the right Configu-
ration, may login in this mode. Other users receive the message you provide in the message
area.
There are following information availabe:

• Logins enabled: If this radio–button is activated, there are no restrictions at the login.

• Logins disabled: If this radio–button is activated, only system administrators can
login after server restart. At server restart upgrade(s) of application(s) will be per-
formed (if defined). For further information about upgrading applications, please
take a look in the API of @enterprise (ApplicationAdapter.getVersion() and Applica-
tionAdapter.upgrade()).

• Message: If the login is disabled, you can enter a message here, which will be shown,
when a user logs into the system.

9.2.2 Permission Test

With the help of this function you are able to detect if a certain permission has been assigned
to a certain user. The informations of the corresponding HTML–page are described in

152



9.2. USER

Figure 9.7: Status of generation process

detail in chapter 5. By clicking the button "Test" the system checks wheter the user has the
permission or not and the result is displayed.

9.2.3 Expired passwords

If the password policy defines, when passwords are expired, the administrator can check,
which users have expired passwords.

153



9.3. IMPORT/EXPORT

Figure 9.8: Disalbe/Enable Login

Figure 9.9: Permission Test

9.3 Import/Export

9.3.1 Import/Export in XML Format

The import/export functions allow you to export data (master data and runtime data) from
one @enterprise installation and import it to another. The data are exported to a file in
XML format.

Export

You can export different types of data. XML Export shows you a list of all exportable data
types and lets you choose from options depending on the chosen data type. Figure 9.11
shows the available export types. You can export only one type of data at a time. If the
selected type has additional options to choose from, an option section will become visible
(like for organizational units, as you can see in the figure). The first element of the export

154



9.3. IMPORT/EXPORT

Figure 9.10: Users with expired Passwords

screen is the "Export Description" text area - you can use this to optionally add a description
to the export file. If you import the export file later, the description text will be displayed.

Figure 9.11: Export in XML–Format

@enterprise can export the following data:

Applications Export one complete application with all process definitions and other mas-
ter data defined in it. This includes all objects that are defined in the applications’

155



9.3. IMPORT/EXPORT

processes (see processes below), plus data defined in the application: rights, object
classes, task functions, tasks, form types and roles. Furthermore rights (defined for
roles), process interfaces, and default URLs for roles are included. Rights for roles
will be imported only if the target object exists on the import system.

Processes Export one process plus tasks, steps, form types, and roles used in the selected
process definition, process interfaces and rights (e.g., rights on a form type). Rights
will be imported only if the required agents and departments already exist on the
import system.

Formtypes Export of form types. All forms, which was created in @enterprise, can be
exported. Before importing forms, the form templates and other references must be
available on the target system, i.e. the appropriate application with their form types
must be available. An important point is the export and import of forms which have
references to other forms (e.g. a customer-form contains a reference to a country-
form). To ensure the correct references on target system, you have the possibility to
select all participated forms and export them in one form-cluster. If the participated
forms are exported separately (i.e. each form will be exported in an other form-
cluster), all referenced form types are exported automatically.

Organizational Units Export all organizational units.

Organizational hierarchies Export of all organizational hierarchies and their organiza-
tional units.

Users Export all users. Optionally you can include roles and rights defined for these users,
and user settings as well as the users’ dashboard elements.

Mind: user settings can contain a link to a home page. This link will not be modified
by the import/export of @enterprise - thus, if it contains OIDs of specific objects
(e.g. applications, etc.), the link will most likely not work any more after importing
it to another system. The same restriction also applies to dashboard elements, which
can contain arbitrary OIDs, too.

Permissions Export all permission lists (ACLs) of @enterprise.

Stored Queries Export stored queries - you can choose one or more queries in a sec-
ond step. Optionally you can include access rights defined for the exported stored
queries. Referenced objects (such as process definitions, tasks, forms, etc.) will not
be included in a stored queries export. Stored queries will be imported only, if these
required objects already exist on the import system.

Timer Export one or more timers. If you select to export timers, you can choose the desired
timers in step two.

LDAP Settings Export all LDAP entries. This exports the LDAP entries defined in Com-
munication→ LDAP.

Mail Settings Export all Mailboxes defined in Communication→ Mailboxes.

156



9.3. IMPORT/EXPORT

Dashboard (default elements) Export the default dashboard elements. User dashboard
elements will not be included in this export (they can be exported directly with the
users). Default dashboard elements are the elements that an administrator saved as
default.

