
© Groiss Informatics GmbH, 2010

Business Process Management
with

@enterprise 

Groiss Informatics, March 2010



© Groiss Informatics GmbH, 2010 2

@enterprise – Course material, March 2010

Copyright © 2001- 2010 Groiss Informatics GmbH. All rights reserved.

The information in this document is subject to change without notice. If you find any 
problems in the documentation please report them to us in writing. Groiss Informatics 
does not warrant that this document is error-free.

No part of this document may be photocopied, reproduced or translated to another 
language without the prior written consent of Groiss Informatics.

@enterprise is a trademark of Groiss Informatics GmbH,  other names may be 
trademarks of their respective companies.



© Groiss Informatics GmbH, 2010 3

Outline

♦ Introduction

— motivation, terms

♦ Process modeling

— the organization

— process structure

— data modeling

♦ Process execution

— the @enterprise user interface

— GUI Customization

♦ Process monitoring

♦ Implementing a Workflow Application

— setting up a project

— the HTTP server

— the workflow engine

— customizing the user interface

— communication

— utilities

♦ System administration

— Installation

— configuration, operating



© Groiss Informatics GmbH, 2010

1.

Introduction to
Business Process Management



© Groiss Informatics GmbH, 2010 5

The process-oriented organization

♦ The processes are the main elements in structuring the organization

Example: APQC

Process Framework



© Groiss Informatics GmbH, 2010 6

Goals of the process-oriented organization

♦ increase productivity

— throughput

— minimize transport and idle time

— integration of different software products

— automate steps

♦ increase quality

— comply with process requirements

— provide process documentation

♦ increase agility



© Groiss Informatics GmbH, 2010 7

Workflow Management Systems

Support business processes in

♦ modeling

♦ execution

♦ documentation

♦ monitoring



© Groiss Informatics GmbH, 2010 8

Terms

from WfMC, Terminology and Glossary

Business Process
(i.e. what is intended to happen)

Process Definition
(a representation of what
is intended to happen)

Sub-Processes

Activities

Manual Activities
(which are not managed

as part of the 
Workflow System)

Automated Activities

or

which may be

composed of

Is defined in a Is managed by a

Workflow Management System
(controls automated aspects
of the business process)

via

Process Instances
(a representation of what
is actually happening)

include one or more

Activity Instances

and/or
Work Items

(tasks allocated to a
workflow participant)

Invoked Applications
(computer tools/applications
used to support an activity)

which include

used to create
and manage

during execution are represented by

implemented by



© Groiss Informatics GmbH, 2010 9

Process Instance

♦ An individual business transaction

— also: Process, Workflow-Instance

— created at runtime

♦ started by a user

♦ Example:

— Vaction-Application: Mr. Miller, July 4-16, 2004

— Vaction-Application : Ms. Watson, August 3-6, 2004



© Groiss Informatics GmbH, 2010 10

Activity

♦ single action in a workflow

— manual activity with user-interaction, e.g. fill in a form

— system activity no user-interaction

♦ composite action

— subprocess

♦ manual actions are assigned to agents



© Groiss Informatics GmbH, 2010 11

Agent

♦ executes activities

♦ kinds of agents

— Person executes manual activities

— Machine executes batch activities

— Role group of users



© Groiss Informatics GmbH, 2010 12

Organizational Unit

♦ Elements of the organization structure

♦ functional or logical structure

♦ often tree-structured

♦ Example:

... ...

Sales

... ...

Production

... ...

Inventory ...

Management



© Groiss Informatics GmbH, 2010 13

Role

♦ Roles define groups of participants exhibiting a specific set of attributes, 
qualifications and/orskills.

♦ Example:

— Secretary, french-speaking

♦ 3 Kinds of Roles

— Local Role - assigned within an org.unit

— Hierarchic Role - assigned within an org.unit and the sub org.units

— Global Role - not assigned within an org.unit.



© Groiss Informatics GmbH, 2010 14

Kinds of Roles

... ...

Sales

... ...

Production

... ...

Inventory ...

Management

Global Role

Local Role
Hierarchic Role



© Groiss Informatics GmbH, 2010 15

Workflow-Management-System

♦ Software system, which

— supports the modeling of workflow specifications

– Process definition

– Organizational structure

— controls the execution of workflow instances

– automatic routing of a process instance to the next responsible agent according 
to a process definition

— provides information about running processes

– Monitoring - Where ist my process instance now?

— automatically documents the processes

– History - who executed that activity?



© Groiss Informatics GmbH, 2010 16

Workflow-Management-System
Example: Vacation Application

Mr. Dr. Skrutsch

Role: Manager

Ms. Emsig

Role: Assistent

Mr. Dak
Mr. Guhs
Ms. Dehsi

Role:Clerk

Sales

...

Production

Management
Process definition Process instances



© Groiss Informatics GmbH, 2010

2.

Process Modeling



© Groiss Informatics GmbH, 2010 18

Process Modeling

♦ Define the organizational data

— Users

— their roles

— the structure of the organization

♦ Modeling the data

— Classes and their relationships

— masks for data input

♦ Process definition

— tasks

— task succession (flows)

— flow conditions

— data visibility

— agent assignment



© Groiss Informatics GmbH, 2010 19

1. Organizational Structure

♦ Users

♦ Organizational Units

♦ Organization Hierarchy

♦ Roles



© Groiss Informatics GmbH, 2010 20

User

Attributes:

♦ Id: unique, used for login

♦ First name, surname, title

♦ Description: multi-line description

♦ Email: used for notification emails

♦ Language: one of the languages defined in the configuration

♦ Server

♦ Active/inactive

♦ Password settings

other tabs:

♦ roles

♦ rights

♦ substitutions



© Groiss Informatics GmbH, 2010 21

Substitutions

♦ Three kinds:

1. Personal substitute for all tasks received personally

2. Personal substitution including all roles

3. Substitute for a role

♦ The substitute receives the rights of the substituted person.

♦ Substitutions can be confined to a time interval

♦ user may change his own substitutes

♦ adminstrator can edit all substitutions



© Groiss Informatics GmbH, 2010 22

Organizational Unit

Attributes:

♦ Id: short name

♦ Name: long name

♦ Description: multi-line description

♦ extern organization: cannot receive process instances

♦ organization class



© Groiss Informatics GmbH, 2010 23

Organization Class

Classifying organizational units

♦ for example in an university: departments, schools, institute, ...

♦ no special semantics for @enterprise

Attributes:

♦ Id: short name

♦ Name: long name

♦ Description: multi-line description



© Groiss Informatics GmbH, 2010 24

Organization Hierarchy

build a tree of organizational units

♦ more than one hierarchy can be defined

♦ specify the hierarchy which is used in your application



© Groiss Informatics GmbH, 2010 25

@enterprise Application

groups all information of a workflow application

♦ Application object in the database

— Id, name, org.hierarchy, description

— application class: see below

— application directory: location of the code and resources in the file system

— version: defines the version installed

— startup position: string for ordering the application startup

♦ application dependent objects

— process definitions

— forms

— tasks

— functions

— roles

— rights

— object classes

— function groups

— GUI configurations



© Groiss Informatics GmbH, 2010 26

@enterprise Application

♦ Resource bundle for text strings and error messages

♦ Application parameters

— Configuration parameters for the application

♦ User parameters

— application specific parameters for each user

♦ Structure of the application directory

— classes directory: is added to the classpath

— lib directory: jar files are added to the classpath

— files in application root

– appl.prop: the application configuration file

– properties.xml: description of the configuration (types, labels, defaults)



© Groiss Informatics GmbH, 2010 27

Roles

Grouping of persons or properties of skills of persons

for example: secretary, manager, french_speaking

Attributes:

♦ Id: short name

♦ Name: long name

♦ Description: multi-line description

♦ Application: to which the role belongs to

♦ Type:

— local

— global

— hierarchic



© Groiss Informatics GmbH, 2010 28

Predefined Roles

♦ all: global role for all users

♦ home: local role for specifying home department of a user

♦ sys: global role for manipulating master data



© Groiss Informatics GmbH, 2010 29

Reference Roles

♦ Problem: different rights for users but same role in process definition.

♦ Solution in @enterprise: “variants” of roles:
roles can have a reference role

Example:

in process definition: sec for secretary

user has role sec or sec_fewer_rights

♦ sec is a reference role

♦ sec_fewer_rights is a variant of sec



© Groiss Informatics GmbH, 2010 30

Rights

Define a right for some action or to access something

♦ rights are assigned to users directly or via roles:

♦ with roles a profile of rights can be composed

Attributes:

♦ Id: short name

♦ Name: long name

♦ Description: multi-line description



© Groiss Informatics GmbH, 2010 31

Standard Rights

♦ create: create an object

♦ delete: delete objects

♦ edit: update objects

♦ edit-acl: update the access

♦ view: view the object

♦ execute: execute (a function)

♦ conf: configure @enterprise

♦ admin: enter the administration

♦ proc_inst: manage process instances

♦ stat: using the extended search

Application defined rights have no predefined semantics



© Groiss Informatics GmbH, 2010 32

Permission System

defines what a user can do or see in the system

the base relation is the Permission:

♦ who has which right on which object

♦ who: a user, a role or a role in an organizational unit

♦ right: a predefined right like view, edit, execute

♦ object: can be a single object or an abstraction

— an object

— an object class: permission is valid for all instances of this class

— all objects

— org.unit: permission is valid for all objects belonging to the org.unit

— role org.unit: permission is valid for all objects belonging to the org.unit where the 
user has the role defined in the agent field.

♦ access can be allowed or denied



© Groiss Informatics GmbH, 2010 33

Permission System (2)

♦ if two permissions overlap and one is positive (allowed), one negative (denied) 
the negative permission overrules the positive

♦ View and edit permissions from both sides (subject and object)

— Agent: User or Role: tab Permissions

— Target Object: tab Access

♦ Permission overview for users: tab All Permissions



© Groiss Informatics GmbH, 2010 34

Permission-Lists

♦ Permission-lists are aggregations of permissions. 

