
@enterprise 9.0

Reporting

January 2023

Groiss Informatics GmbH

Groiss Informatics GmbH

Strutzmannstraße 10/4
9020 Klagenfurt
Austria

Tel: +43 463 504694 - 0
Fax: +43 463 504594 - 10
Email: support@groiss.com

Document Version 9.0.33982

Copyright © 2001 - 2023 Groiss Informatics GmbH.
All rights reserved.

The information in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Groiss Informatics GmbH does not warrant
that this document is error-free.

No part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of Groiss Informatics GmbH.

@enterprise is a trademark of Groiss Informatics GmbH, other names may be trademarks of their
respective companies.

Contents

1 Introduction 5

2 Description of the Search Mask 6
2.1 Types of display fields . 6

2.1.1 Display Fields of a Processinstance 6
2.1.2 Display Fields of an Activityinstance 8
2.1.3 Display Fields of a Process . 9
2.1.4 Display Fields of an Application 10
2.1.5 Display Fields of Process Relation 10
2.1.6 Display fields of Steps . 10
2.1.7 Details to time intervals . 11
2.1.8 Display fields of Tasks . 12
2.1.9 Display fields of Organizational Units 13
2.1.10 Display fields of Roles . 14
2.1.11 Display fields of Users . 14
2.1.12 Display fields of Role Assignments 15
2.1.13 Display fields of Documents . 15
2.1.14 Display fields of Documentfolder 15
2.1.15 Display fields of Link . 15
2.1.16 Display fields of Keyword . 15
2.1.17 Display fields of document versions 16
2.1.18 Display fields of user session . 16
2.1.19 Display fields of Recycle Bin content 16
2.1.20 Form fields as display fields . 16
2.1.21 User defined display fields . 16
2.1.22 Aggregations . 18
2.1.23 Grouping by setting the date format 18
2.1.24 Options for fields . 19

2.2 Query conditions . 20
2.2.1 Connection of conditions . 24
2.2.2 Queries with parameters . 24
2.2.3 User-defined conditions . 25

2.3 Selecting Joinpaths . 25
2.4 Export of query results . 27

3

CONTENTS

2.4.1 Showing results graphically . 29
2.5 Report options . 31

2.5.1 Checkbox Display line number . 31
2.5.2 Checkbox Different records only 31
2.5.3 Show operators at parameter mask 31
2.5.4 Parameter at execution mask . 32
2.5.5 Checkbox Show parameter mask in 2 columns 33
2.5.6 Checkbox Register for notification 33
2.5.7 Time interval . 33
2.5.8 Computing of time intervals (Calculation model) 33
2.5.9 Timezone and Language/Country 33
2.5.10 Linked reports . 33
2.5.11 Toolbar functions . 33

2.6 SQL report . 34

3 Examples 37
3.1 Example 1 (Aggregation; Date fields) . 37
3.2 Example 2 (Grouping over time intervals; implicit and explicit parameters) 37
3.3 Example 3 (Null-Values: grouping, aggregation; form fields) 38
3.4 Example 4 (User-defined condition) . 38

4 Administrate reports 39

5 Configuration of the reporting component 41
5.1 Permissions . 41
5.2 Public execution (without login) . 41
5.3 Version independent views for forms . 41
5.4 Server Configuration . 42
5.5 Reporting-Cache . 42

6 Developers Guide 43
6.1 Hidden Configuration . 43
6.2 XML Configuration . 43

6.2.1 Schema . 43
6.2.2 Query . 46

6.3 API . 48
6.3.1 com.groiss.reporting.data.TimeModel 48
6.3.2 com.groiss.reporting.data.ReportingExportable 49
6.3.3 com.groiss.reporting.data.ReportingData 49
6.3.4 com.groiss.reporting.data.NumericValue 51
6.3.5 ReportingExporter . 51
6.3.6 ClientSideExporter . 51

6.4 Implementing your own Search Mask . 52

7 Support 58

4

1 Introduction

With the Reporting component (Report designer) you can create complex statistics and anal-
yses on runtime data using a simple to use search mask. Reports created with this interface
can be stored, executed, and edited later. The results can be shown as table, graphically, or
exported to MS Excel, XML, PDF or CSV.
The Reporting is integrated into the permission system, which allows you to grant execute
permissions for reports to specific user or roles.
You find the reporting component in the administration interface in the folder Search: The
link "Report designer" allows you to create reports, the link "Reports" shows the list of
reports.
Note that you need the right "Statistics" for creating reports.

5

2 Description of the Search Mask

The search mask is the central component and starting point for creating a report. The
search mask is divided into following tabs (see fig. 2.1):

• Attributes (display fields): see section 2.1

• Conditions: see section 2.2

• Joins: see section 2.3

• SQL report: This tab is available only, if the toolbar function SQL report within the
Report Designer has been selected (see section 2.6). The tabs Attributes, Conditions
and Joins are not available in this case!

• Export: see section 2.4

• Options: see section 2.5

• Preview: This tab contains a preview of the current report

2.1 Types of display fields

The display fields are the fields, which appear as columns in the query result. Add a field to
the result table by selecting the field name of table Attributes and clicking the "Add" button.
In the following we describe the display fields:

2.1.1 Display Fields of a Processinstance

• Id: Process-Id containing a link to the process history.

• Currently At: Tasks and agents of the currently running steps of the process.

• Active tasks information: Tasks and available due dats, and agents of the currently
running steps of the process.

• Subject: Subject of the process instance.

• Application: The application the process belongs to.

6

2.1. TYPES OF DISPLAY FIELDS

Figure 2.1: Search Mask

• Process: Name of the process.

• Agent: Agent who started the process.

• Organizational Unit: Organizational Unit where the process has been started.

• Priority: Value which has bee defined at process start or during run-time via appro-
priate task function for the process.

• Status: Status of the process, possible values are:

– Started: The process has been started and is running.
– Finished: The process has been finished.
– aborted: The process has been aborted

See Fig. 2.2 for the transitions between these states.

• Started: Start time of the process.

• Finished: End time of the process.

• Duration: Duration of the process (end - start).

• Duedate: Due Date of the process.

• Time to duedate: Time interval from now (execution of the query) to the due date of
the process.

• Folder: A link to the tab Documents of a process is displayed in report result.

7

2.1. TYPES OF DISPLAY FIELDS

2.1.2 Display Fields of an Activityinstance

• Id: Activityinstance-Id.

• Child of: Activityinstance has a parent (the processinstance of this task) and is child
of it.

• Agent: Agent of the activityinstance.

• Stepagent: Agent, where the task is in his worklist.

• Organizational Unit: Organizational Unit of this task.

• Taken: Time when the task has been taken from role-worklist.

• Status: status of task, possible values are:

– idle: Two reasons exist for this state:

1. The selection of the agent has been interrupted and the task has no agent
assigned.

2. The selection of the path in a choice control structure has been interrupted.

– suspended: Task is in suspension list.

– finished: The task has been finished.

– aborted: Task has been aborted.

– active: Task is in worklist (agent is a user).

– waiting: See state idle.

– compensated: The task has been finished and compensated.

See Fig. 2.2 for the transitions between these states.

• Started: Start time of task.

• Finished: End time of the task.

• Duration: Duration of the task (end - start).

• Duration without suspension: Duration of the task without the time in the suspen-
sion list.

• Idletime: Time span from start to taken.

• Worktime: Time span from taken to finished.

• Worktime without suspension: Worktime without the time in the suspension list.

• Suspensiontime: Time span in the suspension list.

• Due Date: Due date of the task.

• Time to Due Date: Time interval from now (execution of the query) to the due date
of the task.

8

2.1. TYPES OF DISPLAY FIELDS

• Comments: Step comment of an activity instance which has been created in @en-
terprise versions less than 9.0 (e.g. created at change agent). Step comments in
@enterprise 9.0 are stored in notes which can be displayed in report result by adding
an attribute/condition of the entity Note. The JOIN selection offers the possibility to
make a join between activity instance and note.

finish predecessor
or start step

started

suspended
[agent = role]

active

suspended
[agent = user]

finishedcompensated

waiting

aborted

take

finish

finish

abort
abort

select next agent
or choice path

compensation on going back

into/out of
suspension list

into/out of
suspension list

give back

Figure 2.2: Activityinstance states

2.1.3 Display Fields of a Process

• Id: Process-Id containing a link to the process history.

• Name: Name of the process.

• Version: Version of the process.

• Application: Application, where the process is present (e.g. default).

• Subject: Subject of the process.

• Priority: Priority of the process.

• Description: Process description.

• Active: Activity-status of the process (active, inactive).

• Object Id: The id of the current object (in this case process) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

9

2.1. TYPES OF DISPLAY FIELDS

2.1.4 Display Fields of an Application

• Id: Application-Id.

• Name: Name of the application.

• Description: Description of the application.

• Organization Hierarchy: Hierarchy, where the application is present.

• Application class: Application class of the server.

• Client Application Class: Application class of the client.

• Application Directory: Directory, where the application is present.

• Object Id: The id of the current object (in this case application) can be displayed
in report result. This attribute can be used for e.g. the drilldown functionality of
Reporting component.