Process Instances Export process instances (runtime data) of one or more process defini-
tions. This includes all step instances, form instances, adhoc steps, and so on. Rights
on exported objects can optionally be included. You can restrict the exported process
instances by defining a start restriction (only export process instances that have been
started between two definable dates). The target process definitions can be selected
in a second step.

Master data (like process definitions, users, roles, etc.) are not included in a process
instance export. Process instances are only imported on a target system if the required
master data already exists. Thus, on the target system you should first ensure that the
required master data exists and afterwards import process instances.

DMS Folder Export a folder of the DMS with its content (runtime data). This includes
documents, forms, notes, web links and subfolders (recursive). Links to other DMS
objects cannot be exported and will be ignored. Access rights defined on the exported
objects can be included optionally. Agents (users or roles) and departments that occur
in such right definitions will not be exported. The rights will be imported only if the
required agents and departments exist on the target import system.

You can export the Common folder or a specific user’s folder (or one of their subfold-
ers). If you want to export a user’s folder, first select the user and then the folder.

Forms Export of form instances. All forms (instances), which was created in @enterprise,
can be exported. Before importing form instances, the form classes and other refer-
enced objects (e.g. process definition where form instance is process form) must be
available on the target system, i.e. the appropriate application with their form types
must be available.

Duration statistics Export of a duration statistic entry. All duration statistics which was
created in @enterprise, can be exported. Before importing duration statistics the
referenced objects must be available on the target system, i.e. the appropriate process
definition must be available. On the target system the time graph must be regenerated,
if needed (see section 9.1.15).

The server writes the XML file to its temporary directory. After an export file has been
completely written, the browser will ask you if you want to download the file.

Import

Importing a XML file is done in three steps.

1. First you upload the XML file to the server.

2. The browser displays information about the XML file’s content.

3. The content of the XML file will be imported and you will see information about the
imported elements in the browser.

157



9.3. IMPORT/EXPORT

The import will be aborted and an error message will be displayed, if an error occurs. Im-
ported objects are already stored in @enterprise!

If export-files of earlier versions of @enterprise (e.g. @ep7.0) should be imported, the user
will be informed about the older export-file and has to select an application for the default
objects. This selection is necessary for assigning application-objects (e.g. processes) to the
right application. This selection will be ignored in some cases, e.g. if the email-settings are
imported.

Import/Exports Dependencies

If you want to copy data from one server to another server, it is necessary to perform the
imports in the right order. The exports can be done in any order. Runtime data (process
instances, DMS content) and stored queries, as well as access rights usually require master
data to exist on the import system. If the data does not exist, the objects will not be imported.
If you perform imports in the following order, everything should work fine:

1. Users (without rights)

2. Organizational units

3. Applications, processes, users (incl. rights), ACLs

4. Process instances, DMS folder, stored queries, timer, LDAP settings, Mail settings,
dashboard elements

9.3.2 Archive Processes

This function deletes process instances in the @enterprise database. If an archiving class is
installed (see the configuration group "Classes"), the archive method of this class is called
with each process instance. This can be used to store some information about the process
instance in an external storage.
For archiving process instances perform the following steps:

1. Select an application or one specific process type.

2. Specify the finish date. All process instances of the given type which have been
finished before this date are archived.

3. If you want to delete also running process instances, check the according checkbox.

4. Archive the processes with the button "Archive".

9.3.3 Install Application

If you have a *.zip or *.jar file containing an application tree (see Application Development
Guide of @enterprise) the application can be installed very easily. Enter the corresponding
file name into the field "File Name". Afterwards enter the destination directory for the new
application into the field "Destination Directory" and click the "Install" button. This will
transfer the zipped application to the server, extract it, and install it.

158



9.3. IMPORT/EXPORT

Figure 9.12: Archive Process Instances

9.3.4 File Import

The new file import component allows the specification of the structure of the import source
and the target objects:

• Import Definition: An import definition file (import.xml) is necessary to use this func-
tion. This file must be stored in classes-folder of @enterprise or within an application-
folder (see Application Development Guide - section Organization of Files). Follow-
ing an example of an import definition:

<?xml version="1.0" encoding="iso-8859-15" standalone="yes"?>
<importDeclarations>

<import name="resources">
<targetClass>com.groiss.calendar.pers.Resource</targetClass>
<columns>
<column name="name"/>
<column name="description"/>
</columns>
<keyField>name</keyField>
<delimiter>;</delimiter>
</import>

</importDeclarations>

The keywords of the Import definition are described in section Keywords of Import
Definition.

• File: Choose a source to upload a file:

– Upload: If this function is selected, you have the possibility to enter a path.

– local: Selecting this option allows to upload files, which are stored in @enterprise-
folder (=root).