♦ none of these permissions have a target object defined.

♦ Example

— role sys has edit right

— role all has view right

♦ Attaching the permission-list to an object makes the contained permissions 
valid for the attached object as target.

♦ A permission list can be reused (attached to multiple objects)



© Groiss Informatics GmbH, 2010 35

Owner

♦ Some objects have an owner attribute.

♦ It denotes the user who currently owns the object.

♦ object x has owner o is equivalent to the following permissions:

— o has right edit on x

— o has right view on x

— o has right delete on x

♦ The owner concept is designed to limit the number of permission entries and is 
used for example in the DMS.



© Groiss Informatics GmbH, 2010 36

Object Classes

♦ Not all rights make do make sense on every kind of objects

♦ The class "Object class" allows to specify this restriction.

— the classname defines which class is described

— in the tab rights a list of applicable rights can be maintained

♦ In the Access tab of objects, where permissions can be attached, we restrict 
the list of rights that can be selected there.

♦ In the default application, the object classes for @enterprise master data are 
defined.



© Groiss Informatics GmbH, 2010 37

What right is needed for an action?

@enterprise 8.0 Permission Overview

User A wants to Right Target

insert an object create all objects or object class

update an object edit the object, the object class, all objects or

if the object belongs to an org.unit: the objects of the org.unit

delete an object delete as edit

update an org.unit dept_edit the org.unit (or object class or all objects)

entering Administration admin all objects

changing the configuration conf all objects

view log admin all objects

insert, update, delete a

permission

edit_acl and execute edit_acl on target, target class or all objects, 

and execute on the right to be assigned

insert, update, delete a role

assignment

edit and execute edit on user (object, object class or all),

and execute on the role to be assigned

execute a function execute the function (or object class or all)

abort a process instance proc_inst all objects or all OUs or the OU where the process resides

change agent when I am not

the current agent

proc_inst or set_agentas proc_inst

find a process instance in a

search

view or

proc_inst

as proc_inst

create reports stat all objects

execute stored reports execute the report  (or object class or all objects)



© Groiss Informatics GmbH, 2010 38

2. Process Definition

♦ graphical definition in process editor

♦ texual definition with script language WDL

Process properties

♦ Id

♦ Name

♦ Version

♦ Instance Id: normally a natural number, but an expression can be defined:

for example: IT-{nn}/{yy}

the following placeholders are allowed:

n.....next number (global)

nn....next number for this process

ny....next number per year

nny...next number for this process for this year

y..... last 2 digits of year

yy....year (4 digits)

ou....organizational unit id



© Groiss Informatics GmbH, 2010 39

Process Properties (2)

♦ Subject: also an expression consisting of text and placeolders, the 
placeholders reference form fields

Example:

{form_timereport.employee} / {form_timereport.project} 

{form_timereport.period}

♦ Active: only active processes can be started



© Groiss Informatics GmbH, 2010 40

Elementary Steps - Task

The elementary  - manual - steps of a process:

♦ postconditions ensure a defined state after task execution

♦ preprocessing can set form values before user interaction begins

♦ compensation procedures ensure a consistent state when going back to a 
previous step

♦ the forms of a process can be selectively attached to the steps

♦ the fields of the forms can be  set invisible, read-only, or read-write

♦ agent(s)



© Groiss Informatics GmbH, 2010 41

Agent definition

♦ User

normally not used directly in a process definition

♦ Role

represents a group of users

♦ Role in Organizational Unit

members of a role in an org. unit

♦ Agent of a previous activity

the user that executed a previous task in this process instance

♦ Agent from form field

content can be a user, role or role in org.unit

♦ agent from method

result of Java method must be a user or role

for each task a list of agents can be specified, they receive the task consecutively, 
thereby implicitely defining a sequence 



© Groiss Informatics GmbH, 2010 42

Elementary Steps – System and Batch Step

♦ system step

— a Java method is executed / no user interaction

♦ batch step

— asynchronous execution of a Java method



© Groiss Informatics GmbH, 2010 43

Control Structures - Sequence

graphical notation: BPMN (Business Process Modeling Notation)

role1 task1();

role2 task2();



© Groiss Informatics GmbH, 2010 44

Control Structures – Alternative (1)

IF

if (f.x = 1) then

role1 task1();

else

role2 task2();

end;

elsif: 

graphically: add an if in the empty else branch



© Groiss Informatics GmbH, 2010 45

Control Structures – Alternative (2)

Choice: manual selection of a path at run-time

choice

"order now", f.amount < 5000:

sec order(f);

"check again":

clerk check(f);

"archive":

archiver archive(f);

end;

Each path has a name and an optional condition.

At run-time the paths without a condition and the paths where the condition 
evaluated to true are available to the user for selection



© Groiss Informatics GmbH, 2010 46

Control Structures - Loops

3 kinds of loops: while, repeat, and loop

while (f.x > 0) do

role1 task1();

role2 task2();

end;

repeat

role3 task3();

until (f.x = 0);

general loop:

loop

stmts

exit when condition

stmts

end;



© Groiss Informatics GmbH, 2010 47

Control Structures – Parallelism (1)

Split the process execution into concurrent parallel paths

role1 task1();

andpar

role2 task2();

| role3 task3();

end;

role4 task4();

♦ ANDPAR: process is continued, when all paths are finished.

♦ ORPAR: process is continued when one path is finished, the others are
aborted.



© Groiss Informatics GmbH, 2010 48

Control Structures - Parallelism (2)

Parfor :Parallel execution where the number of branches is determined at run 
time

Two variants:

♦ iterate over subforms

♦ define a Java method as iterator

parallel for review in mainform.1 do

review.reviewer task1(review);

end;



© Groiss Informatics GmbH, 2010 49

Control Structures - Parallelism (3)

Branch Split a path that has its own end node

branch

role1 task1();

end;



© Groiss Informatics GmbH, 2010 50

Control Structures - Goto

Jump to another point in the process

can lead to corrupt process instances, use with care

<a_label> role1 task1();

goto a_label;



© Groiss Informatics GmbH, 2010 51

Control Structures - Subprocess

Call another process

call sub1(f);



© Groiss Informatics GmbH, 2010 52

Control Structures - Events

Synchronization with Events

andpar

role1 task1();

raiseEvent(e1, current_tx, process);

role2 task2();

|

sync(e1, com.groiss.event.EventHandler, process);

role3 task3();

end;



© Groiss Informatics GmbH, 2010 53

LoopChoiceIfBatchSystem 
step

Sub-
process

Task

Graphical Representation in @enterprise

♦ current version does not yet use BPMN, but slightly different symbols

B
P

M
N

@
e

n
te

rp
ri

s
e



© Groiss Informatics GmbH, 2010 54

snycraise eventgotobranchParallel forAndpar

Graphical Representation in @enterprise (2)
B

P
M

N
@

e
n

te
rp

ri
s
e



© Groiss Informatics GmbH, 2010 55

Conditions

appear in process: if, choice, loops

and in postconditions of Tasks

three possibilities

♦ a Java method: return type boolean, 0 to n string parameters

♦ WDL expression: boolean expressions combining form fields comparisons and 
Java methods

♦ XPath expression: use prefix xpath:

can use variables:

— ai: the activity instance

— pi: the process instance

— form_formid: a form of the process with the given form id

— user: current user

— configuration: the system configuration

Example: $form_f/finished = true()



© Groiss Informatics GmbH, 2010 56

3. Modeling the data

We distinguish

♦ process data: data that belong to a process instance

♦ process-relevant data: data that are used by the process but are shared 
between process instances

♦ structured data: objects with defined attributes

— in @enterprise represented as forms

♦ unstructured data: objects like word document, images

— in @enterprise: documents and notes



© Groiss Informatics GmbH, 2010 57

Forms

Use the form wizard to define formtypes

the system will generate

♦ a database table for storing the data

♦ a Java class for accessing the data

♦ a HTML mask containing the layout for data entry



© Groiss Informatics GmbH, 2010 58

Form Wizard

Id and version are used to name the 
database table and Java class:

table: form_<id>_<version>

class:

com.dec.avw.appl.<id>_<version>

Type:

- process forms for structured data

- document forms for storing 
unstructured data together with 
some metadata

- folder form: folder which can contain 
documents



© Groiss Informatics GmbH, 2010 59

Form Wizard (2)

You can load a HTML form or Xform.

Alternatively use the wizard to create one.



© Groiss Informatics GmbH, 2010 60

Form Wizard (3)

Define the database fields of the 
form.

The label is used for the headers in 
a tabular layout of the table 
data.



© Groiss Informatics GmbH, 2010 61

Form Wizard (4)

In the layout tab the layout of the mask 
can be defined.

The third tab defines which columns 
are shown in tabular layouts.



© Groiss Informatics GmbH, 2010 62

Form Wizard (5)

The next screen shows a summary 
containing the table and class 
definition.

In the table definition placeholders are 
used for some types, for example 
%OIDTYPE% for a 64bit-integer.

When the table is created this is 
translated to the SQL dialect of the 
database.