2.1.5 Display Fields of Process Relation

• Process 1 and Process 2: Process-Id of the process which is in relation to the searched
process.

• Process Relation Type: Type of the process relation which can be defined in @en-
terprise administration under Configuration/Search/Process relations.

2.1.6 Display fields of Steps

As step we denote a set of executions of the same task back-to-back, i.e. without another
task in between. The following display fields are available:

• Activity Name: Name of the activity.

• Activity: Activity either in tasks or in processes.

• Started: Start time of the step.

• Finished: End time of the step.

• Duration: Duration, related to the step in the process.

• Worktime: Sum of work time of the tasks.

• Reactiontime: Time span from start to taken in the first task of the step.

• Idletime: Time span from start to taken.

• Suspensiontime: Time span in the suspension list.

• Duration without suspension: Duration without the time in the suspension list.

• Worktime without suspension: Work Time without the time in the suspension list.

10

2.1. TYPES OF DISPLAY FIELDS

Restrictions for step fields:

• They can not be used in conditions.

• you get correct results for step-start, step-finish, etc. only if all tasks belonging to a
step are in the result set.

Aggregations of Started

minimum: first step of a task
maximum: last step of a task
Count: counts the steps
Aggregation in expression: The aggregation can be set in the field Expression.

Date Format of Started Hour, Day, Week, Month, quarter, Year or a custom date format
pattern which needs to fit the JAVA SimpleDateFormat patterns (see section 2.1.23): Format
for Timestamps.

Example:
Proz-ID =1, execution order: order → order → a_task → order

ID Task Task:Started Task:Duration
1 order 21-04-2007 10:00 70 min
1 order 21-04-2007 11:10 50 min
1 a_task 21-04-2007 12:00 60 min
1 order 21-04-2007 13:00 80 min

ID Task Step:Start Step:Duration
1 order 21-04-2007 10:00 120 min
1 a_task 21-04-2007 12:00 60 min
1 order 21-04-2007 13:00 80 min

ID Task Count(Step:Start)
1 order 2
1 a_task 1
ID Task MIN(Step:Start) MAX(Step:Start)
1 a_task 21-04-2007 12:00 21-04-2007 12:00
1 order 21-04-2007 10:00 21-04-2007 13:00

2.1.7 Details to time intervals

Time intervals are computed as follows:

• Processinstance: Duration = Started to Finished

• Activityinstance: Duration = Started to Finished

• Activityinstance: Idletime = Started to Taken

• Activityinstance: Worktime = Taken to Finished

11

2.1. TYPES OF DISPLAY FIELDS

• Activityinstance: Time to Due Date = Execution time of report until Due Date

Fig. 2.3 shows the time intervals on a timeline. If the end time of an interval is not yet
known, the execution time is taken instead. If you want only intervals where the end time is
known add a condition that assures that.

Figure 2.3: Time intervals for tasks

Fig. 2.4 shows the computation of time intervals per step.
The process structure contains three steps, each step referring to a task. The process instance
contains four instance steps, the first is an instance of the first process step, the next two are
instances of the second step (this can be the result of a "change agent" action), the fourth
is an instance of the third step. The right column shows how the work time per step is
computed.

Figure 2.4: Computation of time intervals per step

2.1.8 Display fields of Tasks

• Id: Task-Id.

12

2.1. TYPES OF DISPLAY FIELDS

• Name: Name of the task.

• Version: Version of the task.

• Description: Free Text, which is visible in the worklist via the link to the task details.

• Method Call: Java-Method, which is called before the task is put into the worklist of
a user.

• Postcondition: Java-Method, which is checked at run-time when a user finishes the
task (sends it to the next agent).

• Postcondition-Message: Free text, which will be shown when the postcondition eval-
uates to false.

• Compensation Method:Java-Method, which will be executed when the activity is
passed when going back to an earlier step in the process.

• Take Hook: Java-Method, which is called when the task is taken from the role-
worklist to the personal worklist.

• Untake Hook: Java-Method, which is called when the task is given back to the role
worklist.

• Active: Activity-status of the task (active, inactive).

• Costs: The costs of the task. This field is not used from @enterprise.

• Effort: The effort of the task in minutes. This field is not used from @enterprise.

• Object Id: The id of the current object (in this case task) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

2.1.9 Display fields of Organizational Units

• Id: OU-Id.

• Name: Name of the OU.

• Description: Description of the OU.

• E-Mail: E-Mail address of the OU.

• Address: Address of the OU.

• Tel.-Nr.: Phone number of the OU.

• Active: Activity-status of the OU (active, inactive).

• Type: Type of the OU (External OU, Dependent).

• Organization Class: The organization class the OU belongs to.

13

2.1. TYPES OF DISPLAY FIELDS

• Follow-OU: Follow-OU, which replaces the current OU.

• Object Id: The id of the current object (in this case OU) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

2.1.10 Display fields of Roles

• Id: Role-Id.

• Name: Name of the role.

• Description: Description of the role.

• Type: Type of the role (local, global, hierarchic).

• Active: Activity-status of the role (active, inactive).

• Reference-Role: Reference roles are used for defining different roles with different
rights but one "reference" role used in process definitions.

• Application: Application, where the role is known.

• Object Id: The id of the current object (in this case role) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

2.1.11 Display fields of Users

• Id: User-Id.

• Surname: Surname of the user.

• First name: First name of the user.

• Description: Description of the user.

• E-Mail: E-Mail address of the user.

• Tel.-Nr. Phone number of the user.

• Language: Language for the user interface.

• Active: Activity-status of the user (active, inactive).

• Server: @enterprise-Server, where the worklist is accessible.

• Date of the last password change: Date, when the password was changed.

• Has to change password at next login: User has to change password at next login.

• Password never expires: Password of the user never expires.

• Cannot change password: User has no right to change the password.

14

2.1. TYPES OF DISPLAY FIELDS

• Object Id: The id of the current object (in this case user) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

2.1.12 Display fields of Role Assignments

• Organizational Unit: OU, where the role is assigned.

• User: User, who has the role.

• Role: Id of the assigned role.

2.1.13 Display fields of Documents

• Name: Name of the document.

• Created: Creation date of the document.

• Changed: Change date of the document.

• Organizational Unit: Organizational Unit, where the document is assigned.

• Creator: Creator of the document.

• Form type: Form type of the document (see chapter Forms in administration guide).

2.1.14 Display fields of Documentfolder

• Folder: Link to the folder.

2.1.15 Display fields of Link

• Name: Name of link.

• Linked object: Name of linked object.

• Created at: Timestamp of creation of this link.

• Created by: User who created this link.

• Last changed at: Timestamp when link was changed last time.

• Last changed by: User who changed this link.

• Object Id: The id of the current object (in this case Link) can be displayed in report
result. This attribute can be used for e.g. the drilldown functionality of Reporting
component.

2.1.16 Display fields of Keyword

• Keyword: Keyword label.

15

2.1. TYPES OF DISPLAY FIELDS

2.1.17 Display fields of document versions

• Version: Link to version of document.

• Created by: User who created this version.

• Created at: Timestamp of creation of this version.

• Description: Description (free text) written by the creator.

2.1.18 Display fields of user session

• User: The first and last name of the user.

• IP address: The IP-adress of the user.

• Date of initialization: The initialization-date of the user-session (login date of the
user).

• Date of logout: The date when the user was logged-of from @enterprise.

• Last access: The date when the user was active in the system.

2.1.19 Display fields of Recycle Bin content

The @enterprise recycle bin is a temporary storage location for deleted DMSobjects which
is displayed per user and is active by default. DMSobjects are moved to recycle bin by
selecting them in DMSObjectTable and activating toolbar function Delete or pressing Del
on keyboard.

• Origin: Information of the origin storage location of the DMSobject (DMSfolder,
process instance).

• Deleted at: The timestamp when DMSobject has been deleted/moved to recycle bin.

• Deleted with: Information, if the element has been deleted directly or indirectly.
Indirect means that a folder has been deleted and the element is part of this folder

2.1.20 Form fields as display fields

For adding form fields click on a form in the list Tables, select a formfield of the list At-
tributes and activate the button "Add". If you select a version independent form (no number
after the form name), you must create a view over the form versions, see the Administration
Guide, section Forms, for details. If the form is not a process form but a subform you must
select the main form (process form).

2.1.21 User defined display fields

When selecting the display field "User-defined" you will see a mask with the following
fields:

• Scheme: schema of a database

16

2.1. TYPES OF DISPLAY FIELDS

• Table: name of database table

• Table alias: a table alias for this query

• Attribute: name of field of table

• Column title: the column header, can include I18N keys (e.g: @@@key@@)

• Aggregation: maximum, minimum, count, average, sum, Aggregation in expression

• Type: Data type (e.g. String, Date, etc.)

• Expression: SQL-expression, used as selection to the table

• Linked report: If a column is linked to another report, the data value of of the
clicked column will be used as parameter at execution. Therefore the linked report
has to expect the parameter condition on index n+1 and n is the index of the last
parameter at execution condition of the initial report.