– Classpath: This function allows to upload files, which are in classpath only.

– According to Definition: The file, which is entered in the Import Definition
(import.xml), is used.

159



9.3. IMPORT/EXPORT

• Mode: This dropdown-list offers following three upload-modes:

– Parse File only: The file will be parsed only and no object are created in @en-
terprise.

– Skip Database Operations: The file will be parsed and compared with existing
objects (without database operations).

– Import: The file will be uploaded and objects will be created in @enterprise
(with database operations).

• Load: Activating this function loads the selected file.

Figure 9.13: File Import

Keywords of Import Definition

• <import>: The import description which has the format <import name=”name”>.
Following attributes can be defined for this keyword:

– ignoreHeader: If true, the first row is ignored.

– useOrgData: If true, the OrgData-methods of @enterprise are used instead of
Store-methods.

• <targetClass>: Symbolizes the import type (= target class).

• <targetCondition>: Restriction of targetClass elements. Only these elements are
compared with the imported ones, not existing elements will be deleted.

• <keyField>: Field of target class, which contains the key (necessary for import).

• <importHandler>: If no keyField was set, a import handler must be entered which
implements the interface com.groiss.fileimport.ImportHandler.

• <constants>: Contains a set of constants (<constant name=”name” value=”val”/>),
which are added to the set of values of each row.

• <extensionClass>: Name of the class for additional data of master data objects
(users, OUs)

• <delimiter>: Delimiter for fields, e.g. ;

• <escapeMode>: Exception handling, if a character occurs which has to be escaped.
Backslash or Duplicate, e.g. special character is quoted: dÁrtangnon or d”artangnon

160



9.4. REORGANIZATION

• <commentchar>: Rows are ignored which start with this character.

• <charset>: All valid Java charsets (default: StringUtil.getCharset());

• <file>: Path to file.

• <columns>: Contains a set of rows which will be imported:
<column name=”name” startcol=”1” endcol=”10” length=”100” [format=”dateformat”]
[mapping=”mappingName”] />

• <dateformats>: A set of dateformats can be entered:
<dateformat name=”name” timezone=”timezone” locale=”locale”/>
Example:

<dateformats>
<dateformat name="date">ddMMyyyy</dateformat>
</dateformats>

• <mappings>: Definition of mappings in format <mappings name=”name”> <map-
ping*><keys><key>M</key></keys><value>1</value></mapping> </mappings>.
Example:

<mappings>
<mapping name="lang">
<keys><key>EN</key></keys>
<value>en_US</value>
</mapping>
</mappings>

9.4 Reorganization

9.4.1 Change Role Assignments

Change the role assignments of a set of users from one organizational unit to another.
Select in the field "from old Department" the organizational unit, from which you want to
move or copy role assignments to another organizational unit (see Fig. 9.14).
After clicking "Next" you can select which role assignment should be moved, copied or
remain unchanged.

Figure 9.14: Role Assignments (1)

161



9.4. REORGANIZATION

Figure 9.15: Role Assignments (2)

9.4.2 Analyze Process Instances

A list of process instances is shown, which have no valid agent. This case (no valid agent)
can happen, when an organizational unit is deactivated, or role assignments are deleted.
Example: An existing process will be finished, but has no valid following agent. The
process instance occurs in the table with problem status Finish not completed. Now you
can click on the process instance id to open the detail-view and assign an agent who is able
to finish the task. For this purpose you have to activate the link of the last active agent to
assign the task to a new agent. The 3 question marks (???) in the process-history symbolizes
that the instance has no following agent; should not changed in this case, otherwise a new
process instance will be created.

9.4.3 OU History

Here you can capture the history of changes to organizational units manually. This might
be interesting if you want to know which organizational unit emanated from another during

162



9.5. COMMUNICATION

the process of changing your organizational structure.

9.5 Communication

9.5.1 Mailboxes

The system can handle incoming emails. Several mailboxes can be defined together with
an action to perform for emails. Access to the mail-boxes is performed with the IMAP4
protocol.

Figure 9.16: Tab: General (Mailbox)

Tab: General

You can edit the following attributes (required fields are bold):

163



9.5. COMMUNICATION

• Server: Mail-Server,

• User: username for the mail-box,

• Password: password for accessing the mail-box,

• Protocol: This parameter specifies the protocol, which is used to get your mails from
your mailserver. The possible options are IMAP4 and POP3.

• Type of communication: The level of security is set by this parameter. There are 3
possible options:

– plain: Plain communication means, that the data is transmitted in plain text.

– encrypted: In this case the data is SSL encrypted, but the certificate of the mail
server will not be validated.