© Groiss Informatics GmbH, 2010 63

Standard Form Types

♦ Standard document

♦ Standard folder

♦ Value list and value

♦ Note

♦ News

♦ Weblink

♦ XMLForm



© Groiss Informatics GmbH, 2010 64

Formtype Properties



© Groiss Informatics GmbH, 2010 65

Formtype Properties (2)

♦ Usable in DMS

♦ Order Attribute

♦ Name Attribute

♦ Icon

♦ Event Handler

♦ Width and Height: if opened in own window



© Groiss Informatics GmbH, 2010 66

XForms

W3C Recommendation http://www.w3.org/TR/xforms/ 

♦ MVC

♦ declarative, less scripting

♦ XML standards

♦ strong typing

♦ multiple device support



© Groiss Informatics GmbH, 2010 67

XForms Example

Data in XML:
<xforms:model>

<xforms:instance>

<ecommerce xmlns="">

<method/>

<number/>

<expiry/>

</ecommerce>

</xforms:instance>

<xforms:submission action="http://example.com/submit" 

method="post" id="submit"/>

</xforms:model>

Controls in HTML Body
<select1 ref="method"><label>Select Payment Method:</label>

<item><label>Cash</label><value>cash</value></item>

<item><label>Credit</label><value>cc</value> </item></select1>

<input ref="number"> <label>Credit Card Number:</label></input>

<input ref="expiry"> <label>Expiration Date:</label> </input>

<submit submission="submit"> <label>Submit</label></submit> 



© Groiss Informatics GmbH, 2010 68

XForms Core Module

♦ model

♦ instance

♦ submission

♦ bind

<xforms:bind nodeset="/my:payment/my:expiry"

relevant="/my:payment/@method = 'cc'"

required="true()"

type="xsd:gYearMonth"/>

— readonly

— relevant

— required

— calculate

— constraint

XPath is used for expressions



© Groiss Informatics GmbH, 2010 69

XForms Model of @enterprise Forms

<xf:model>

<xf:instance>

<data xmlns="">

<form object="com.dec.avw.appl.wiztest_1:102" txid="73"task="1000074417">

<avwcreatedby>herbert groiss</avwcreatedby>

<avwcreatedat>2009-04-06T07:05:22Z</avwcreatedat>

<avwchangedby>herbert groiss</avwchangedby>

<avwchangedat>2009-04-07T08:28:22Z</avwchangedat>

<name>a</name>

<country>GB</country>

<amount>40011</amount>

</form>

<context>

<viewmode>view_text</viewmode>\

<activityinstance oid="1000042420">Prozess 158</activityinstance>\

<processinstance oid="1000042417">158</processinstance>\

<task oid="1000000185" id="businesstrip_request">Anfordern</task>\

<processdefinition oid="1000000090" 
id="hr_businesstrip">Dienstreise</processdefinition>

</context></data></xf:instance>



© Groiss Informatics GmbH, 2010 70

XForms Model of @enterprise Forms (2)

<xf:bind nodeset="/data/form/name" required="false()" type="string" />

<xf:bind nodeset="/data/form/country" required="false()" type="string" />

<xf:bind nodeset="/data/form/amount" required="false()" type="decimal" />

<xf:submission .../>

</xf:model>



© Groiss Informatics GmbH, 2010 71

XPath Examples

♦ relevant: showing a field depending on the value of another field

<xf:bind nodeset="/data/form/transpmisc" 

relevant="/data/form/transporttype = 'misc'"/>

♦ required: the field must not be empty

<xf:bind nodeset="/data/form/notapprovedreason" 

required="/data/form/approved = 'no'"/>

♦ calculate: the value of a field is the result of a computation

<xf:bind nodeset="/data/form/amount" 

calculate="/data/form/timesum * /data/form/rate"/>

♦ constraint: restrict the allowed values

<xf:bind constraint="/data/form/days > 0"/>



© Groiss Informatics GmbH, 2010 72

Form Relationships

Forms can be used to define complex relationships

♦ 1 to n relation:

— reference the key of the object for independent objects: for example store the 
reference of the customer in an order.

— Subforms: definition of dependent objects, for example items of an order or 
addresses of a company.

Use the form wizard to add subforms to a form.

— one entity is a folder, the others are contained in the folder. This can be used for 
heterogenous relations and hierarchical relations

♦ n to m relation:

— define a relation object. This can be a subform of one of the entities and contains a 
reference to the second entity.



© Groiss Informatics GmbH, 2010 73

Data Modeling Exercise

Example: CRM

♦ customers

— have addresses, contact, services

— documents related to customers: quotes, invoices, etc.

♦ articles

— referenced in quotes and invoices



© Groiss Informatics GmbH, 2010

3.

Process Execution



© Groiss Informatics GmbH, 2010 75

Login

♦ a Browser is used as client

♦ Browser features used:

— Cookies, Popup-Windows, JavaScript

— Java plugin for Process editor (developers only)

♦ Proxies between browser and @enterprise should not cache anything



© Groiss Informatics GmbH, 2010 76

The User Interface

Navigation Area:

composition of 

links for worklists, 

searching, 

document 
mangement, etc.

Toolbar: functions related to the 
items in the working area

Working Area: content depends on what is 

selected in the navigation

Standard functions: Help, Home, 

Administration, Logout

Server and user name



© Groiss Informatics GmbH, 2010 77

Navigation - Tasks

♦ Worklists

— Personal worklist

tasks for the user, sent to him directly or taken from the role worklist

— Role worklist

tasks belonging to a role (a group of users)

— Suspension list

personal tasks that have been "suspended" (see worklist functions below)

— Role suspension list

suspension list for activities from the role worklist



© Groiss Informatics GmbH, 2010 78

Navigation - Tasks / Start Process

Link "Start Process" in navigation

♦ Select a process

— double click one 

— or select one and click the start icon in the toolbar



© Groiss Informatics GmbH, 2010 79

Navigation - Tasks / Start Process (2)

Process start mask

♦ Select an org. unit

♦ optionally enter deadline and priority

♦ and process instance description

♦ Click Ok to start the process: The process appears in the woklist which is 
shown next.



© Groiss Informatics GmbH, 2010 80

Navigation - Tasks / Functions

♦ List of functions

— not applied to a specific process instance ("global functions")

♦ Click the function name to start it



© Groiss Informatics GmbH, 2010 81

Worklist – Overall Structure

♦ tabular view of activity instances, one per line

— new items are bold

♦ Columns in worklists

— selection column: Select an activity instance to apply a toolbar function later on

— Role (in role worklist): name of role the activity is assigned to

— Id: unique id of the process instance

— OU: the organizational unit where the activity belongs

— Process: The name of the process, is a link to process instance history

— Task: Name of the activity, also a link to the history

— Subject: process instance subject text



© Groiss Informatics GmbH, 2010 82

Worklist – Overall Structure (2)

♦ Columns in worklists (cont.)

— priority

— functions: selection of functions applicable to this activity instance

— received: timestamp of arrival in the worklist

— due at: the deadline for this activity



© Groiss Informatics GmbH, 2010 83

Work Item Detail

Tabs for

♦ the forms of the process instance that are visible in this step

♦ documents

♦ notes

♦ process instance history

♦ process image highlighting the current step



© Groiss Informatics GmbH, 2010 84

Work Item Detail (2)

some tabs provide specific functions via an "inner" toolbar:

♦ forms

— save

— save and complete

♦ history

— change duedate and process priority

— abort process

♦ documents

— functions for attached documents: add, delete, replace content, version, ...

♦ notes

— add and edit notes



© Groiss Informatics GmbH, 2010 85

Worklist Actions

♦ personal worklist

— Give back (n)

— Complete (n)

— Complete and Assign (1)

— Go back (1)

— Suspend (n)

— Make Version (1)

— Reassign (n)

— New Folder (0)

— Cut (n)

— Paste (0)

♦ role worklist

— Take (n)

— Suspend (n)

♦ suspension list

— recall (n)

♦ role suspension list

— recall (n)

— recall and take (n)



© Groiss Informatics GmbH, 2010 86

Take and give back

♦ Take: in the role worklist

— select the activities you want to take

— click the take icon in the toolbar

— the selected items are removed from all role-worklist

— the work item appears in the personal worklist 

— the forms of the activities are editable

♦ Give back: in the personal worklist

— the selected activites are removed from the personal worklist

— and reappear in the role-worklists of the users having the role of the work item

— the forms of the activities are not editable



© Groiss Informatics GmbH, 2010 87

Complete / Complete and Assign

♦ Complete:

— @enterprise finishs the activity and sends the process instance to the next agent(s) 
according to the process definition

♦ Finish and Select:

— after finishing and if the next steps agent is a role, the user can select one member 
of the role.



© Groiss Informatics GmbH, 2010 88

Go Back

♦ Go Back

— in the detail window you can select one of the previous activities in the process

and add a comment

— the current activity is aborted and the "old" one reactivated.

— It is not always possible to perform this action, for example it is not possible to jump 
out of a parallelism.



© Groiss Informatics GmbH, 2010 89

Suspend

♦ Suspend: Put activitie(s) into the suspension list

— specify a date or

— a number of working days

— and a comment

— After clicking Ok, the activities are removed from the worklist and appear in the 
suspension list.



© Groiss Informatics GmbH, 2010 90

Recall / Recall and Take

♦ Recall

— Items in the suspension list return to the worklist automatically at the specified time 

— With the function recall it is possible to return them at any time

♦ Recall and take

— Function in the role-suspension list

— combines the actions recall and take



© Groiss Informatics GmbH, 2010 91

Make Version

♦ The function makes a new history entry

— a comment can be entered

— the activity remains in the worklist

— a version of every form and document of the process is created.



© Groiss Informatics GmbH, 2010 92

Reassign

Send the activity to another agent (user or role)

♦ Select the agent

♦ write a comment

♦ After clicking "Ok" the activity is transfered to the specified agent



© Groiss Informatics GmbH, 2010 93

Folder operations

The worklist can be organized in folders

♦ Use function "New folder" to create a folder

♦ select activities and click "Cut"

♦ open the destination folder and click "Paste"



© Groiss Informatics GmbH, 2010 94

Further Functions in the Worklist

Not configured in standard worklist

♦ Add parfor steps:

for steps parallel to a parfor, start new parfor branch after a subform has been added

♦ Add process relation

add a relation between processes

♦ Copy to

send a read-only copy to another agent

♦ Into Clipboard

copy the process into the clipboard, you can then paste the process in a DMS folder, 
this creates a link to the process

♦ Process Note

add a note to the process

♦ Set duedate

set process and task duedate

♦ Set read/Unread

toggle the read status of the activity



© Groiss Informatics GmbH, 2010 95

GUI Customization

Change the appearance of the end-user client

♦ the links in the navigation area

♦ the columns in the worklist

♦ the available functions

♦ the labels and images used in @enterprise

♦ the colors and fonts



© Groiss Informatics GmbH, 2010 96

GUI Configuration

Defines the layout of the client in an xml file

♦ two standard definitions:
— standard is the default client configuration

— standard_mobile is the default for mobile devices

♦ define your own 

— create a new entry in the gui configuration table

Application x -> GUI Configuration -> New

— or copy the standard configuration

Application Default -> GUI Configuration -> select standard, click copy in toolbar

change id, name and application and click Ok.