Example 1: Surname of agent of the process where userid starts with user

Table: avw_user
Table alias: u
Attribute: surname

After activating the button Ok the attribute will be added. You can change the column title
to Surname by clicking on text avw_user.surname. After this action following settings must
be done in section Extended Options of the attribute:

Type: String
Expression: u.id like ’user

Example 2: Create a list of tasks with id and oid:
Attribute 1:
Table: avw_task
Table alias: t
Attribute: oid

After activating the button Ok the attribute will be added. You can change the column title
to oid by clicking on text avw_task.oid. After this action following settings must be done in
section Extended Options of the attribute:
Type: String

Attribute 2:
Table: avw_task
Table alias: t
Attribute: id

After activating the button Ok the attribute will be added. You can change the column title
to id by clicking on text avw_task.id. After this action following settings must be done in

17

2.1. TYPES OF DISPLAY FIELDS

section Extended Options of the attribute:
Type: String

2.1.22 Aggregations

The following aggregations are possible:

• count (e.g. count(id))

• maximum (e.g. max(duration))

• minimum

• average

• sum

• Aggregation in expression: Select this option if select statement includes a sql aggre-
gation.

Count can be used for all fields, the other aggregations can only be used for date or numeric
fields (exception: Aggregation in expression).

2.1.23 Grouping by setting the date format

If you select a display field of type date (for example Process:Start), you can select the
following date formats: hour, day, week, month, quarter, and year. Furthermore it is possible
to enter a custom date format which needs to fit the JAVA SimpleDateFormat patterns.
If such custom date formats should be available by default (selectable), the schema file
reporting.xml must be overwritten and the mapping dateformats extended like in following
example:

<!-- extend this mapping to add dateformats -->
<mapping xmlid="dateformats">
<mapentry key="yyyy.MM.dd" value="My date format" />
</mapping>

The entry "My date format" should be available beneath the entry "Year" after reloading all
reporting schema files.

With this feature you can group by time intervals. For example you can retrieve the num-
ber of processes started per quarter by selecting the following display fields (see also the
example section):

• Count(Process:Name)

• Process:Started [quarter]

18

2.1. TYPES OF DISPLAY FIELDS

2.1.24 Options for fields

For each attribute (display field) a set of options can be defined:

• Infos: Shows the database table and field of selected attribute.

• Column title: The column header, can include I18N keys (e.g: @@@key@@).

• Date format: Is displayed only, if type Date is selected and allows the definition of
hour, day, week, month, quarter, year or a custom date format pattern which needs to
fit the JAVA SimpleDateFormat patterns (see section 2.1.23): grouped by time spans

• Aggregation: Select an aggregation as described in 2.1.22.

• Type: By specifying this option, default type of the result data is overwritten. Ensure
that the selected data fits to the selected data type. If set to TimeInterval two comma-
separated date fields are expected in expression.

• Expression: Can be used to overwrite default select of this attribute, which is de-
fined in schema. Ensure that Expression includes a complete Sql select statement
(e.g: pi.oid). If aggregation is set to Aggregation in expression, a sql aggregation is
suspected in expression (e.g: count(pi.status)).

• Table alias: Is used as table alias in SQL Query. The standard alias, defined in schema,
is prefilled, but can be changed. Each entity/alias pair has to be joined to the report
(see 2.3. Once the attribute is added to the report, the alias can not be modified in edit
mode to ensure that selected joins are correct.

• Linked report: If a column is linked to another report, the data value of of the clicked
column will be used as parameter at execution. Therefore the linked report has to
expect the parameter condition on index n+1 and n is the index of the last parameter
at execution condition of the initial report.

After adding an attribute by using button Add, another options are available:

• Sorting: By activating the icon on the left side of attribute block the sorting direction
can be changed. An upward arrow indicates ascending, downward arrow indicates
descending order of the attribute in result table. If no arrow is displayed, no sort
direction for this attribute is used. If you mark more than one field for sorting, the
first sort criteria is the first attribute marked for sorting in the list, and so on.

• Grouping column and -key: Grouping of columns enables reporting to do a second
level aggregation, which groups all display fields. Any aggregation-function of the
specific column data type is usable as grouping-function. After selecting the first
grouping-function, grouping keys maybe specified. So a grouping line is displayed in
the result if when one of the keys is changing. Here the sorting and order of the key
columns is determining.

• Order of attributes: The order of attributes can be changed by activating an attribute
block and moving it to another location or by using the arrow up/down function in
the toolbar.

19

2.2. QUERY CONDITIONS

• Remove: By using the remove-function (displayed as red X in toolbar) the attribute
can be removed from report.

Fig. 2.5 shows how this options can be used to select only the ProcessInstance OID, which
is not an attribute in ProcessInstance entity. So the expression is set to pi.oid and data type
is Long.

Figure 2.5: Selecting OID of ProcessInstance via Extended Options

2.2 Query conditions

With conditions you can reduce the amount of lines in the result set. Click the tab "Condi-
tions" to get the condition attributes. The attributes are categorized in:

Objects (Applications, Org.Units, Processes, Tasks, Agents) You can specify sets of ob-
jects where the searched value is included or not included, see Fig. 2.6. When select-
ing agents you can also select the user, who executes the query. Clicking on the Add
Icon will open a select mask. Select the object and click on OK to take the value. To
close the object selection, click on Close.

Text fields (Id, Name, Subject) Specifies a string search. If operator is like or not like any
string is found, which has the given text as substring (Infix-search). To do a prefix
search, add a % at the end of the search pattern, for postfix search add a % at the
beginning of the search pattern. Activate the checkbox Ignore Case to enable case
insensitive search.

20

2.2. QUERY CONDITIONS

Figure 2.6: Condition for objects

Figure 2.7: Conditions for states

21

2.2. QUERY CONDITIONS

States (Processinstance state, Activityinstance state) Select a item from the lists Status
(see Fig. 2.7).

Dates (Started, Finished, Duedate) You have several possibilities:

• Specify a date, where the attribute value is greater (after) or equal to this date,

• The attribute value is less (before) this date.

• You specify a time span in hours, days, weeks, month, or years. The checkbox
"exactly" defines the end point of the time span: When checked, the time span
ends at execution time, else it ends at the begin of the execution hour, day,
month, etc. The attribute value must lay in the time span ending at this defined
end point.

• The attribute value is less than the start point of the time span described above.

• The attribute value is null,

• The attribute value is not null.

Fig. 2.9 show some examples of date conditions.

Figure 2.8: Conditions for date fields

Form fields Select a form of the list Tables and then a formfield of the list Attributes to set
conditions in the condition mask.
If you activate the icon Form of an attribute, you will get a preview of the form, where
you can enter values in the fields. After applying, the entered values will be set as
condition in the tab Conditions.
Otherwise you can specify a formfield condition like any other condition. see Fig.

22

2.2. QUERY CONDITIONS

Figure 2.9: Date condition examples

2.11.

Figure 2.10: Set condition by entering values in the formfields

23

2.2. QUERY CONDITIONS

Figure 2.11: Set formfield condition by entering values in condition form

2.2.1 Connection of conditions

All conditions you add can be connected with "AND" or "OR" (AND is "stronger" than
OR). Furthermore, you can set parentheses by selecting one or more conditions and click
on the corresponding toolbar function (..) Set Parentheses.

2.2.2 Queries with parameters

You can define queries where some parameters are set at execution time (explicit parame-
ter). For example, a query returning all instances of a given process. Which process you
want, is specified at execution time. When you execute the query, the system shows you a
mask for filling in the concrete values for the parameters (see Fig. 2.12).
To enable explicit parameter condition, activate the Parameter prompt at execution check-
box. Its even possible to assign default values to operator and value fields, which will be
prefilled in the param mask. The label (= condition text) is created automatically by report
designer with placeholder {PARAM}. This label is displayed on dialog Result details (see
section 4) and the placeholder is replaced.
Attention: If the label has been changed manually, the placeholder is substituted by the
value only. It is assumed that the operator is part of the label!

Another feature is the possibility to group parameters by entering an arbitrary text into field
Parameter group (also possible to internationalize text by entering @@@). Parameters with
the same parameter group text are displayed on param mask in the same group.
It is also possible to define queries with implicit parameters. The difference to explicit

24

2.3. SELECTING JOINPATHS

parameters is that the implicit parameters are determined by the context and not over a
mask. For example: Agent at execution returns only results where agent is the user who
executes the report.
The following implicit parameter conditions are possible:

• relative time conditions (e.g. since 3 days)

• Agent at execution conditions

Figure 2.12: Setting the parameters

2.2.3 User-defined conditions

As last case in the section about conditions we present the possibility to define arbitrary
conditions. You should know some SQL to define such conditions (see example 3.4).
Depending on the selected display or condition fields you can refer the table aliases used in
the report.

2.3 Selecting Joinpaths

Reporting enables the user to define the way how the entities of the reports are joined. This
increases the amount of possible reports while complexity of reporting designer increases
too. Any new entity (except the first) has to be joined to the report. An entity is defined by
its table alias. When adding a new column or condition of an entity, which wasn’t added to

25

2.3. SELECTING JOINPATHS

the report already, engine will ask the user for the join to use. In tab Joins the existing joins
can be adapted.