– trusted: To communicate secure, the mail server has to authenticate itself to
@enterprise. This is done by checking the certificate of the mail server. To add
trusted server you have to import the certificate into the @enterprise keystore
(chapter 9.1.11).

• Action: One of the following actions must be selected:

– Interpret as WFXML Message

– Start the selected process

– Customized Action: Specify a Java class which implements the interface
com.groiss.mail.MailHandler

• Check with Timer: The MailTimer reads the mail-box and performs the specified
action.

• View Mailbox: View the contents of the mail-box.

• Get Mails Now: Performs the defined action on the contents of the mail-box.

9.5.2 LDAP

Here you can define LDAP (Lightweigth Directory Access Protocol) server entries. They
can be used to synchronize @enterprise organizational data with existing directory ser-
vices. We provide a predefined LDAP schema and a corresponding mapping mechanism.
Customer specific synchronization semantics can be implemented as well. Details for such
mappings can be found in the programming manual.

Tab: General

You can edit the following attributes (required fields are bold):

• Name: Name of the Server

• Server: Hostname of the LDAP Server

• Port: Port of the LDAP Server (port 389 is used as default)

164



9.5. COMMUNICATION

Figure 9.17: Tab: LDAP

• Direction: Direction of synchronization: either

– to LDAP or

– to @enterprise

• Serch Root: LDAP Root, e.g. dc=my,dc=org

• User: LDAP–Account, e.g. cn=admin,dc=my,dc=org

• Password: Password for the Account.

• Filter: LDAP Filter: allows to select just specific LDAP entries e.g.: (objectClass=*)

165



9.5. COMMUNICATION

• Classname: by specifying a class which implements com.groiss.ldap.DirectorySyncer,
one can realize proprietary schema mappings.

• Description: free text. In this text you can set the parameter _pagesize, if the result of
read entries are too big (e.g. the search root is not deep enough). With this parameter
the result will be read in paged way, depending on the number of entries per page,
e.g. _pagesize=500.

• Check with Timer: if checked, the LDAPDirSyncTask-Timer executes the synchro-
nization automatically.

• Organizational Units: if checked, Organizational Units are synchronized.

• Organization Hierarchy: if checked, Organization Hierarchies are synchronized.

• Rights: if checked, Rights are synchronized.

• Roles: if checked, Roles are synchronized.

• users: if checked, users are synchronized.

The synchronization can also be carried out by clicking the Synchronize Now button.

Tab: Connect and List

Through choosing this tab, one gets a listing of the contents of the LDAP Server.

9.5.3 Batch Jobs

With the help of this function it is possible to search after batch jobs. As search criteria
the process id, the state of the batch job and/or the time-period where a batch job has been
started, can be used.
After activating the button Search a result table with all batch jobs are displayed depend-
ing on the search criterias. By double-clicking on an entry the detail mask can be opened
and subsequently edited. By activating the button Abort and go back the batch job will be
aborted and returned to the last interactive task of the process.

More details about Batch Jobs can be found in the Application Development Guide in sec-
tion Batch Processing.

9.5.4 WfXML

Wf-XML is a protocol for process engines that makes it easy to link engines together for
interoperability. Wf-XML 2.0 is an updated version of this protocol, built on top of the
Asynchronous Service Access Protocol (ASAP), which is in turn built on Simple Object
Access Protocol (SOAP).
@enterprise contains an implementation of the standard. @enterprise can receive Wf-XML
messages to start a process, get the current state of a process and change a process’ state;
and the system can also send all types of messages.

Detailed Information about this topic can be found in the Application Development Guide
of @enterprise.

166



9.5. COMMUNICATION

9.5.5 Web Services

The link Local services provides a table of all found web services in @enterprise. It is
possible to add a new web service, delete and (un)deploy it. The creation of web service
clients/server is possible per application where the appropriate functions are available.

Detailed information about this topic can be found in the Application Development Guide
of @enterprise.

167



10 Configuration

This chapter describes the configuration of @enterprise–server. Further information about

• License

• HTTP–Server

• Database

• Directories

• Logging

• Classes

• Localization

• Communication

• Cluster

• Workflow

• DMS

• Search

• Tuning

• Security

• Password Policy

• Calendar

• Time Management

• Change Administrator Password

• Initialize Database Scheme

are available in the Installation Guide - Chapter Configuration.