© Groiss Informatics GmbH, 2010 97

GUI Configuration (2)

Use a configuration:

♦ Edit the url, add the id parameter

http://host:8000/wf/servlet.method/com.dec.avw.html.HTMLGui.showFrames?id=confid

♦ or define Assignments

Assign an agent (user, role or role in org.unit) to a configuration

More than one assignment can exist, the one with the highest priority is selected.

Example:

A user with roles manager and all will see the extended configuration as default when 
logging in

20managerextended

10allstandard

priorityrolegui-conf



© Groiss Informatics GmbH, 2010 98

Gui Configuration – Node Types

♦ Text: a text

♦ Link: a hyperlink

subclasses of link:

♦ Start process: a link for starting processes

♦ Function list: the list of functions

♦ Function: call a function

♦ Report: execute a report

♦ Worklist: a list of activities

— User Folder

♦ DMS: link to the document hierarchy

♦ Table: table of objects (usually forms)



© Groiss Informatics GmbH, 2010 99

Gui Configuration – Node Attributes

all Nodes

♦ Label: how it appears in the tree

— either a text or

— if XML is checked, a correct HTML

— check localize if the label string should be translated

♦ Clickable: the subtree where this node is the root can be expanded by mouse 
clicks

♦ Refresh button: show a tree-refresh button next to the link

♦ Access: restrict access to this node

— if the list is empty, the link is visible for everybody.

— otherwise the link is visible for everybody that has at least one of the roles in the list.

♦ Id: id unique in the configuration

♦ CSS class: for rendering the text or link



© Groiss Informatics GmbH, 2010 100

Gui Configuration – Node Attributes (2)

Links:

♦ default: The linked page is shown in the working frame when the user logs in.

♦ target window: name of link target frame or window, working frame (right) is 
used by default

♦ URI: the href attribute of the link

Process Start

♦ application: restrict processes to the selected applications

♦ worklist-id: id of worklist shown after process start

Function List:

♦ application: restrict processes to the selected applications

Function and Report:

♦ the function resp. the report



© Groiss Informatics GmbH, 2010 101

Gui Configuration – Node Attributes (3)

Worklist:

♦ worklist adapter: Java class for customizing the worklist (see below)

♦ type: types of work items shown in this list

♦ columns (see below)

♦ functions (see below)

DMS

♦ columns

♦ functions

♦ forms: white or black list of allowed/disallowed form types

Table

♦ classname: name of a form class

♦ columns

♦ functions

♦ Detail Window Properties: properties for the window.open call



© Groiss Informatics GmbH, 2010 102

Gui Configuration – Columns

Worklist, DMS and Table:

♦ Columns: List of table columns

— Id: the unique id for the column, if @enterprise recognizes the id, the column is filled 
with the appropriate values, otherwise tte table handler (see programming part) 
must create the value

— Name: the label in the header

— if an icon is specified, the icon is used for the header and the name is the tooltip

define the url portion after the context root, for example images/view.gif

— visible: if not checked the column is not visible but can be added during run-time 
using the column picker



© Groiss Informatics GmbH, 2010 103

Gui Configuration – Columns for Worklist Node

Ids for worklist columns:

♦ id: Process-Id

♦ dept: org.unit

♦ process: name of process definiton, link to history

♦ task: task name, link to history

♦ role: agent

♦ subject: process subject

♦ documents: forms and documents

♦ functions: link to the function sub-menu

♦ received: received timestamp

♦ finish_till: due date

♦ put_back_until: in the suspension list until...

♦ currentEditor: the current editor in autotake mode

♦ priority: process priority

♦ origin: symbolizes, if user sees the instance via substitution or not

♦ task-form0: task name with a link to the first form

♦ process-form0: process name with a link to the first form



© Groiss Informatics GmbH, 2010 104

Gui Configuration – Columns for Worklist Node (2)

Form field columns: allows to display different form values depending on process 
definition

Syntax for the id field:

id ":" process-definition-id ":" process-version ":"

form-id "." columnname

{ ";" process-definition-id ":" process-version ":"

form-id "." columnname }

Example:

bp:hr_businesstrip:1:form_businesstrip.destination



© Groiss Informatics GmbH, 2010 105

Gui Configuration – Columns for DMS and Table Nodes

Ids of columns for DMS:

♦ name: document name and link to document content

♦ form: link for editing the form

♦ type: form type

♦ size: file size

♦ changed: timestamp of last change

♦ status: locked or not

♦ info: link to document info

♦ versions: link to document version

♦ attachedNotes: link to attached notes

Columns for Tables:

♦ id is name of a form field



© Groiss Informatics GmbH, 2010 106

Gui Configuration – Functions

Possibility 1: refer a function

Possibility 2: define an action:

Syntax:

[ configuration_id "." ] action_id

If configuration id is omitted "admin." is assumed

There is no GUI for defining actions, you must edit the xml file:
<Actions>

<Node id="billPaid" name="@@@paid@@">

<Attrib key="href" value="com.groiss.demo.dms.DMSDemo.billPaid" />

<Attrib key="iconpath" value="../images/paid.gif"/>

<Attrib key="apply" value="MULTI"/>

</Node>

</Actions>

Attributes

♦ id: for referencing it

♦ name and optional iconpath for displaying the link

♦ href: the function

♦ apply: MULTI for multi selection, SINGLE for single selection, NONE for functions 
without a selection



© Groiss Informatics GmbH, 2010 107

Internationalization

Define a ResourceBundle for the strings and error messages of the application

Configure it: System administration -> Applications -> Tab Properties

Use it:

♦ process names, form names, etc: use the resource key

♦ Resources loaded by FileServlet (images, scripts, HTML Pages):

- loaded from alllangs directory in classpath

use placeholders in text: @@@key@@

- loaded from language specific directory

♦ Resources loaded by @enterprise: Forms, GUI-Configuration

placeholders in text: @@@key@@

♦ Java Code

- get the application resource
ApplicationAdapter applclass =

(ApplicationAdapter)ServiceLocator.getOrgData().getById(

Application.class,"staffprocs"). getApplicationClass();

Resource res = applclass.getResource();

- translate keys, load HTMLPage
res.getString("key");

HTMLPage p = new HTMLPage("hrmasks/info_vacation_added.html", res);



© Groiss Informatics GmbH, 2010 108

@enterprise Resource Bundles

♦ Resource bundle com.dec.avw.resource.Strings: labels and messages

♦ Resource bundle com.dec.avw.resource.Errors: error messages

♦ language specific files for English, French, German, Italian

English is default

Overwrite translations

♦ use country specific files

for example for USA:

property file Strings_en_US.properties

contains the line:

go_back=Go to previous step

put the files into the directory classes/com/dec/avw/resource



© Groiss Informatics GmbH, 2010 109

Changing Style and Logos

♦ Changing the logos
— create a directory lang/default/images in the classes directory of 

@enterprise

— a file named enterprise.gif in this folder will be used in the login page

— a file enterprise_medium.gif appears in the left upper corner in the client gui.

♦ Style
— the style file used in @enterprise is avwbasic.css in the ep.jar file.

— Colors and font-sizes are defined in the file style.prop

You can overwrite one of these files by putting customized files in you classes
directory.

♦ Icons

— Icons are referenced with the path /wf/images/subdir/filename

— They reside in the classpath under the path lang/default/images (and lang/fa/images 
for some right-to-left icons)

— overwrite the default by using a more specific directory, for example lang/en, 
lang/fa_IR



© Groiss Informatics GmbH, 2010

4.

Reporting



© Groiss Informatics GmbH, 2010 111

Roles

♦ Creator of the report

— knows data structures and system

— creates and saves reports with paramters

— assigns execute right to selected roles or users

— configures link to report in GUI

– link in navigation

– dashboard window

– link in reports list

♦ Report executer

— dont needs to know the schema

— enters report parameters



© Groiss Informatics GmbH, 2010 112

Search Mask

A

B

C C

C

D

B



© Groiss Informatics GmbH, 2010 113

Search Mask

♦ Tables and attributes that can be used in reports (A)

— in table columns and conditions

— options depend on attribute type

♦ Area B shows the current report

— left the table columns, right the conditions

♦ Display options (C)

— attributes and conditions can be reordered, edited and deleted

— conditions elements can be composed to boolean expressions

♦ Toolbar (D)

— export options, save, ..



© Groiss Informatics GmbH, 2010 114

Query Result

D



© Groiss Informatics GmbH, 2010 115

Toolbar

Execute Report

View query XML (in result mask the SQL statement is shown too)

Edit report

Export options 

Open saved report

New report

Refresh result

Save report

View/Hide header



© Groiss Informatics GmbH, 2010 116

Entities and Attributes

♦ Process Instance (e.g.: Id, current agent, started, finished, duration...)