These possible joinways are predefined in schema. Fig. 2.13 shows the joinpath selection
for entity activityinstance to a report, which has already columns of processinstance. To
select joinpath, select the radio button and click on Ok. The popup will close and the
attribute/condition will be added to the report.

Figure 2.13: Selecting Joinpath for Processinstance and Activityinstance

Fig. 2.14 shows how join selection works if there are more than one entity already added
to the report and more than one predefined joinpaths exists to these entities. Each join
target can be chosen with different paths, so in front of the target (e.g: ProcessInstance) the
triangle icon is located. Click on this icon to see the possible paths, choose the path and
click on Ok.

Figure 2.14: Joining User either to ProcessInstance or ActivityInstance

If the predefined joins do not include the needed join, user-defined joins can be declared.
Fig. 2.15 shows how 2 entities (processinstance pi, processinstance pi2) can be joined via

26

2.4. EXPORT OF QUERY RESULTS

id to get all subprocesses.

Figure 2.15: User defined Joins

2.4 Export of query results

In this tab it is also possible to define the exporter for query results. You can select between
following exporters:

• HTML Table: The result is shown in the browser (default). The fields Clickable
value, Type of selection and Hide clickable value in result table are relevant, if toolbar
functions are defined for the report result (see section 2.5.11). It is also possible to
define a fix width of the result table (in pixel) and the widths of the columns (in
percent depending on result table size).

• Chart: See chapter 2.4.1

• Export to Excel: The query result will be stored in a XLS-file, which can be down-
loaded. If checkbox Hide info is activated, the query result details (e.g. condition
details, execution time, etc.) are not written into file.

• Delimiter Separated Values - Exporter: Similar to Export to Excel. Additionally
you have to enter a Delimiter to separate the results. The target file is a CSV-file,
which can be downloaded. If data fields contain the delimiter, its replaced by @de-
limiter_removed@. The checkbox Use UTF-16 Little Endian Encoding can be used,
if result contains special characters (e.g. umlauts) to get correct representation in file.
If checkbox Hide info is activated, the query result details (e.g. condition details,
execution time, etc.) are not written into file.

• XML export: Similar to Export to Excel, whereas you can determine a style sheet.
The target file is a XML-file. If checkbox Hide info is activated, the query result
details (e.g. condition details, execution time, etc.) are not written into file.

• PDF-Exporter: Report result will be written into a pdf file using the itext library.
Page format an the widths of the columns (in percent of pagesize) are configurable
(see fig. 2.16). The PDF-Exporter uses the font Helvetica. This can be configured by
a hidden configuration parameter. If the result shows Unicode signs, the configured
font has to be a truetype font. If checkbox Hide info is activated, the query result
details (e.g. condition details, execution time, etc.) are not written into file.

27

2.4. EXPORT OF QUERY RESULTS

Figure 2.16: Options of PDF-Exporter

• Open-Office Export: This exporter allows to export in diverse output formats by
defining an Open-Office template (ODT template). The output formates are PDF,
ODT, DOC and DOCX. Please note that DOCX (Office Open XML) is useable with
LibreOffice only! The template must be placed in the classpath of @enterprise and
consists of placeholders in XPath syntax (see Application Development Guide - sec-
tion Office Templates). In the following an example of an ODT template is shown:

${REPEAT $row in $data}
${com.groiss.reporting.export.OpenOfficeExporter.

getRowData($query,$row,0)}
${com.groiss.reporting.export.OpenOfficeExporter.

getRowData($query,$row,1)}
${END}

The method com.groiss.reporting.export.OpenOfficeExporter.getRowData allows to
read one row of the whole result table. The first parameter $query defines that the re-
port result should be read. The second parameter $row indicates that a row should be
read and the third parameter indicates which cell of the row should be read. If check-
box Hide info is activated, the query result details (e.g. condition details, execution
time, etc.) are not written into file.

• Escalation Exporter: With this exporter escalations can be fired for processes of
the reporting result. For this purpose you have to select a Process Id Attribute which

28

2.4. EXPORT OF QUERY RESULTS

identifies a process (should be process instance id). Furthermore an Action can be
defined which is executed, if escalation is fired:

– Send an email: Sends an email to current agents or a self-defined list of email
recipients

– Call method: The entered Java method is executed

The report must be stored first before this exporter can be used! Escalations are fired
one time for each process of reporting result. If escalation has been fired correctly for
a process, this one will be skipped in future.

• SVG chart: Analog to option Chart (see also section 2.4.1). In addition to ordinary
charts it is possible to define a drill-down report (linked report): If a display attribute
is linked to another report, the data value of of the clicked display value will be used
as parameter at execution. Therefore the linked report has to expect the parameter
condition on index n+1 and n is the index of the last parameter at execution condition
of the initial report.

Note that stored reports save the chosen export type. If you save the report e.g. with export
excel, the report will be exported to excel by default.

2.4.1 Showing results graphically

Additionally to the tabular output you can show the query results graphically. You can de-
termine the chart settings before or after the execution.

A chart consists of categories and data series (see Fig. 2.18). Each row of the tabular view
is a series. The categories are the values of the numerical display fields. Chosen categories
are displayed as colored areas in a pie-chart.

With this exporter you can determine the charttype (see Fig. 2.17). You can enter a chart-
title and specify the Height and Width of the chart (is equivalent to the area inside the x- and
y-axis). You can choose between following chart types:

• Bar-Chart

• Pie-Chart

• Line-Chart

• Pie-Chart 3D

• Bar-Chart 3D

• Stacked-Bar-Chart

• Multiple-Pie-Chart

For all bar-charts you can select the Orientation (vertical or horizontal). You can also de-
termine the data series or categories for the chart.

29

2.4. EXPORT OF QUERY RESULTS

Figure 2.17: Diagram settings

Figure 2.18: Example diagram

30

2.5. REPORT OPTIONS

2.5 Report options

Figure 2.19: Report options

2.5.1 Checkbox Display line number

If this checkbox is activated, row numbers will be displayed in result.

2.5.2 Checkbox Different records only

If this checkbox is activated, same records will not be shown a second time in the result.

Example: Search all process names, which are available.
We assume that the process name parfor exists a second time. If this checkbox is activated
and you start the search, you will see the name parfor one time only.

2.5.3 Show operators at parameter mask

Default values for operator and value of parameter at execution conditions can be chosen
since @enterprise 8.0. Depending on the selection of following value the representation of
operators can be manipulated:

• Editable: Operators are editable.

• Disable: Operators are not editable, but are displayed.

31

2.5. REPORT OPTIONS

• Hidden: Operators are hidden and therefor not editable.

More information about param mask is available in section 2.2.2.

2.5.4 Parameter at execution mask

This field allows to define an own parameter mask. This mask can be either a HTML file
(must be valid XHTML), which is interpreted as DOJO widget (see example below) or a
DOJO widget itself (*.js file). This field must be stored in classpath under
alllangs/scripts, e.g. if file is stored under
classes/alllangs/scripts/ep/widget/MyParamMask.html, then the value
of this field must be ep/widget/MyParamMask.html.

All input fields on parameter mask require the attribute data-dojo-attach-point.
If a parameter name has been entered for the condition (can be done via GUI and is recom-
mended), the value of data-dojo-attach-point must be defined under this directive: paramname_value
If no parameter name has been entered, the automatic assigned number (always starting with
0 for first condition) must be used under this directive: value<NR>

Example for parameter mask as HTML file:

<div>
<h1>Customized param mask</h1>
<table>
<tr>
<td>Process-ID: </td>
<td><input data-dojo-type="dijit/form/ValidationTextBox"

data-dojo-attach-point="value0"></input>
</td>
</tr>
<tr>
<td>Priority: </td>
<td><input data-dojo-type="dijit/form/ValidationTextBox"

data-dojo-attach-point="c1_value"></input>
</td>
</tr>

</table>
</div>

The parameter mask is interpreted as DOJO widget, therefor no further HTML tags (e.g.
html, body, etc.) are needed! In the example above the text value + the number of the
condition (in this case the number of first condition in XML) is used as data-dojo-attach-
point for Process-ID; the condition Priority uses the entered parameter name + _value.

Hint: The options Show operators at parameter mask and Show parameter mask in 2
columns have no effect for the own defined parameter mask!

32

2.5. REPORT OPTIONS

2.5.5 Checkbox Show parameter mask in 2 columns

If this checkox is activated, the defined conditions are displayed in 2 columns on param
mask.

More information about param mask is available in section 2.2.2.

2.5.6 Checkbox Register for notification

This checkbox defines, if the report should be refreshed by a notification. The notifica-
tion is done with method QueryEngine.sendReportRefreshToClient(String
reportId) - for more details see @enterprise APIDoc.

2.5.7 Time interval

Can be shown in seconds, minutes, hours, days or weeks.

2.5.8 Computing of time intervals (Calculation model)

For computing time intervals you can use two computing models: "full interval" and "no
weekends", in the latter the weekends are removed from the time interval. In the reporting
schema you can add additional computing models. See the API documentation for how to
implement a time model.