168



11 Dashboard

In the system administration of @enterprise it is possible to create a dashboard, which
an be aligned for the needs of the system administrator or user. After activating the link
Dashboard under Admin-Tasks it can be clicked into the empty site, whereby a popup–
window will be shown where following functions are available:

11.1 New

By activating the button New a new HTML–site will be shown, where you can add new
windows to the dashboard. Several possibilities are provided:

• URL: Enter an URL of a HTML–site, which you would like to see in a window on
your dashboard and confirm your inputs with Return.

• Stored Queries: By activating this link all stored requests will be shown in a window
on your dashboard.

• Administration: By activating this link the links of the administration tasks will be
shown in a window on your dashboard.

• Calendar: By activating this link a calendar will be shown in a window on your
dashboard.

• Worklist Overview: By activating this link an overview about the number of worklist
entries will be shown in a window on your dashboard.

• News: By activating this link news will be shown in a window on your dashboard.
Therefor a folder with the name News under Common must be created in the DMS,
where messages can be lodged (e.g. a note).

• Appointments: By activating this link the appointments of the present day will be
shown in a window on your dashboard.

Note: Each window in a dashboard can be moved (like in Windows) to any place inside
the dashboard and/or be changed in its size.

169



11.2. OPEN

11.2 Open

By activating the button Open an existing dashboard profile can be loaded. First the profile
must be stored with the function Save as. There are 2 kinds of dashboards: the personal and
other dashboard(s). The personal dashboard list contains all dashboard, which are stored
by the current user. Other dashboards has been stored by other users which have set the
share-right for the current user (via tab Access).

11.3 Save

By activating the button Save the current dashboard will be saved. A new dialog will be
opened with following attributes:

• Name: The unique name of the dashboard must be entered here.

• Description: Free text

• Default: Select between

– Dashboard user/admin for <User>: Dashboard settings are stored for current
user as default. There is a differentiation between user dashboard (created in
worklist) and admin dashboard (created in administration).

– Dashboard user/admin for all users: Dashboard settings are stored for all users
as default. There is also a differentiation between user dashboard (created in
worklist) and admin dashboard (created in administration). If a user has no
dashboard, this dashboard will be displayed.

• Owner: This field is read-only and shows the owner of this dashboard.

• Dashboard-Id: This field is also read-only and shows, if the dashboard is/was created
in worklist (user) or in administration (admin) of @enterprise.

It is also possible to define share-rights by using the tab Access. In this case other users are
permitted to open this dashboard (see function Open).

Hint: The function Save is available for users, who are owner or has the role SYS.

11.4 Save as

After activating the button Save as a new window is opened (analog to function Save). This
function allows to store the current dashboard under a new name.
If a user changes the dashboard by activating the buttons New and Save as, it will be his
personal dashboard and the Default–Dashboard remains unchanged. The user has the pos-
sibility to open an existing (default) dashboard profile by using the function Open. The
identification is made by the URL parameter id.

11.5 Delete

This function deletes the current dashboard settings (dashboard profile).

170



12 Administration Shell

This chapter describes the administration shell which allows to administrate @enterprise
via a command line. It can be used to:

• Assemble administration actions as a script and execute it on several servers

• Synchronize changes between development system and production system

• Send a script to a system operator

• Document actions

12.1 Architecture and Invocation

The administration shell has a client and a server component. The server component is
integrated into the @enterprise server. The client component is packaged in a separate jar
file adminshell.jar in the bin directory of @enterprise. The client connects to the @enter-
prise server via plain HTTP or secure HTTPS. This can be configured on the configuration
mask Communication. The administration shell must be activated via the hidden parameter
ep.adminshell.enable. More details can be found in the Installation- and Configuration-
Guide. Please note that the operating user needs the right execute on all objects for the
connection to the server! Furthermore the user needs the corresponding rights for perform
the server commands.

The admin-shell client can be invoked with the following call:

java -jar adminshell.jar url user [password]
[-log logfile | -append logfile] [-passwdfile file] [-execute scriptfile]

Parameters:

• url: The URL of the server, e.g. http://localhost:8380/wf/. If no context-root is
entered, wf will be used by default.

• user: The username of the operating user

• password: The password of the user (if existing). If you do not specify a password,
you must use the option -passwdfile or you will be asked for the password at the login.

171



12.2. COMMANDS

Options:

• -log logfile: The logfile defines a file where the admin-shell logs the interactions (on
the client).

• -append logfile: Same as -log except that the logfile is appended to.

• -passwdfile file: The file contains the plain password for the given user in the first
line without any preceding and trailing characters.

• -execute scriptfile: Executes the script in scriptfile.

12.2 Commands

Two groups of commands can be executed:

1. Client commands are executed on the client and define some behavior of the script
client.

2. Server commands are executed on the server and contain the functions of the admin-
istration.

12.2.1 Client commands

Following client commands are available:

• exit: Exits the client.