♦ Activity Instance (e.g.: Parent-Id,..., duration, agent, time in suspension 

list)

♦ Master data (Task, Process definition, Role, User, Application)

♦ Forms (and  Subforms)

— form fields

— system data (created at, created by, changed at, changed by)

— link to form



© Groiss Informatics GmbH, 2010 117

Defining a table column

♦ Aggregation 

— count, minimum, maximum, average, sum

♦ aggregation of processes and tasks independent of version

♦ groupins is done automatically if one attribute is aggregated

— equal lines are aggregated to one group (= line in result)

♦ date format settings can be used to group date values

- for example: date format month causes grouping per month 
(number of processes x per month)



© Groiss Informatics GmbH, 2010 118

Defining a condition

♦ Number 

— number comparators 

(<, <=, =, <>, >=, >)

♦ String 

— exact compare or compare with LIKE, 

— ignore case or not

♦ Master data objects

— select from list and compare with  IN or NOT IN

— agent: current agent can be used in query

— org-units: it is possible to include sub org.units

♦ Date

— fixed data (for example started < 2. 2. 2008)

— relative to execution date (for example started in the last month)

♦ Forms 

— querying by filling the form



© Groiss Informatics GmbH, 2010 119

Conditions with parameters

♦ implicit parameters

— paramters are taken from context

— not entered by user

— current date

— current user

♦ explicit parameters

— specify the condition: click the checkbox "parameter at execution" 

instead of providing a value

— when the report is executed the user is asked for the value

— the operator can also be set

— it is possible to specify no value, then this part of the condition is set to 

true (replaced with the sql expression 1=1)

— a description can be defined that is visible in the parameter mask



© Groiss Informatics GmbH, 2010 120

Conditions with parameters

♦ Example: Report with parameters at execution shows the following
mask for entering

— Process instance Id (String)

— Process instance process type (master data object)

— Process instance agent (master data object)



© Groiss Informatics GmbH, 2010 121

Joins

♦ Attributes from different entities must be joined

♦ the schema description contains known join pathes

♦ the user can selected on of the possible paths or define a new one

♦ Example: add an attribute of the entity user to a query that contains already the 
entity process instance (pi):



© Groiss Informatics GmbH, 2010 122

Exporter

♦ HTML - Exporter

— shows result in browser as HTML table

— HTML Page can be configured (must contain placeholders)

♦ Delimeter – Separated – Value – Exporter

— delimeter can be configured

♦ Excel - Exporter

— creates binary excel format 

— correct formating of types (date,...)

♦ XML - Exporter

— creates XML

— configure a stylesheet

♦ Charts

— create chart images

— Bar, Bar3D, PieChart, MultiplePie Chart, PieChart3D



© Groiss Informatics GmbH, 2010 123

Extensibility / Configuration

♦ Edit the XML configuration

— change the names of entities or attributes

— add joins

— extend/restrict the schema

♦ Customize implementation of:

— exporter

— chart types

— time model

— data types

— aggregations



© Groiss Informatics GmbH, 2010

6. 

Implementing a Workflow 
Application



© Groiss Informatics GmbH, 2010 125

Application Integration

Business Process

... ...

Sales

... ...

Production

... ...

Inventory ...

Management

Login/SSO

Master data: Users, Roles, Org.units

Reports

using results in other
systems

Notification:
Email,SMS status change

(SMS)

import data of
predecessing
system

Access to databases
(Configuration, Inventory)

process is started 
by another system

Workflow management is application integration



© Groiss Informatics GmbH, 2010 126

Elements of a workflow application

♦ flow of control

— conditions in ifs, loops

— postconditions of steps

— other hooks for process state change

♦ user interface

— customize @enterprise user interface: tables, navigation,..

— support data entry in forms

— create own pages

♦ communication with other systems

— receiving and sending mails

— user authorization

— synchronization with directory service

— calling and providing Web-services



© Groiss Informatics GmbH, 2010 127

1. Setting up a Project

Example using Eclipse

♦ Create a Java project

♦ define a project name

♦ select "Create project from 
existing source"



© Groiss Informatics GmbH, 2010 128

Setting up a Project (2)

♦ add a java folder for the sources

♦ check "Allow output folders for 
source folders"

♦ set default output folder to

projectname/classes



© Groiss Informatics GmbH, 2010 129

Setting up a Project (3)

♦ add the libraries from the 
@enterprise lib directory

♦ click Finish



© Groiss Informatics GmbH, 2010 130

Setting up a Project (4)

♦ Create a Java class

♦ in directory java

♦ package com.groiss.demo

♦ class name Test

♦ click Finish

♦ Add the method

public void showDate(HttpServletRequest req, HttpServletResponse res)

throws IOException {

res.getWriter().println("<html>"+ new Date()+"</html>");

}



© Groiss Informatics GmbH, 2010 131

Setting up a Project (5)

in @enterprise:

♦ add an application 

— with the eclipse project directory as application directory

♦ restart

♦ Test the method

— http://localhost:8000/wf/servlet.method/com.groiss.demo.Test.showDate



© Groiss Informatics GmbH, 2010 132

2. The HTTP Server

♦ FileServlet is the default servlet in the @enterprise context root (normally /wf)

requested resources are searched for in the elements of the classpath

http://host:port/wf/somedir/somefile

Example: locale is de_AT_gi

resources are searched in the following paths:

1. lang/de_AT_gi/somedir/somefile

2. lang/de_AT/somedir/somefile

3. lang/de/somedir/somefile

4. lang/default/somedir/somefile

5. alllangs/somedir/somefile

In case 5 placeholders in the fike with the syntax @@@key@@ are translated to the 
strings of the current locale.

Don't place images in alllangs!



© Groiss Informatics GmbH, 2010 133

Dispatcher

♦ requests to http://host:port/wf/servlet.method/classname.methodname

are handled by the Dispatcher servlet

♦ the path is interpreted as Java method:

full qualified class name "." methodname

♦ method must have one of the following signatures

public void method(HttpServletRequest req, 

HttpServletResponse res) throws Exception;

public Page method(HttpServletRequest req) throws Exception;



© Groiss Informatics GmbH, 2010 134

How the Dispatcher works

♦ parses the URL-path and loads the class

♦ create a new instance of the class using the default constructor

♦ checks whether the class has a method with a correct signature

♦ sets the environment
— if a session exists (user logged in), the user is set in the ThreadContext

— the locale is set

— a transaction is started

♦ the method is called

♦ If an error occured, it is written into the log file and the error page is sent to the 
browser and the transaction is completed with a rollback

♦ else the transaction is completed with commit

♦ and the resulting (HTML-)Page is sent to the browser.



© Groiss Informatics GmbH, 2010 135

ThreadContext

♦ the Dispatcher sets context information, 
com.groiss.util.ThreadContext can be used to access them:

♦ current User

static Principal getThreadPrincipal()

♦ language of this session

static Locale getThreadLocale()

♦ current request

static HttpServletRequest getThreadRequest()

♦ set and get further context information

static void setAttribute(String key, Object o)

static Object getAttribute(String key)



© Groiss Informatics GmbH, 2010 136

HTMLPage

Write pages to the browser using a template, patterns starting and ending with % 
can be replaced.

Example:

♦ Mask:
<html>

Date in language %language% in %format%:<br>%date%

</html>

♦ Java-Code:
public Page showNLSDate2(HttpServletRequest req) throws Exception {

String language = req.getParameter("language");

String format = req.getParameter("format");

Locale l = new Locale(language,language);

HTMLPage p = new HTMLPage("com/groiss/demo/Date.html");

SimpleDateFormat df = new SimpleDateFormat(

("long".equals(format) ? "EEEE, MMMM dd, yyyy" :

"EEE, MMM dd, yyyy"),l);

p.substitute("format", format );

p.substitute("language", language );

p.substitute("date", df.format(new Date()));

return p;

}



© Groiss Informatics GmbH, 2010 137

3. API Callbacks in Workflow Execution

Form

start process

preprocessing

FormHandler onShow

onUpdate
postcondition

(7) Function

system step



© Groiss Informatics GmbH, 2010 138

API Callbacks in Workflow Execution (2)

♦ preprocessing, system steps

♦ conditions, postcondition

♦ toolbar functions

♦ application behaviour

♦ batch steps

♦ archiving



© Groiss Informatics GmbH, 2010 139

The Workflow Engine

interprets the process graph

♦ Nodes (Steps):

— task-step

— system-step

— if: if, while, exit when

— nop: begin, end, par

— andjoin

— orjoin

— process

♦ Edges (Flows):

— normal (black)

— then (green): condition in source node is true

— else (red, small box at start): condition is false



© Groiss Informatics GmbH, 2010 140

The Workflow Engine (2)

♦ startProcess

— creates a ProcessInstance object

— call step.start with the first step in the process definiton

♦ Step.start

— case

– task-step: execute preprocessing, put in worklist of agent

– system-step: execute method and call finish

– if: execute condition and call finish

– nop: call finish

– process: call startProcess

– andjoin: if all predesessors are finished call finish

– orjoin: if first call finish, abort other branches

– ...