2.5.9 Timezone and Language/Country

To execute a report in a specific timezone and/or Language/Country, you can specify it here.
If nothing is chosen, the timezone and locale of the executing user is taken.

2.5.10 Linked reports

Any stored report can be linked to a report. HTML links to execute the reports are displayed
at the bottom of the result page.

2.5.11 Toolbar functions

Equivalent to tables in GUI configuration (see Administration Guide), toolbar functions can
be configured. These functions can be declared as task functions in administration or as xml
node in a config-file. The toolbar function can use the result data, if in tab Export

1. the exporter HTML Table is selected,

2. a column in field Clickable value is defined which is used as referenced column for
the function and

3. the Type of selection is selected depending on the expectation of the function (e.g. Set
read/unread expects only one selected entry).

One toolbar function may be marked as double-click action only which fires when the user
double-clicks on the result line.

33

2.6. SQL REPORT

Usage of standard @enterprise functions

@enterprise offers by default functions which could be used in Reporting, but it is not
guaranteed that the reporting result will be refreshed after executing the function! Following
table contains some standard functions and which referenced column is needed:

Function Referenced column
Set read/unread Activity instance/Id
Set due date Process instance/Id (only process due date can be set),

Activity instance/Id (process and task due)
Into clipboard Process instance/Id, Activity instance/Id
Copy to ... Activity instance/Id
Add parfor steps Activity instance/Id
Set priority Process instance/Id, Activity instance/Id
Add process relation Process instance/Id, Activity instance/Id
Follow the process Process instance/Id, Activity instance/Id

Table 2.1: @enterprise Functions as toolbar functions

Following action id’s can be used for entries in worklist:

Action id Name Referenced column
finish Complete Activity instance/Id
finishAndSelect Complete and assign Activity instance/Id
goBack Go back Activity instance/Id
seeLater Suspend Activity instance/Id
makeVersion Make version Activity instance/Id
setAgent Reassign Activity instance/Id
cut Cut Activity instance/Id

Table 2.2: @enterprise Action id’s as toolbar functions

2.6 SQL report

The function SQL report is a special form of the Report Designer and allows the creation
of reports with the aid of SQL statements. The display attributes must be added separately,
the FROM-block allows the definition of an arbitrary SQL statement.
Display attributes can be added/delete with the appropriate toolbar functions and moved in
their positions via drag & drop.
The display attribute are consists of following elements:

• SQL attribute: The column name of a table.

• Label: The column label (header) which is displayed in report result.

34

2.6. SQL REPORT

Figure 2.20: SQL report

• Data type: Selection of diverse data types:

– String
Description: any string
SQL attribute: any varchar field of a database table

– Double
Description: rational number
SQL attribute: any decimal field of a database table

– Long
Description: natural number
SQL attribute: decimal field (without decimal places)

– Date
Description: date object
SQL attribute: date field in database table

– TimeInterval
Description: time interval
SQL attribute: 2 comma separated timestamps

– Persistent
Description: reference to another database table
SQL attribute: referenced oid field, the corresponding _class field is added au-
tomatically

– Implementation of Persistent
Description: reference to another database table

35

2.6. SQL REPORT

SQL attribute: referenced oid field

– com.groiss.reporting.data.impl.ProcessLink
Description: Link to process history, the id is used as link label
SQL attribute: OID and ID (comma separated) of a process instance

– Implementation of com.groiss.reporting.data.ReportingData
Description: formatted due to the implementation
SQL attribute: expected attributes due to implementation

36

3 Examples

This sections shows a few example reports. You need the right "statistics" to create and
execute the following examples.

3.1 Example 1 (Aggregation; Date fields)

Compute the minimum, average, and maximum work times per step for all finished tasks
(in days), which has been started in the last month. Sort the results by process-id.
Select the following display fields:

• ProcessInstance:Id to have the process in the result table (ascending sorted).

• ActivityInstance:Worktime with aggregation minimum.

• ActivityInstance:Worktime with aggregation average.

• ActivityInstance:Worktime with aggregation maximum.

Then add the following conditions:

• ActivityInstance:Started >= exactly 1 month

• ProzessInstance:Status in (Finished)

Then set the option "Time Interval in" to "days".

3.2 Example 2 (Grouping over time intervals; implicit and explicit parameters)

How often per week a task of a specified process is taken by the user executing the query?
The process is given as parameter (specified at run-time). Sort the result by the week.
Select the following display fields:

• Task:Name

• ActivityInstance:Id with aggregation "count"

37

3.3. EXAMPLE 3 (NULL-VALUES: GROUPING, AGGREGATION; FORM FIELDS)

• ActivityInstance:Taken with date format "week" and sort order "ascending"

Then add the following conditions:

• ActivityInstance:Taken is not empty select only tasks which has been taken

• ProcessInstance:Id = PARAM ... process is specified when query is executed

• ActivityInstance:Agent = Agent at execution

3.3 Example 3 (Null-Values: grouping, aggregation; form fields)

Which user has started how many processes, where in the form "Jobform" the subject field
is empty and the recipient is "James".
Additionally show the field "description" of the "Jobform" form.

Select the following display fields:

• ProcessInstance:Agent ... start agent of a process,

• ProcessInstance:Id with aggregation "‘count"’ ... instead of count(Process:agent) to
count processes without agents also,

• Jobform:description ... the form field description of the form Jobform.

Then add the following conditions:

• Jobform_1:recipient = Berger

• Jobform_1:subj is null

3.4 Example 4 (User-defined condition)

Which agents of aborted tasks can be reached via email?

We select the display field "ActivityInstance:Agent" and the following conditions:

• ActivityInstance:Status in (aborted)

• ai.agent in (select oid from avw_user where email is not null) ... a user-defined con-
dition using a sub-query with the table avw_user. First select the button User-defined
in tab Conditions and select the entry SQL command. After activating the button Ok
the Extended Options of this condition can be opened where field SQL command can
be filled.

38

4 Administrate reports

If you want to reuse queries, it is possible to store it. Then you can open the query for
executing, editing or deleting. Following functions are available:

• Save: This function allows you to save your report. Enter an Id, a Name and select
an Application which the report should belongs to and activate the button Save or
Save and close (see Fig. 4.1). If you have already opened a stored report and activate
this function, you can store this report with the same name (=Update) or delete it by
activating the button Delete.
If the appropriate rights has been assigned to current user, beside the field Name the
I18n-link is displayed with the translations of this key. The translations can be edited
directly (e.g. in case of admin session) and stored with tooltip dialog button Save or
viewed only. The changes are stored in the resource file of the given application.

• New report: With this function you can create a new search. All fields will be
cleared. It is also possible to select an exisiting query and press the OK button to edit
this query.

• Open...: By activating this function a dialog will be opened where a stored report can
be selected and loaded into Report Designer.

• Details of query: In this mask the build query is shown in XML-format and as SQL-
statement. If you want to see full details of a query, you have to activate this function
in the result-mask.

• Refresh: This function is available in the result-mask only and refreshes the result. If
queries with user defined parameters are refreshed with this function, the parameter
input mask will not be displayed anymore.

• Reload after new parameter input: This function is available in the result-mask
only when a query with user defined parameter inputs has been started and refreshes
the result with the possibility to use other parameters.

• Result details: This function is available in the result-mask only and shows details
of the query result.

• Edit: This function is available in search result only. With this function you can edit
your build query.

39

• Print...: This function is available for HTML tables only and allows to print the
displayed result.

• Export Options: See chapters 2.4.1 and 2.4.

Figure 4.1: Save query

40

5 Configuration of the reporting
component

5.1 Permissions

You need the right Statistic for creating reports and select all fields.
You can define which user may execute which query. One possibility to define this, is
when you save the query (see above). It you want to give a user or a role the right to
execute a stored report, go the the list of users or roles, click on permissions and add a
new permission: Select the right "execute", the object class "Reports" and select the query
you want. To enable user to set permissions to stored reports, the user needs the right "edit
permissions".
Note that in the list of stored reports every user sees only the queries he may execute. The
creator of a report has the permission to edit, delete, execute and assign permissions to his
report.

5.2 Public execution (without login)

Reports are executable without being logged in if the user guest is allowed to execute the
report. The URL below will show you a list of executable reports. Log out before calling
the url to check public queries.

http://<host>:<port>/<contextRoot>/servlet.method/
com.groiss.reporting.gui2.PublicReportingGui.listQueries

Add the parameter groupId=<idOfFunctionGroup> or group=<nameOfFunctionGroup>
to get a list of only one functiongroup.

5.3 Version independent views for forms

If you want to create queries on forms version-independent, you need to create views over
the form versions. To do so, go to the form administration, select a form and click the
button "Create View". You will see the SQL-statement you can now execute. For further
information how to create a view, please take a look in the System Administration Guide.

41

5.4. SERVER CONFIGURATION

5.4 Server Configuration

The following configuration parameter affect the reporting component.

• Maximum Table Size on Server (rows): Due to the possible very large amount of
report results, reporting may cause performance problems. To avoid this, you can
specify a maximum amount of lines. If the report returns more results, the report is
canceled and a exception is thrown.