• help or ?: Print a command summary

• log <file>: Log commands to the given file

• log off: Commands are not logged anymore

• append <file>: Log commands to the given file. If the file already exists, commands
are appended.

• execute <file>: Executes the given script file

Commands not in this list are sent to the server.

12.2.2 Server commands

The commands on the server are interpreted as Groovy expressions. Groovy is a script
language based on Java. Comments have the same syntax as in Java (inline- and block-
comments). Server commands are terminated by a line containing only the character . (dot)
and will be logged in serverlog at loglevel 1 and higher.

The following variables are in the initial context (varname and instance of):

• admin: com.groiss.server.Admin

172



12.3. EXAMPLES

• store: com.groiss.store.Store

• engine: com.groiss.wf.WfEngine

• dms: com.groiss.dms.DMS

• orgdata: com.groiss.org.OrgData

• config: com.groiss.component.Configuration (the System Configuration)

• user: com.groiss.org.User (the current user)

• session: javax.servlet.http.HTTPSession (the HTTPSession)

They can be used as starting points for the execution of methods (see API for details). Every
command is executed in its own transaction. After executing, a commit, if an error occurs,
a rollback is performed.

If you want to use (own) variables for the script, you can define them with the command:

set(varname,value);

Retrieve the value of the variables with:

get(varname);

Own declared variables have the advantage to survive transactions, because they are written
into the session.

12.3 Examples

12.3.1 Setting a configuration parameter

config.setProperty("database.connections",5);
config.store();
.

Alternative formulation with a variable:

set("connections",5);
.
config.setProperty("database.connections",get("connections"));
config.store();
.

12.3.2 Restart the server

admin.restartServer(); //restarts the server - no login necessary for current user
.

173



12.3. EXAMPLES

12.3.3 Add a role to or remove one from a user

u = orgdata.getById(com.groiss.org.User.class,’my_user’); //replace by existing user
role = orgdata.getById(com.groiss.org.Role.class,’sys’); //get SYS role
checkuserrole = store.get(com.groiss.org.UserRole.class,"role = ? AND userid = ?",

role.getOid(), u.getOid()); //with prepared statements - new Object[] {args}
//If User has no sys-role, add it
if(checkuserrole == null) {
userrole = orgdata.createUserRole();
userrole.setRole(role);
userrole.setUser(u);
userrole.setActive(true);
orgdata.insert(userrole);

}
//If User has sys-role, remove it
else {
orgdata.delete(checkuserrole);

}
.

12.3.4 Set the interval of a timer

t = orgdata.getById(com.groiss.timer.TimerEntry.class,’Suspension’);
t.setPattern("360");
store.update(t);
.

12.3.5 Worklist handling

Check worklist of application default and finish expired tasks:

appl = orgdata.getById(com.groiss.org.Application.class, "default");
worklist = engine.getWorklist(appl,true);
for(com.groiss.wf.ActivityInstance ai:worklist) {
duedate = ai.getDuedate();
//if ai’s duedate is expired, finish task
if(duedate != null && duedate.getTime() < new java.util.Date().getTime()) {
try {
engine.finish(ai);

}
catch(ex) {/*Do nothing, but continue with finishing other ai’s*/};
}

}
.

174



12.3. EXAMPLES

12.3.6 Session handling

Check session and invalidate it, if lastAccessed is not in tolerance time. Log session infor-
mation in server-log on level 2:

attrbnames = session.getAttributeNames();
invalidate = false;
log = " \n";
log = log + "Session-Parameter:\n";
for(String attrname:attrbnames) {
attrvalue = session.getAttribute(attrname);
if(attrname.equalsIgnoreCase("lastAccessed")) {
if(attrvalue instanceof java.util.Date) {
onehour = 60*60*1000; //tolerance time
//invalid, if not in tolerance time
if((attrvalue.getTime()+onehour) >= new java.util.Date().getTime() ||

(attrvalue.getTime()-onehour) <= new java.util.Date().getTime()) {
invalidate = true;

}
}
}
log = log + "Attribute-Name: " + attrname + "/Attribute-Value: " + attrvalue + "\n";

}
log = log + " ";
com.groiss.util.Settings.log(log,2); //write all session parameter to Server-Log on Level 2
if(invalidate == true) {
session.invalidate();

}
.

175



13 Process–Cockpit

The Process–Cockpit gives an overview of the processes within the organization. It provides
information about the definition and the instances of a process. The standard GUI has a link
to the cockpit within the group Extras.