♦ ActivityInstance.finish

— check postcondition

— find sucessors:

– if found, call step.start on them

– else finish parent



© Groiss Informatics GmbH, 2010 141

Process Instance States

aborted (4)

finished (2)

started (0) finish the last step

abort

reactivate

reactivate

Start process



© Groiss Informatics GmbH, 2010 142

Activity Instance States



© Groiss Informatics GmbH, 2010 143

Workflow Engine API

♦ package com.groiss.wf

♦ main interface is WfEngine

♦ use ServiceLocator to get an instance

— getWfEngine()

— getOrgData()

— getStore()

— getDMS()

— getAdmin()



© Groiss Informatics GmbH, 2010 144

WfEngine

♦ find processes
— List getStartableProcesses(Application appl)

— List listProcessDefinitions(Application appl)

— ProcessDefinition getProcessDefinition(String id, int version)

— ProcessDefinition getProcessDefinition(String id)

♦ start a process
— ProcessInstance startProcess(ProcessDefinition p, User u, 

OrgUnit d, Date duedate, String id)

— ProcessInstance startProcess(ProcessDefinition p, User u, 
OrgUnit d, Date duedate, String id, DMSForm f) 

♦ get the worklist
— List getWorklist(Application a, boolean withRepr)

— List getRoleWorklist(Application a)

— List getSuspensionList(Application a)

— List getRoleSuspensionList(Application a)

♦ get a process instance
— ProcessInstance getProcess(String id) 

— ProcessInstance getProcess(long oid)

— ProcessInstance getProcess(DMSForm f)

— List getProcesses(String condition)



© Groiss Informatics GmbH, 2010 145

WfEngine (2)

♦ get an activity instance
— ActivityInstance getActivityInstance(long oid)

— List getActivityInstances(ProcessInstance process)

— List getActivities(String condition)

— List getActiveTasks(ProcessInstance process)

— List getActiveTasks(ProcessInstance process, User u)

inside preprocessing, postcondition, condition, system step:

— ActivityInstance getContext()



© Groiss Informatics GmbH, 2010 146

WfEngine (3)

♦ manipulating activity instances
— ActivityInstance take(ActivityInstance ai)

— ActivityInstance untake(ActivityInstance ai)

— void finish(ActivityInstance ai)

— void seeLater(ActivityInstance ai, Date d)

— void seeAgain(ActivityInstance ai)

— ActivityInstance goBack(ActivityInstance ai, ActivityInstance 

ai2, String comment)

— void gotoTask(ProcessInstance process, String taskid, Agent 

ag, String comment)

— ActivityInstance copyTo(ActivityInstance ai, User u)

— void setAgent(ActivityInstance ai, Agent a)

— void setOrgUnit(ActivityInstance ai, OrgUnit d)

— void setStepAgent(ActivityInstance ai, Agent u)

— void setDescription(ActivityInstance ai, String descr)

— void setDuedate(ActivityInstance ai, Date d)



© Groiss Informatics GmbH, 2010 147

WfEngine (4)

♦ manipulating process  instances
— void abort(ProcessInstance process)

— void reactivate(ProcessInstance process)

— void archive(ProcessInstance process)

— void setSubject(ProcessInstance process)

— void setSubjectToString(ProcessInstance process, String str)



© Groiss Informatics GmbH, 2010 148

WfEngine (5)

♦ documents and forms
— DMSForm getForm(ProcessInstance pi, String id)

— void updateForm(DMSForm f)

— List getForms(ProcessInstance pi)

— List getNotes(ProcessInstance pi)

— void addDocument(ProcessInstance pi, DocForm f)

— List getDocuments(ProcessInstance pi)



© Groiss Informatics GmbH, 2010 149

Preprocessing, System Steps

Description: perform actions in process context

Definition: Method called via reflection, 0 to n String arguments

public void method(String arg1, .., String argn) { ...}

Declaration: System steps in process definition, Preprocessing in Task definition

In Product: com.groiss.wf.SystemStep contains some useful methods

Demos: com.groiss.demo.SystemSteps



© Groiss Informatics GmbH, 2010 150

Preprocessing, System Steps

Example: Set the activity duedate from a form field

public void setDuedate() {

WfEngine e = ServiceLocator.getWfEngine();

ActivityInstance ai = e.getContext();

ActivityInstance pi = ai.getParent();

DMSForm f = e.getForm((ProcessInstance)pi, "item");

Date d = f.getField("duedate");

if (d != null)

e.setDuedate(ai, d);

}

Example: Set a form field to the current agent

public void setFieldToAgent(String formfield)  {

WfEngine e = ServiceLocator.getWfEngine();

ActivityInstance ai = e.getContext();

ActivityInstance pi = ai.getParent();

DMSForm f = e.getForm((ProcessInstance)pi,"item");

f.setField("agent", ThreadContext.getThreadPrincipal());

e.updateForm(f);

}



© Groiss Informatics GmbH, 2010 151

Conditions in a process, Postconditions

Description: With a postcondition you can perform actions after the user has 
finished the task. Throwing an exception or returning false prevents the 
completion of the task.

Conditions in process definitions appear in ifs, loops and choices

Definition: Method called via reflection, 0 to n String arguments, returns boolean

public boolean method(String arg1, .., String argn) { ...}

Declaration : in process definition, postcondition in Task definition

In Product: com.groiss.wf.SystemAction contains some useful methods

Demos: com.groiss.demo.SystemSteps



© Groiss Informatics GmbH, 2010 152

Conditions - Example

Example: postcondition for order: at least one suborder

public boolean hasSuborder() {

WfEngine e = ServiceLocator.getWfEngine();

ActivityInstance ai = e.getContext();

DMSForm f = e.getForm(ai.getProcessInstance(), "orderform");

return ServiceLocator.getDMS().countSubforms(f, 1) > 0;

}

Alternatively throw an exception:

if (ServiceLocator.getDMS().countSubforms(f, 1) == 0)

throw new ApplicationException("At least one suborder!");



© Groiss Informatics GmbH, 2010 153

Toolbar Functions

Description: function attached to a form, a task or a process

Definition: Method called via reflection, two possible signatures:

public void method(HttpServletRequest req,

HttpServletResponse res) { ...}

public Page method(HttpServletRequest req) { ...}

the parameter functionTask contains the oid of the current activity instance

Declaration:

Define the function: System Administration -> Your application -> Functions

appears in: worklist, history, function list

attach to process or task (or all tasks)

In Product: several functions in the default application

Demos: com.groiss.demo.DemoFunctions



© Groiss Informatics GmbH, 2010 154

Toolbar Functions - Example

Example: approve function, set two fields in a form

public Page approve(HttpServletRequest req) throws Exception {

User u = (User)ThreadContext.getThreadPrincipal();

WfEngine e = ServiceLocator.getWfEngine();

ActivityInstance ai = 

e.getActivityInstance(Long.parseLong(req.getParameter("functionTask")));

DMSForm f = e.getForms(ai.getProcessInstance()).get(0);

f.setField("approvedBy", u);

f.setField("approvedDate", new Date());

e.updateForm(f);

return new ActionPage("window.close()");

}



© Groiss Informatics GmbH, 2010 155

Application Adapter

Description: customization of various application properties

Definition:
public interface ApplicationAdapter {
public String getNewProcessId(ProcessInstance pi);
public void onSeeLater(ActivityInstance ai);
public void onSeeAgain(ActivityInstance ai);
public void onChangeAgent(ActivityInstance oldAi, ActivityInstance newAi);
public void onAbort(ProcessInstance pi);
public void onReactivate(ProcessInstance pi);
public void onAddDocument(ProcessInstance pi, DMSFolder f, DMSObject o);
public void onRemoveDocument(ProcessInstance pi, DMSFolder f, DMSObject o);
public void notifyUser(User u, ActivityInstance ai);
public List<Element> getUserProperties(User u);
public Right getFinishRight(ActivityInstance ai);
public List<Right> getFinishRights();
public com.groiss.wf.distri.Packer getPacker();
public void modifyDetailLinks(KeyedList<String,Link> links, StringBuilder 
title, ProcessInstance pi, ActivityInstance ai);

public String getVersion();
public String upgrade(Application appl) throws Exception ;
}

Adapter Class: DefaultApplicationAdapter

Declaration : Detail mask of application

Demos: com.groiss.demo.DemoApplication



© Groiss Informatics GmbH, 2010 156

Application Adapter - Example

Example: upgrade method and customized notification

public String getVersion() {

return "1.0";

}

public String upgrade(Application appl) throws Exception {

if ("1.0".equals(appl.getVersion()))

return "";

return ServiceLocator.getAdmin().importXML("DemoAppl.xml");

}

public void notifyUser(User u, ActivityInstance ai)  {

String host = Server.getThis().getHostname();

int port = Server.getThis().getHttpPort();

String body = "new task for you, <a href=\"http://" + host + ":" + port +

Dispatcher.getContextPath() +

"/servlet.method/com.dec.avw.html.HTMLGui.showFrames\">click here</a>";

Settings.log("Sending notification email to "+ u +" ("+u.getEmail()+")",2);

MailSender.send(

u.getEmail(),

null, null, // take sender and smtp host from defaults

StringUtil.noNull(ai.getProcessInstance().getSubject()),

body, "text/html; charset=utf8");

}



© Groiss Informatics GmbH, 2010 157

Batch Adapter

Description: Execution of a batch step

Definition:
public interface BatchAdapter {

public void startup() throws Exception;

public void afterCreation(BatchJob job) throws Exception;

public void doStart(BatchJob job) throws Exception;

public void beforeCompletion(BatchJob job) throws Exception;

public void afterCompletion(BatchJob job, boolean commit)

throws Exception;

public void doCompensate(BatchJob job)  throws Exception;

}

Adapter Class: NullAdapter
Declaration: class name in batch step

Demos: DemoBatchAdpater



© Groiss Informatics GmbH, 2010 158

Batch Adapter - Example

Example: write info to a file, finished by url,

public void startup()  {

File mainDir = new File(getMainDirName());

mainDir.mkdir();

}

public void afterCreation(BatchJob job)  {

File procDir = new File(getMainDirName(),getProcDirName(job.getContext()));

procDir.mkdir();

}

public void doStart(BatchJob job)  {

try {

String procId = job.getContext().getProcessInstance().getId();

File procDir=new File(getMainDirName(),getProcDirName(job.getContext()));

File outFile = new File(procDir,procId+".out");

PrintWriter  out = new PrintWriter(new FileWriter(outFile));

out.println("Output File "+ new java.util.Date());

DMSForm f =

ServiceLocator.getWfEngine().getForm(

job.getContext().getProcessInstance(),"f");

out.println(f.getField("description"));

out.println(

"com.groiss.demo.DemoBatchAdapter.notifyFinish?bjOid="+job.getOid());

out.close();

} catch (Exception ex) {

throw new ApplicationException("doStart",ex);

}

}



© Groiss Informatics GmbH, 2010 159

Batch Adapter – Example (2)

public void notifyFinish(HttpServletRequest req, HttpServletResponse res)  

throws Exception {

long bjOid = Long.parseLong(req.getParameter("bjOid"));

BatchJob bj = ServiceLocator.getStore().get(BatchJob.class,bjOid);

BatchManager.markJobFinished(bj);

res.getWriter().println("Done");

}

public void beforeCompletion(BatchJob job)  {

try {

String procId = job.getContext().getProcessInstance().getId();

File procDir = new File(

getMainDirName(),getProcDirName(job.getContext()));

File inFile = new File(procDir,procId+".in");

BufferedReader in = new BufferedReader(new FileReader(inFile));

String line = in.readLine();

in.close();

DMSForm f = ServiceLocator.getWfEngine().getForm(

job.getContext().getProcessInstance(),"f");

f.setField("description",line);

ServiceLocator.getStore().update(f);

} catch (Exception ex) {

throw new ApplicationException("beforeCompletion",ex);

}

}



© Groiss Informatics GmbH, 2010 160

Archiving

Description: when process instances are removed from the database, move 
some information to another system.