• Cache Interval (minutes): To avoid high server load its able to cache query results.
This parameter defines how long a query should be cached.

• Maximum Number of Cached Queries: This parameter defines the size of the cache.

• Maximum Number of Simultaneous Queries: To ensure that reporting does not cost
too much performance, this parameter limits the number of queries which can be
executed concurrently.

• Maximum Number of Startable Queries: Defines the amount of queries which are
queued if the maximum number of simultaneous queries is exceeded.

• Order Process-Ids by OID: When checked, ProcessIds are sorted by the Processoid.

• Show all rows, even when no View Right: DMSObjects in result set will not be
displayed if the user who executes the report has no view right on the DMSObject.
This feature can be disabled by activating this checkbox.

• Open Forms in Edit Mode: If checked forms links (attribute: oid) open the forms
editable.

Hidden configuration parameters are documented in chapter 6.

5.5 Reporting-Cache

Changes in Persistent objects will not effect reporting results, if the result was found in re-
porting cache. In this situation re-execute the report result with the toolbar function Refresh
or re-initialize the reporting engine (Administration -> Admin Tasks -> Server Control)

42

6 Developers Guide

The following chapter shall give an overview about the possibilities to customize the report-
ing component.

6.1 Hidden Configuration

Reporting uses 2 hidden parameters in configuration file.

• itext.pdf.font: Path to font file to use in pdf files. If report includes Unicode charac-
ters, this font has to be a truetype font.

• avw.reporting.schemaxml: Path to the system schema xml file. Needed to ensure
compatibility to version 7.0 when reporting.xml was edited to fit application require-
ments. If possible don’t overwrite schema xml but use the new merging of system
schema xml and application schemas.

6.2 XML Configuration

The reporting uses XML-documents to declare the choiceable data on the one hand and the
chosen query on the other hand. To understand, how to customize the reporting, a closer
look on the XML specification is needed.

6.2.1 Schema

The schema file contains all needed information about the pool of data, which can be used in
reports. Reporting merges the configured schema file with any file named ”reporting.xml”
in the configured application paths.

<!ELEMENT Schema (mapping*,entity+,relation*)>
<!ATTLIST Schema xmlid ID #REQUIRED
name CDATA #IMPLIED
furtherHops CDATA #IMPLIED
defaultTimemodel CDATA #IMPLIED
defaultTimeUnit CDATA #IMPLIED
addForms (TRUE | FALSE) "FALSE">

43

6.2. XML CONFIGURATION

Example:

<schema xmlid="avw" name="@@@reporting@@"
furtherHops="2"
defaultTimeUnit="hours"
defaultTimemodel="com.groiss.reporting.data.impl.TimeInterval"
addForms="TRUE">

....
</schema>

Mappings

Mappings are used to translate data into their natural meaning, e.g. ActivityInstance Status
is a number and each number means a status. The reporting user does not want to know
the number but the statusname. So this translation is made with a mapping. Mappings are
defined once and can be referenced often by their id. Mappings are used to define which ex-
porter, charts and timemodels shall be available for users. Even the possible implementation
of an HasSubClass Persistent are defined by a mapping.

<!ELEMENT mapping (mapentry+)>
<!ATTLIST mapping xmlid ID #REQUIRED>

<!ELEMENT mapentry EMPTY>
<!ATTLIST mapentry

key CDATA #REQUIRED
value CDATA #REQUIRED>

Example 1: Mapping for Translating status keys

<mapping
xmlid ="aiStatus">
<mapentry key="0" value="@@@started@@" />
<mapentry key="1" value="@@@suspended@@"/>
<mapentry key="2" value="@@@finished@@"/>
<mapentry key="4" value="@@@aborted@@"/>
<mapentry key="5" value="@@@active@@"/>
<mapentry key="6" value="@@@waiting@@"/>
<mapentry key="7" value="@@@compensated@@"/>

</mapping>

Example 2: Mapping for Subclasses of Agent

<mapping xmlid="agentSubclasses">
<mapentry key="c1" value="com.dec.avw.core.User" />
<mapentry key="c2" value="com.dec.avw.core.Role" />
</mapping>

44

6.2. XML CONFIGURATION

Entity

Entities are representing selections of tables in the database. One table can be defined as
several entities if needed. In the system scheme the avw_stepinstance table is defined once
as ProcessInstance (with selection type=22) and once as ActivityInstance (with selection
type=20). Entities contains at least one attribute and several selections.

<!ELEMENT entity (attribute*,selection*)>
<!ATTLIST entity xmlid ID #REQUIRED

table CDATA #REQUIRED
class CDATA #REQUIRED
name CDATA #IMPLIED
tablealias CDATA #REQUIRE>D

<!ELEMENT selection EMPTY>
<!ATTLIST selection

attribute CDATA #REQUIRED
operator CDATA #REQUIRED
value CDATA #REQUIRED>

Example: Entity of Processdefinition

<entity
xmlid="process"
name="@@@objectname_processdefinition@@"
class="com.dec.avw.core.ProcessDefinition"
table="avw_procdefinition"
tablealias="pd">

....
</entity>

Attribute

Attributes can be attached to the query as select attribute or as condition. The way a attribute
is stored in report result, is defined in an implementation of the ReportingData Interface.
Attributes may contain several selects to gain data from the database (e.g. a TimeInterval
needs at least two timestamps).

<!ELEMENT attribute (select*)>
<!ATTLIST attribute

xmlid CDATA #REQUIRED
name CDATA #IMPLIED
mapping IDREF #IMPLIED
aggrs CDATA #IMPLIED
class CDATA #IMPLIED>

<!ELEMENT select (#PCDATA)>
<!ATTLIST select entity CDATA #IMPLIED

tablealias CDATA #IMPLIED>

45

6.2. XML CONFIGURATION

Relations

Relations define how entities can be joined. A relation has a name (which is displayed in
join select mask) and two joinparts. Additionally a outer join can be specified.

<!ELEMENT relation (joinpart,joinpart)>
<!ATTLIST relation name CDATA #IMPLIED

outer (LEFT | RIGHT | NONE) "NONE">
<!ELEMENT joinpart EMPTY>

<!ATTLIST joinpart entity CDATA #REQUIRED
attribute CDATA #REQUIRED>

6.2.2 Query

Queries are defined in XML documents, too. This XML tree is generated while configuring
the query options at the Report designer mask. But you can even write it manually. A query
consists of 3 parts: The select attributes, a condition tree and the joins. Joins have to be
declared because the reporting engine provides the possibility to join entities over several
ways.

<!ELEMENT query (attribute*,conditions?,join*,export?)>
<!ATTLIST query xmlid ID #REQUIRED
unit CDATA #IMPLIED
minunit CDATA #IMPLIED
timemodel CDATA #IMPLIED
timezone CDATA #IMPLIED
locale CDATA #IMPLIED
parammask CDATA #IMPLIED
lockoperator (TRUE|FALSE) "FALSE"
distinct (TRUE|FALSE) "FALSE"
addarchive (TRUE|FALSE) "FALSE"
addrownumber (TRUE|FALSE) "FALSE">

Parameter

Parameters are used as child nodes of attributes and exporters. Its a key value pair which
may be used to store additional data.

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter xmlid ID #IMPLIED

key CDATA #REQUIRED
value CDATA #REQUIRED>

Attributes

Attributes in Query-XML refer to attributes in the schema.

46

6.2. XML CONFIGURATION

<!ELEMENT attribute (parameter*)>
<!ATTLIST attribute
xmlid ID #IMPLIED
displayname CDATA #IMPLIED
entity CDATA #IMPLIED
tablealias CDATA #IMPLIED
attribute CDATA #REQUIRED
aggregation CDATA #IMPLIED
type CDATA #IMPLIED
dateformat CDATA #IMPLIED
select CDATA #IMPLIED
others CDATA #IMPLIED
sorting (ASC |DESC |NONE) "NONE">

Conditions

The conditions of the query are defined as a tree of condition-elements, connectors and
parentheses. The defined root element is the Conditions-element, which contains one or no
condition or parentheses element and several pairs of connectors and conditions/parentheses.

<!ELEMENT conditions ((condition|parentheses)?,
(connector,(condition|parentheses))*)>

<!ATTLIST conditions
xmlid ID #IMPLIED>
<!ELEMENT parentheses ((condition|parentheses)?,

(connector,(condition|parentheses))*)>
<!ATTLIST parentheses
xmlid ID #IMPLIED>
<!ELEMENT connector EMPTY>
<!ATTLIST connector
xmlid ID #IMPLIED
type (AND | OR) "AND">
<!ELEMENT condition EMPTY>
<!ATTLIST condition xmlid ID #IMPLIED
entity CDATA #REQUIRED
tablealias CDATA #REQUIRED
attribute CDATA #REQUIRED
displayname CDATA #IMPLIED
operator CDATA #IMPLIED
value CDATA #IMPLIED
type CDATA #IMPLIED
paramatexec (TRUE|FALSE) "FALSE"
others CDATA #IMPLIED>

47

6.3. API

Join

The selected joinpaths for the usage in report are stored in the xml. The joins have to build
a graph so that every entity is connected to an other entity. A join can include several
relations, which can include entities which are not referenced at the attributes or conditions
of the report, too. Every relation is used to do the correct join. If the entity of a joinpart is
not used in the report, the standard alias defined in schema is used.