13.0.1 Configuration

The processes are shown in a hierarchy that must be defined in the document management
system (DMS) of @enterprise. Create a structure of folders reflecting the organization of
processes in your company, for example:

1. Operating processes

(a) Manufacture

(b) Marketing

i. Manage sales plans

Define the path to your process structure in the configuration of @enterprise (see Installation-
and Configuration manual - Chapter Process Cockpit).
The leaves of the tree should be process-cockpit folder-forms (other nodes can be ordinary
folders).
The folder form provides following types (see figure 13.1):

• Process with Definition: Here you can select one process definition only. The
checkox Show Instances allows to show/hide instance data in tab Runtime.

• Process without Definition: For processes where no unique @enterprise process is
available. A name and a description can be entered. For this kind of processes the
assignment of instances is done in following way:
Processes with process forms exist which contain a field with name area. The val-
uation of this field are the nodes of the Process–Cockpit. The used processes area
defined in the configuration with parameter Common Processes (see Installation- and
Configuration manual - chapter Process Cockpit). An example is given in the User
Manual in section Details for processes.

• Process Group: An intermediate node in the process trees which needs a name and
a description. In this case you can add documents to the folder which are displayed
as links in table Documents on process detail page.

176



Following fields are visible in cockpit form depending on the selected type:

• Responsible: The person who is responsible for the process or process group.

• Available Reports: A list of reports suitable for this process is displayed at the pro-
cess detail page (e.g. in tab Runtime).

• Directly executed Reports: A list of reports which are executed when the runtime
process detail page is shown (e.g. in tab Runtime).

• Functions: A list of functions which are shown on the process detail page (e.g. in
tab Runtime).

• Links: A list of links consists of a URL and a text which are shown on the process
detail page (e.g. in tab Runtime).

A link to the folder forms is displayed in the toolbar of the detail view of the Process–
Cockpit where details of the shown process (or process group) can be configured.

Figure 13.1: Process–Cockpit Form

13.0.2 Rights

Everyone who has the edit right on folders of the Process–Cockpit, can manipulate it. Ev-
eryone who has the view right on a folder, gets a link and the associated detail page within

177



the cockpit. The instance reports (Running, Finished, This week, This month, Deadline
Violations) can be executed without right-check. For all other reports the right execute is
needed.

178


	1 System Architecture
	1.1 The World Wide Web
	1.2 The System Components

	2 The HTML–Interface
	2.1 Tables
	2.1.1 Column picker, Sorting and Filter
	2.1.2 Standard Functions

	2.2 Object details
	2.2.1 Tab: General
	2.2.2 Tab: History
	2.2.3 Tab: Access
	2.2.4 Tab: Referenced By
	2.2.5 Further functions


	3 Ids, Names and Internationalization
	3.1 Ids and Names
	3.2 Internationalization of Meta Data Objects and Object Classes

	4 Definition of the Organizational Structure
	4.1 Roles
	4.1.1 Tab: General
	4.1.2 Tab: Permissions
	4.1.3 Tab: User
	4.1.4 System-defined Roles

	4.2 Rights
	4.2.1 Tab: General
	4.2.2 Tab: User
	4.2.3 System-defined Rights

	4.3 Users
	4.3.1 Tab: General
	4.3.2 Role Assignments
	4.3.3 Tab: Substitutions
	4.3.4 Tab: Role-Substitutions
	4.3.5 Tab: Permissions
	4.3.6 Tab: All Permission
	4.3.7 Tab: Settings

	4.4 Organizational Units
	4.4.1 Tab: General
	4.4.2 Tab: Super Organizational Units
	4.4.3 Tab: Roles

	4.5 Organization Hierarchy
	4.5.1 Tab: General
	4.5.2 Tab: Organization Hierarchy
	4.5.3 Function Merge organizational hierarchies

	4.6 Organization Class
	4.6.1 Tab: General

	4.7 Keywords
	4.8 Server

	5 The @enterprise Right System
	5.1 Introduction
	5.1.1 Rights
	5.1.2 Object Classes
	5.1.3 Permissions
	5.1.4 Permission-List

	5.2 Definition of Permissions
	5.2.1 Permissions of Users
	5.2.2 Permissions of Roles
	5.2.3 Administration of Permission-Lists
	5.2.4 Permissions for an Object
	5.2.5 Permissions for Permissions
	5.2.6 Permissions for Role-Assignments
	5.2.7 Administration of Object Classes