Definition

package com.groiss.wf;

public interface ProcessArchiver {

public void archive(java.util.List<ProcessInstance> 

processes, User u);

}

Declaration : Configuration -> Classes -> Archiving class

Demos: XMLArchiver, FileArchiver



© Groiss Informatics GmbH, 2010 161

Archiving Example

Example: Use the XML Export for archiving

public void archive(List<ProcessInstance> processes, User u)throws Exception{

FileOutputStream os = new FileOutputStream("archive.xml");

try {

ServiceLocator.getAdmin().exportXML(processes, "procinst_cluster",

"export for archive", null, os,

Settings.getLogger().getWriter());

} finally {

os.close();

}

}



© Groiss Informatics GmbH, 2010 162

4. API for GUI Customizing

♦ Worklist layout

♦ Forms

♦ Form tables

♦ Error messages



© Groiss Informatics GmbH, 2010 163

Worklist Layout

Description: Implement this interface to change the layout of the worklist, if XML 
configuration is not powerful enough: showing customized information in the 
columns, modify the list contents, etc.

The methods are called in the given order.

Definition:

package com.groiss.wf.html;

public interface Worklist {

public void init(HttpServletRequest req, WorklistDescription wl, User u);

public HTMLPage getHTMLPage();

public String getTitle();

public List<ActivityInstance> getList();

public void getAdditionalData(List<ActivityInstance> instances,

List<String> splitResult);

public void modifyColumns(List<ColumnDescription> colDescs);

public void modifyTableLine(ActivityInstance ai,

KeyedList<String,Object> line);

public String lineStyle(ActivityInstance ai, String style);

public List<Pair<String,String>> listFilters(List<ActivityInstance> lines);

}

Adapter Class: WorklistAdapter

Declaration: in Gui-Konfiguration: worklist adapter of worklist node



© Groiss Informatics GmbH, 2010 164

Worklist Layout (2)

Demos: ColoredWorklist, FilterWorklist, AdditionalProcDataWL

Example: Show the subject in a color depending on process priority

public class ColoredWorklist extends WorklistAdapter {

WfEngine e = ServiceLocator.getWfEngine();

public void modifyTableLine(ActivityInstance ai,

KeyedList<String,Object> line) {

ProcessInstance pi = ai.getProcessInstance();

int prio = pi.getPriority();

String color = prio > 50 ? "red" : (prio >30 ? "orange" : null);

if (color != null) {

line.set("subject",

new Element("span").setAttribute("style","color:"+color).

setText(pi.getSubject()));

}

}

}

Element: jdom Element from jdom package: www.jdom.org



© Groiss Informatics GmbH, 2010 165

Form Handler

Description: change the form, hooks for insert, update, delete

Definition

package com.groiss.dms;

public interface XHTMLFormEventHandler {

public void onInsert(DMSForm f) throws Exception;

public void onUpdate(DMSForm f) throws Exception;

public void onDelete(DMSForm f) throws Exception;

public void beforeShow(DMSForm f, FormContext ctx, HttpServletRequest req)

throws Exception;

public void onShow(DMSForm f, FormContext ctx, XHTMLPage p,

HttpServletRequest req) throws Exception;

public String getName(DMSForm f) throws Exception;

}

Adapter Class: XHTMLFormEventAdapter

Declaration: System administration -> Forms, Attribute Event-Handler

Demos: DemoFormEventHandler



© Groiss Informatics GmbH, 2010 166

Form Handler - Example

Example: Set the duedate field of the main form to the max of the subform
duedates.

public class DemoFormEventHandler extends XHTMLFormEventAdapter {

public void onUpdate(DMSForm f) {

DMS dms = ServiceLocator.getDMS();

DMSForm main = dms.getMainForm(f);

Date subdue = f.getField("duedate");

Date superdue = main.getField("duedate");

if (subdue != null && (superdue == null ||

subdue.after(superdue))) {

main.setField("duedate", subdue);

dms.update(main);

}

}

public void onInsert(DMSForm f) {

onUpdate(f);

}

}



© Groiss Informatics GmbH, 2010 167

Form Tables

Description: customize layout of form tables

Definition:

package com.groiss.dms;
public interface FormTableHandler {

public void init(HttpServletRequest req, User u);
public List<DMSForm> getList(List<DMSForm> list);
public void modifyColumns(List<ColumnDescription> colDescs);
public void modifyTableLine(DMSForm f,
KeyedList<String,Object> line);

public String lineStyle(DMSForm f, String style);
}

Adapter Class: FormTableAdapter

Declaration: 

♦ subform tables: in form

<tablefield class="com.dec.avw.appl.Change_2" id="2"

tablehandler="com.groiss.itsm.ReleaseChangeTableHandler"/>

♦ form tables configured in XML

Demos: DemoFormTableHandler



© Groiss Informatics GmbH, 2010 168

Form Tables (2)

Example: Add a progress column and an extra line for description

public class DemoFormTableHandler extends FormTableAdapter {

public void modifyColumns(List<ColumnDescription> cols) {

cols.add(new ColumnDescription("progress","Progress"));

}

public void modifyTableLine(DMSForm f, KeyedList<String, Object> line) {

line.add(ExtraLine.INSTANCE);

line.add("");

line.add(new CellValue(f.getField("description"),

Arrays.asList(new Pair<String,String>("colspan","4"))));

int progress = (Integer)f.getField("progress");

line.set("progress", 

new Image(null,"../images/chart/0.gif",progress,10,""+progress+"%"));

}

}



© Groiss Informatics GmbH, 2010 169

Formatting Error Messages

Description: change format of error messages

Definition:

public interface ErrorFormatter {

public Page format(java.lang.Throwable e);

}

Declaration:

♦ ApplicationException has a method setErrorFormatter

♦ for the default behaviour: Configuration -> Classes -> Error-Formatter

In Product: com.groiss.gui.DefaultErrorFormatter

Demos: DemoErrorFormatter



© Groiss Informatics GmbH, 2010 170

ErrorFormatter - Example

Example:

public class DemoErrorFormatter implements ErrorFormatter {

public Page format(Throwable e) {

HTMLPage p = new HTMLPage();

p.setPage("<html> Oops, en error occured, this is the message:" +

e.getMessage() + "<html>");

return p;

}

public Page test(HttpServletRequest req) {

int i = 0/0;

return null;

}

}



© Groiss Informatics GmbH, 2010 171

5. Communication

♦ Web Services

♦ Authorization

♦ File import

♦ Handle incoming mails

♦ LDAP



© Groiss Informatics GmbH, 2010 172

Web Services

♦ @enterpise uses the Apache Axis2 framework for calling and providing 
webservices

♦ @enterprise is WS-Security enabled (e.g. SecureTokenService for repeated 
conversations)



© Groiss Informatics GmbH, 2010 173

Call a Web Service

Method 1 - using stubs, created by the Axis2 Code Generator

see the Axis2 website for further information on how to use the Code Generator

Code-Example:
XEOXKelagWSStub client = new

XEOXKelagWSStub(com.groiss.ws.client.ConfigurationContextFactory.

getClientConfigurationContext(),"http://..."); //create the stub

SendMessageDocument reqdoc = SendMessageDocument.Factory.newInstance();

SendMessage req = reqdoc.addNewSendMessage(); 

//use setter methods to fill the request doc

req.setField1("the message"); 

req.setField2("...");

...

SendMessageResponseDocument respdoc = client.sendMessage(reqdoc);

// use getter methods to extract the response data

String resp = respdoc.getSendMessageResponse().getResultField1();

...



© Groiss Informatics GmbH, 2010 174

Call a web service (2)

Method 2 - Don't generate stubs, invoke the web service directly using the 
Apache Axis2 API

Code-Example:
ConfigurationContext ctx =

com.groiss.ws.client.ConfigurationContextFactory.

getClientConfigurationContext();

ServiceClient client = new ServiceClient(ctx, "http://...");

Options options = new Options();

options.setAction("urn:echo"); // select operation via WS-Addressing

client.setOptions(options);

//use Apache AXIOM methods to create the payload XML

OMElement payload = ...; 

OMElement response = client.sendReceive(payload);

//use Apache AXIOM methods to extract the response data

response.getChildElement("Field1"); 



© Groiss Informatics GmbH, 2010 175

Provide a Web Service

1. Specify or get the WSDL

2. Generate your service skeletons with the Axis2 CLI or Ant-Task [9]

3. Compile the generated sources

4. Package the generated classes

5. Add the new library to your application classpath

6. Subclass the service-skeleton and implement your business logic

7. Modify the services.xml to change the implementation class. This step is 
required, because it’s not recommended to modify the generated source files.

8. Package your services.xml and your WSDL as a Web service archive (.aar)

9. Upload the aar file using the wizard at

Admin.Tasks -> Communication -> Web Services -> Local Services



© Groiss Informatics GmbH, 2010 176

Code Example

Subclass the generated Skeleton

public class MyService extends DemowsSkeleton {

@Override

public MessageRsDocument sendMessage(MessageRqDocument in) {

MessageRq rq = in.getMessageRq();

Settings.log("-------------"+rq.getSubject(), 1);

Settings.log("-------------"+rq.getText(), 1);

...