<!ATTLIST join
xmlid ID #IMPLIED
ent1 CDATA #REQUIRED
ent2 CDATA #REQUIRED
alias1 CDATA #REQUIRED
alias2 CDATA #REQUIRED>

<!ELEMENT relation (joinpart,joinpart)>
<!ATTLIST relation

xmlid ID #IMPLIED
outer (LEFT | RIGHT | NONE) "NONE">

<!ELEMENT joinpart EMPTY>
<!ATTLIST joinpart entity CDATA #REQUIRED

xmlid ID #IMPLIED
attribute CDATA #REQUIRED>

Export

As described in Chapter 2.4 the export options are stored in xml, too. The export element
can have several parameters (key-value pairs) to configure export options and drill-down
functions. The type attribute includes the classname, if no package is defined the default
package will be used.

<!ELEMENT export (parameter*)>
<!ATTLIST export type CDATA #REQUIRED

xmlid ID #IMPLIED>

6.3 API

Sometimes the engine has to be extended to fit application requirements. Therefore an API
was designed to enable project specific reports.

6.3.1 com.groiss.reporting.data.TimeModel

TimeModels are calculating TimeIntervals between 2 Date objects. Implement the getInter-
val Method, which returns the interval in milliseconds as a long value.

public interface TimeModel {

public long getInterval(Date start,Date end);
public String getModelName();

}

48

6.3. API

Register your TimeModel in reporting schema in the mapping timemodels to mark it as
selectable in reporting designer.

Example: DemoTimeModel Calculates the milliseconds between two date objects.

public long getInterval (Date start, Date end) {

long time1 = start.getTime();
long time2 = end.getTime();
return (time2-time1);

}
public String getModelName() {

return "DefaultTimeModel" ;
}

6.3.2 com.groiss.reporting.data.ReportingExportable

Exporters of reporting must handle objects implementing this interface. The getValue
Method returns the valueholder object, toHTML the HTML representation (has to be a
com.groiss.gui.Component or a String Object) of the value and toText a text
representation to use for CSV or Excelexport. Due to new GUI implementation of @enter-
prise 9.0 any implementation has to implement toJson which may return a JSON Object or a
String and getColumnRenderer which refers to a dojo widget implementing a ColumnRen-
derer. The result of toJson is passed to the ColumnRenderer on the client, so any formatting
has to be done there.

public interface ReportingExportable extends Comparable {
public String toText();
public Object toHtml();
public Object getValue();
public Object toJson();
public String getColumnRenderer();

}

Example will be given in Chapter 6.3.3.

6.3.3 com.groiss.reporting.data.ReportingData

This interface extends the ReportingExportable and provides methods to overwrite the at-
tribute’s behavior when added to a report. We recommend to extend default implementation
com.groiss.reporting.data.impl.DefaultReportingData.

public interface ReportingData extends ReportingExportable {

public Attribute getAttribute();
public void setAttribute(Attribute a);
public Entity getEntity();
public void setEntity(Entity e);
public void addSelectAttributeToQuery(Query q, Element select);

49

6.3. API

public void addConditionToQuery(Query q, Element c);
public void setValue (ResultSet rs, Element selectAttribute,

Query q);
public void addClientConditionWidgetOptions(

JSONObject json) throws JSONException;
public List<Pair<String,String>> getOperatorList(

boolean comesFromParamMask);
}

getAttribute,setAttribute,getEntity,setEntity set and return the entity and attribute ob-
ject of remating scheme which are referenced this ReportingData Object.

addSelectAttributeToQuery has to implement, how attribute is added to the select state-
ment of SQL Query. Has to call com.groiss.reporting.Query.addSelect and
com.groiss.reporting.Query.addSelectIndexOfAttrib(Element, int) to register the attribute!

addConditionToQuery has to implement the logic how attribute is added to the condi-
tions of SQL Query. Has to call com.groiss.reporting.Query.addCondition.

setValue gains the data from ResultSet and stores it.

addClientConditionWidgetOptions adds condition widget information to attribute store.
The implementing widget is stored as condwidget attribute to the json-object. Any addi-
tional Data will be passed to the widget at instantiation.

getOperatorList returns a pairlist of selectable operators. The key is the xml representa-
tion of the operator, the value the I18N string of the operator.

Example: com.groiss.demo.ProgressReportingData The Goal is to add a selectable at-
tribute to reportingschema, which indicates the average progress of all orderitems Therefore
you have to add following attribute to reporting schema in the entity "demo_order_1" The
output shall be the average progress with a ’%’ sign afterwards. if its HTML it shall be a
link which does a javascript alert.
We want the engine to allow a field which calculates the product of amount and price at
execution time of report. Therefore you have to add following attribute to reporting schema
in the entity "demo_order_1":

<attribute xmlid="averageprocess" name="@@@averageprocess@@"
class="com.groiss.demo.ProgressReportingData">
<select entity="demo_orderitem_1" tablealias="avg_oderitem_1">

avg(avg_oderitem_1.amount)
</select>

</attribute>

50

6.3. API

The output shall be the product with a Dollar sign afterwards. His HTML representation
shall be a Link with a javascript alert showing the product, which is handeld by the im-
plementing dojo widget . Cause of extending DefaultReportingData we do not need to
implement every method.
You will find a Demoimplementation in the demo package of @enterprise.
(see: com.groiss.demo.reporting.ProgressReportingData)

6.3.4 com.groiss.reporting.data.NumericValue

ReportingData Objects have to implement this interface, if the value is aggregateable but
does not fit to the standard dataobjects.

public interface NumericValue extends ReportingData {
public NumericValue add(NumericValue v2);
public NumericValue avg(long count);

}

6.3.5 ReportingExporter

Reporting Engine returns a Tablemodel containing ReportingExportable Objects as result
of a report. The output format of this Tablemodel can be modified by implementing an
own Exporter. To mark exporter as selectable in reporting designer, add it to the mapping
"exporter" in reporting.xml.

public interface ReportingExporter {
public String getExportName() ;
public JSONArray getExportOptionsJSON() throws JSONException;
public void export(HttpServletResponse res, Query q,

TableModel tm) throws Exception;
}

getExportName returns the Name of this Exporter. Is displayed in export option page to
select exporter.

getExportOptionsJSON enables exporter to add option fields to the export option page.
Return a jsonarray which contains jsonobjects which have at leaast an id, a label and an
implementing widget.

export Iterate over the tablemodel and manipulate data like needed for export.
You will find a demoimplementation in the demo package of @enterprise.
(see com.groiss.demo.reporting.FileSystemExporter)

6.3.6 ClientSideExporter

Due to the new GUI of @enterprise 9.0 a subinterface of ReportingExporter has been
introduced. Implement this interface if you need to overwrite the exporting functions of a
report.

51

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

public interface ClientSideExporter extends ReportingExporter{
public String getClientSideRenderer();
public List<Map<String,Object>> toJson(
Query q, ReportingTableModel tm) throws JSONException;

public JSONArray getResultDetailsJson(
Query q, int count) throws JSONException;

}

getClientSideRenderer Returns the path to a renderer widget, which has to display the
result.

toJson Transfers the Tablemodel data to a JSON Object which will be passed to the
ClientSideRenderer

getResultDetailsJson Returns a JSON Array which holds all informations displayed as
report details. Every label and value pair is handeld as a Json Array.

6.4 Implementing your own Search Mask

To implement your own search mask, just design a form with the needed input fields. When
submitting the search, instantiate an ep/widget/smartclient/reporting/ReportingResult ob-
ject and put it in the designated target. The ReportingResult object executes the report
the passed report (passed in paramter query.qxml or query.id and adds the form data given
in paramter postParams to the sql condition. The naming and handling of parameters is
described in the follwoing section.
The recommended way is to build a stored report in Report designer, which includes parameter-
at-execution conditions for each field of the search mask. In the search mask for each condi-
tion a value-field, an operator-field and in some cases an others-field are needed to complete
conditions. The engine expects post parameters called value0, operator0 and others0 for ex-
plicit parameter substitution. 0 stands for the index of the condition in the conditions tree
starting with 0. So if the first and the third condition of the report need explicit parameter
input, the fields value0, operator0, others0, value2, operator2 and other2 are expected. If
needed you may name the condition with a parameter tag (key=”paramname”), so that you
may reference the parameter with paramname_value, paramname_operator and param-
name_others. Since @enterprise 9.0 you can specifiy the parameter name in the reporting
mask of conditions too. Add a field comesFromParamMask with value "1" to the search
mask, so that engine expects the parameter in the post parameters.

52

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the schema
name The name of the schema, can be localized
furtherhops To determine the pool of possible Joins for 2 entities, the shortest

join path is searched! This parameter delimits the amount of se-
lectable joins to all joins, which need not more join hops than the
shortest path plus this parametervalue

defaultTimemodel The default timemodel, which should be used for re-
ports to calculate Timeintervals. Must implement the
com.groiss.reporting.data.TimeModel interface.

defaultTimemodel The default timeunit of timeintervals
addForms Forms are not declared in the schema file by default. They are

added automatically during the parsing, if this flag is set to true!