	5.3 Standard Settings
	5.4 For what you need which rights?
	5.5 Example
	5.6 Permissions and Substitutions

	6 Workflow Modelling
	6.1 Applications
	6.1.1 Tab: General
	6.1.2 Tab: Properties

	6.2 Tasks
	6.2.1 Tab: General
	6.2.2 Tab: Escalations
	6.2.3 Tab: Functions
	6.2.4 Supplement of forms

	6.3 Functions
	6.3.1 Tab: General
	6.3.2 Standard Functions

	6.4 Forms
	6.4.1 Create new formtype
	6.4.2 Edit Table
	6.4.3 Replace HTML
	6.4.4 Create View
	6.4.5 View
	6.4.6 Tab: General
	6.4.7 Tab: Java-Class
	6.4.8 Tab: Database-Table
	6.4.9 Tab: Rights
	6.4.10 Tab: Standard Permissions
	6.4.11 Tab: Preview
	6.4.12 Tab: Folder Settings

	6.5 Processes
	6.5.1 Create new process with the process editor
	6.5.2 Edit a process with the process editor
	6.5.3 Load WDL / XWDL
	6.5.4 Process overview
	6.5.5 Tab: General
	6.5.6 Tab: Source
	6.5.7 Tab: Graphical Representation
	6.5.8 Tab: Components
	6.5.9 Tab: Visibility of Forms
	6.5.10 Tab: Escalations
	6.5.11 Tab: Functions
	6.5.12 Tab: Folder settings

	6.6 Interfaces
	6.6.1 Tab: General

	6.7 Function Group
	6.8 GUI Configuration
	6.8.1 Tab: GUI Configuration
	6.8.2 Tab: Assignments

	6.9 Resource Editor
	6.9.1 Toolbar functions
	6.9.2 Converting csv-files

	6.10 Web Services
	6.10.1 Webservice clients
	6.10.2 Webservice server


	7 Process Definition
	7.1 WDL
	7.1.1 Lexical Conventions
	7.1.2 Process header
	7.1.3 Declaration part
	7.1.4 Basic Statements
	7.1.5 Control Structures
	7.1.6 Event Mechanism
	7.1.7 Web services

	7.2 The Process Editor
	7.2.1 The Process Editor Window
	7.2.2 The Functions of the Menu Bar
	7.2.3 Process Properties
	7.2.4 Tasks
	7.2.5 Timeout Task
	7.2.6 Properties of an Activity
	7.2.7 Time Management
	7.2.8 The Function List
	7.2.9 Conditions for Ifs, Choice, Loops
	7.2.10 Properties for System Steps
	7.2.11 Properties for Batch Steps
	7.2.12 Properties of a Subprocess
	7.2.13 Properties of an Event
	7.2.14 Properties of a Parallel For
	7.2.15 Properties of Web service nodes


	8 The Search of @enterprise
	8.1 Standard Search
	8.2 Document Search
	8.3 Extended Search and Stored Queries

	9 Administration tasks
	9.1 Server
	9.1.1 Server monitor
	9.1.2 Server Control
	9.1.3 Events
	9.1.4 Worklist-Cache
	9.1.5 Class Path
	9.1.6 Timer
	9.1.7 Object History
	9.1.8 Interface Forms
	9.1.9 Pending Changes
	9.1.10 Event Registrations
	9.1.11 Manage certificates
	9.1.12 Running Nodes Monitor
	9.1.13 Full-Text Search
	9.1.14 Query Tool
	9.1.15 Duration statistics

	9.2 User
	9.2.1 Disable/Enable Login
	9.2.2 Permission Test
	9.2.3 Expired passwords

	9.3 Import/Export
	9.3.1 Import/Export in XML Format
	9.3.2 Archive Processes
	9.3.3 Install Application
	9.3.4 File Import

	9.4 Reorganization
	9.4.1 Change Role Assignments
	9.4.2 Analyze Process Instances
	9.4.3 OU History

	9.5 Communication
	9.5.1 Mailboxes
	9.5.2 LDAP
	9.5.3 Batch Jobs
	9.5.4 WfXML
	9.5.5 Web Services


	10 Configuration
	11 Dashboard
	11.1 New
	11.2 Open
	11.3 Save
	11.4 Save as
	11.5 Delete

	12 Administration Shell
	12.1 Architecture and Invocation
	12.2 Commands
	12.2.1 Client commands
	12.2.2 Server commands

	12.3 Examples
	12.3.1 Setting a configuration parameter
	12.3.2 Restart the server
	12.3.3 Add a role to or remove one from a user
	12.3.4 Set the interval of a timer
	12.3.5 Worklist handling
	12.3.6 Session handling


	13 Process–Cockpit
	13.0.1 Configuration
	13.0.2 Rights