Table 6.1: Description of element Schema

Attribute Description
xmlid The Id of the map is used to reference it in the attributes.
key The key of this entry. If Mapping is used for translation, the key

is the value in the database.
value The string representing the database value or the full classname

of the exporter, charttype or timemodel.

Table 6.2: Description of element mapping

Attribute Description
xmlid The Id of the entity is used to reference it in the query xml tree.
table The name of the database table.
class The persistent implementation representing this table in @enter-

prise. This is needed to get information about the fieldtypes.
name The name of this entity. May include I18N keys, so each string

starting with @@@ and ending with @@ is replaced.
tablealias The default tablealias for this entity. It can be overwritten by the

query xml document.
selection The selection defines a condition to restrict the data tuples of this

entity. The selection consists of an (database-)attribute name,
an operator and a value. (e.g: ActivityInstance: selection: at-
tribute="type";operator="=";value="20")

Table 6.3: Description of element entity

53

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the attribute is used to reference it in the query xml tree.
name The name of this attribute. May include I18N keys, so every

string starting with @@@ and ending with @@ is replaced.
class The implementation of com.groiss.reporting.data.ReportingData

interface. If not specified the Default-Implementation is used.
mapping The id of the referenced mapping to translate data or to know the

possible implantations of HasSubclasses Persistents.
aggrs The selectable aggregations for this attribute. If not specified,

the aggregations are calculated depending on the field type. But
sometimes it does not make sense to calculate an average of a
numeric data (e.g. Process:Version).

select The select Attribute contains the name of the database field. If
a select is needed from an other entity, the attributes entity and
tablealias are specified to gain this additional information. (e.g.:
StepDuration needs start and end time of ActivityInstance)

Table 6.4: Description of element attribute in schema

Attribute Description
entity The entity id of this joinpart.
attribute A DB-field which is used to join.

Table 6.5: Description of element relation

54

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid The Id of the query
unit The maximum timeunit of timeintervals. Possible values: ”sec-

onds",”minutes",”hours",”days",”weeks"
minunit The minimum timeunit of timeintervals.
timemodel The timemodel, which should be used for this re-

port to calculate Timeintervals. Has to implement the
com.groiss.reporting.data.TimeModel!

locale If a Report should be executed in a specific language, the short-
name locale is defined here! (e.g. en_US)

timezone If the report should be executed in a specific timezone, the id of
the timezone is defined here

parammask The path to an alternativ paramask. Customized Parameter mask
has to fit all naming conventions.

lockoperator If this flag is set to TRUE, the operator selectlist in parameter
at execution mask are displayed readonly. This affects standard
parameter mask but not a customized one.

distinct If this flag is set to true, only equal tuples in the result-set are not
displayed.

addarchive This flag has to be true, if the report shall include
avw_stepinstance records from the archive schema!

addrownumber This flag has to be true, if the report shall include rownumbers in
the first column. (Note that this needs a special treatment when
implementing an Exporter!)

Table 6.6: Description of element query

55

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid An optional field, which has to declare an unique id for this at-

tribute. If not specified, the engine set a unique id automatically.
The id is used for referencing the attribute at the edit mode.

displayname The name of this column. If not specified, the default attribute
name from schema is the column name. Can include I18N keys

entity The id of the referenced entity, which contains the referenced at-
tribute in schema. If its a user-defined attribute, the tablename in
the database is stored in the entity field.

tablealias The tablealias for this entity. Entity-Id and tablealias are the
unique id of an entity in the query. For each entity a join has
to be declared.

attribute The id of the referenced attribute of the schema. If its an user-
defined attribute, its set to ”userdefined"!

select A sql-syntax fitting expression, which is copied in the select state-
ment.

type If select expression returns not the default type
of the attribute, which is declared in schema,
define full-qualified class name here. If its
com.groiss.reporting.data.impl.TimeInterval
2 date type are suggested.

aggregation The aggregation for this attribute. Aggregations are grouped by
all non aggregated attributes in the result. If the select includes an
sql aggregation, specify here ”sqlaggr".

sorting Can be ”ASC” for ascending, ”DESC” for descending or none
for no sorting. Sorting is done as the attribute are ordered, so the
sorting of the first attribute has an higher priority than the second
one.

others This is optional wildcard attribute. It can be used for different
things. The default data types interpret the others attribute as an
user-defined selection due to the entity

Table 6.7: Description of element attribute in query

56

6.4. IMPLEMENTING YOUR OWN SEARCH MASK

Attribute Description
xmlid An optional field, which has to declare an unique id for this at-

tribute. If not specified, the engine will set an unique id auto-
matically. The id is used for referencing the element at the edit
mode.

connector: type Type of boolean operation. Can be AND or OR, AND is default!
entity The id of the referenced entity, which contains the referenced at-

tribute in schema. If its a user-defined attribute, the tablename in
the database is stored in the entity field.

tablealias The tablealias for this entity. Entity-Id and tablealias are the
unique id of an entity in the query. For each entity a join has
to be declared.

attribute The id of the referenced attribute of the schema. If it is an user-
defined attribute, it will be set to ”userdefined"!

displayname A description of this condition. May include I18N keys.
operator The operator of this condition, for example in, like, = or >! If it is

an user-defined SQL Condition, operator contains the expression,
which may be written in PreparedStatement syntax.

value Value for prepared Statements. Several values can be separated
by a comma.

type The type of the value string for parsing it to the fitting object.
others This is optional wildcard attribute. It can be used for different

things. DateReportingData Objects for example suggest unit here
if a relative date condition is specified. Text condition store the
ignorecase option here.

paramatexec True if parameter at execution is needed. In this case the operator
and the value is used as default parameters.

Table 6.8: Description of elements of conditions tree

Attribute Description
ent1 The entity id of the source entity of the join
alias1 The tablealias of the source entity of the join
ent2 The entity id of the target entity of the join
alias2 The tablealias of the target entity of the join
other fields see 6.2.1

Table 6.9: Description of element join

57

7 Support

For further questions, contact us under the email support@groiss.com.

58

	1 Introduction
	2 Description of the Search Mask
	2.1 Types of display fields
	2.1.1 Display Fields of a Processinstance
	2.1.2 Display Fields of an Activityinstance
	2.1.3 Display Fields of a Process
	2.1.4 Display Fields of an Application
	2.1.5 Display Fields of Process Relation
	2.1.6 Display fields of Steps
	2.1.7 Details to time intervals
	2.1.8 Display fields of Tasks
	2.1.9 Display fields of Organizational Units
	2.1.10 Display fields of Roles
	2.1.11 Display fields of Users
	2.1.12 Display fields of Role Assignments
	2.1.13 Display fields of Documents
	2.1.14 Display fields of Documentfolder
	2.1.15 Display fields of Link
	2.1.16 Display fields of Keyword
	2.1.17 Display fields of document versions
	2.1.18 Display fields of user session
	2.1.19 Display fields of Recycle Bin content
	2.1.20 Form fields as display fields
	2.1.21 User defined display fields
	2.1.22 Aggregations
	2.1.23 Grouping by setting the date format
	2.1.24 Options for fields

	2.2 Query conditions
	2.2.1 Connection of conditions
	2.2.2 Queries with parameters
	2.2.3 User-defined conditions

	2.3 Selecting Joinpaths
	2.4 Export of query results
	2.4.1 Showing results graphically

	2.5 Report options
	2.5.1 Checkbox Display line number
	2.5.2 Checkbox Different records only
	2.5.3 Show operators at parameter mask
	2.5.4 Parameter at execution mask
	2.5.5 Checkbox Show parameter mask in 2 columns
	2.5.6 Checkbox Register for notification
	2.5.7 Time interval
	2.5.8 Computing of time intervals (Calculation model)
	2.5.9 Timezone and Language/Country
	2.5.10 Linked reports
	2.5.11 Toolbar functions

	2.6 SQL report

	3 Examples
	3.1 Example 1 (Aggregation; Date fields)
	3.2 Example 2 (Grouping over time intervals; implicit and explicit parameters)
	3.3 Example 3 (Null-Values: grouping, aggregation; form fields)
	3.4 Example 4 (User-defined condition)

	4 Administrate reports
	5 Configuration of the reporting component
	5.1 Permissions
	5.2 Public execution (without login)
	5.3 Version independent views for forms
	5.4 Server Configuration
	5.5 Reporting-Cache

	6 Developers Guide
	6.1 Hidden Configuration
	6.2 XML Configuration
	6.2.1 Schema
	6.2.2 Query

	6.3 API
	6.3.1 com.groiss.reporting.data.TimeModel
	6.3.2 com.groiss.reporting.data.ReportingExportable
	6.3.3 com.groiss.reporting.data.ReportingData
	6.3.4 com.groiss.reporting.data.NumericValue
	6.3.5 ReportingExporter
	6.3.6 ClientSideExporter

	6.4 Implementing your own Search Mask

	7 Support