Principal u = ThreadContext.getThreadPrincipal();

MessageRsDocument doc = MessageRsDocument.Factory.newInstance();

MessageRs rs = doc.addNewMessageRs();

rs.setOut("success");

return doc;

}

}



© Groiss Informatics GmbH, 2010 177

Provide a Web Service (2)

♦ To enable a 'Dispatcher-Like-Behavior' (e.g. auto-commit/rollback, 
ThreadContext etc.) you have to enable the epcontext-Module which is 
shipped with @enterprise

♦ Add the following line to your services.xml (in your .aar file)

<module ref="epcontext"/>

♦ If the epcontext-Module is enabled, the request must contain one of the 
following

— Username/Password token

— SAML-Token previously requested from the @enterprise-SecureTokenService



© Groiss Informatics GmbH, 2010 178

Authorization

Description: customize login

Definition:

package com.groiss.org;

public interface HttpAuth {

public void sendLoginRequest(HttpServletRequest req,

HttpServletResponse res) throws Exception;

public Principal checkUser(String user, String passwd,

String clientAddr) throws Exception;

}

AuthUtil is used for creating the session

Declaration: Configuration -> Classes -> Authorization Class

In Product: PasswdAuth, SSLAuth

Demos: BasicPasswdAuth, ClientCertDemoAuth, WinPasswdAuth



© Groiss Informatics GmbH, 2010 179

Authorization (2)

Example: Implementation of BasicAuth

public class BasicPasswdAuth implements HttpAuth {

public void sendLoginRequest(HttpServletRequest req, HttpServletResponse res)
throws Exception {
String auth= req.getHeader("Authorization");
if (auth != null && auth.startsWith("Basic ")) {
auth = auth.substring(6);
auth = new String(Base64.decode(auth));
String userId = auth.substring(0,auth.indexOf(':'));
String passwd = auth.substring(auth.indexOf(':')+1);
try  {
User u = (User)checkUser(userId,passwd,req.getRemoteAddr());
AuthUtil.authorizeBrowser(req, res, u, req.getRequestURI() +"?"+
req.getQueryString());

return;
} catch (Exception e) {
com.groiss.util.Settings.logError(e);

}
}
res.setStatus(401);
res.addHeader("WWW-Authenticate", "Basic realm=\"@enterprise\"" );
res.getWriter().println();

}

public Principal checkUser(String userId, String passwd, String clientAddr)
throws Exception {
return AuthUtil.checkUser(userId,passwd, clientAddr);

}
}



© Groiss Informatics GmbH, 2010 180

File Import

Description: import tabular data from a file

Definition:
public abstract class ImportHandler {

public Object getKey(Persistent o)  {

return o.getOid(); }

public void prepareFile(File f) {}

public boolean beforeImport(Map<String,Object> m, Map<String,Object> ext) {

return true; }

public Object getKey(Map<String,Object> map)  {

return null; }

public Persistent getExistingObject(Object key, Map<String,Object> values,

Map<Object,Persistent> cache) {

return cache.get(key);

}

public boolean beforeInsert(Map<String,Object> m, Persistent o) {

return true; }

public boolean beforeUpdate(Map<String,Object> m, Persistent o) {

return true; }

public void afterImport(Map<String,Object> m, Persistent o) {}

}

Declaration: Define the importHandler in the import.xml file

Demos: import.xml, UserImporter



© Groiss Informatics GmbH, 2010 181

File Import (2)

Description:

The Importer does the following:

♦ Read the existing members of the class and store in a memory cache.

The key is either the key field from the configuration or, if none is specified, the 
getKey method is called.

♦ Call prepareFile with the selected or configured File

♦ for each line in the file:

— Put the columns in a map

— call beforeImport

— call getKey with the value map

— call getExistingObject

— if the object is in cache call beforeUpdate else beforeInsert

— perform the database operation

— call afterImport

♦ Close the file



© Groiss Informatics GmbH, 2010 182

File Import Example

OrgData orgdata = ServiceLocator.getOrgData();
Role home = orgdata.getRole(Role.HOME);
Map<String, OrgUnit> ous;

public void afterImport(Map<String,Object> m, Persistent o) {
User u = (User)o;
OrgUnit ou = orgdata.getHomeOrg(u);
if (ou == null) {
ou = getOrg((String)m.get("ou"));
if (ou != null) {
UserRole ur = orgdata.createUserRole();
ur.setUser(u);
ur.setRole(home);
ur.setOrgUnit(ou);
ur.setActive(true);
orgdata.insert(ur);

}
}

}

private OrgUnit getOrg(String id) {
if (ous == null) {
ous = new HashMap<String, OrgUnit>();
for (OrgUnit ou: orgdata.list(OrgUnit.class, null, null, null)) {
ous.put(ou.getId(), ou);

}
}
return ous.get(id);

}



© Groiss Informatics GmbH, 2010 183

Mail Handler

Description: receive a mail

Definition

package com.groiss.mail;

public interface MailHandler {

public boolean receive(javax.mail.Message msg) throws 

Exception;

}

Declaration : Admin-Tasks -> Communication -> Mail-boxes

Demos: MailGetter



© Groiss Informatics GmbH, 2010 184

Mail Handler Example

public boolean receive(Message msg) throws Exception {

Object content = msg.getContent(); // get the content

String contentstr;

if (content instanceof Multipart || content instanceof InputStream) {

InputStream is;

if (content instanceof Multipart) {

Part part = ((Multipart)content).getBodyPart(0);

is = part.getInputStream();

} else

is = (InputStream)content;

contentstr = new String(FileUtil.getBytesFromStream(is));

} else

contentstr = content.toString();

String subject = msg.getSubject();

String from = msg.getFrom()[0].toString();

WfEngine e = ServiceLocator.getWfEngine();

OrgData od = ServiceLocator.getOrgData();

ProcessDefinition pd = e.getProcessDefinition("jobproc");

OrgUnit ou = od.getById(OrgUnit.class, "manufactoring");

ProcessInstance pi = e.startProcess(pd, null, ou, null, null);

DMSForm form = e.getForms(pi).get(0);

form.setField("subj", from + ","+ subject);

form.setField("description", contentstr);

e.updateForm(form);

Settings.log("Process started, id:"+pi.getId(),2);

return true;

}



© Groiss Informatics GmbH, 2010 185

LDAP

Description: synchronize users, org.units, etc.

Definition
public interface DirectorySyncer {

public void synchronize(DirectoryServer dirServer,

DirContext baseContext) throws Exception;

}

Declaration : Admin-Tasks -> Communication -> LDAP

Demos: SimpleDirectorySyncer



© Groiss Informatics GmbH, 2010 186

LDAP (2)

Example: Loading users from LDAP

public void synchronize(DirectoryServer ds, DirContext ctx) throws Exception{

NamingEnumeration<Binding> ne = baseContext.listBindings("");

while (ne.hasMore()) {

Binding b = ne.next();

String rdn = b.getName();

DirContext objectCtx = (DirContext) b.getObject();

syncObject(rdn, ds, ctx, objectCtx);

}

}

private void syncObject(String rdn, DirectoryServer ds, DirContext 

baseContext, DirContext objectCtx) throws Exception {

Attributes attribs = objectCtx.getAttributes("");

Object ldapKey = attribs.get(LDAPKEYATTNAME).get();

OrgData od = ServiceLocator.getOrgData();

User u = od.getById(User.class,(String)ldapKey);

if (u != null) { // object exists in @enterprise

// do nothing

} else { // create user object

u = od.createUser();

setFields(u,attribs);

u.setActive(true);

od.insert(u);

}

}



© Groiss Informatics GmbH, 2010 187

6. Utilities

♦ Timer

♦ Logging

♦ Service

♦ Holidays

♦ Calendar integration



© Groiss Informatics GmbH, 2010 188

Timer

Description: execute recurring actions

Definition

package com.groiss.timer;

public interface TimerTask {

public void run(TimerEntry e, String arg) throws Exception;

public void abort();

}

Declaration: System administration -> Admin.Tasks -> Timer

In Product: several implementations

Demos: com.groiss.demo.FileGetter



© Groiss Informatics GmbH, 2010 189

Timer - Example

Example: Restart the log (for example every day)

public class LogTimer implements TimerTask {

public void run(TimerEntry te, String args) {

try {

Settings.getLogger().restart();

} catch (Exception e) {

Settings.logError(e);

}

}

public void abort() {}

}



© Groiss Informatics GmbH, 2010 190

Logging

Description: change format and location of log messages

Definition
package com.groiss.log;

public interface ILogger extends Service {

public void log(String str, int level);

public void logError(Throwable err);

public long getExceptionCount();

public Date getLastExceptionDate();

public void logError(Throwable err, String errHeader);

public void logError(Throwable error, String errHeader, int level);

public File getLogFile() ;

public File getErrorLogFile() ;

public PrintWriter getWriter();

public int getLevel();

public void restart() ;

}

Adapter Class: com.groiss.log.Logger

Declaration: Configuration -> Classes -> Logging class

In Product: com.groiss.log.Logger

use com.groiss.util.Settings.log for writing log messages



© Groiss Informatics GmbH, 2010 191

Service

Description: implement hooks on startup and shutdown

Definition

public interface Service extends Lifecycle {

public boolean isRunning();

public void reconfigure();

}

public interface Lifecycle {

public void startup();

public void shutdown();

}

Declaration:

♦ Configuration -> Classes -> Services

♦ an application adapter may implement the service interface

In Distribution: the configured services



© Groiss Informatics GmbH, 2010 192

Holidays

Description: implement the holidays for your country

Definition

package com.groiss.cal;

public interface Holidays {

public String isHoliday(com.ibm.icu.util.Calendar d);

}

Declaration: Configuration -> Calendar -> Holiday Class 

In Product: GermanHolidays, AustrianHolidays

Demos: UKHolidays



© Groiss Informatics GmbH, 2010 193

Holidays - Example

Example: UKHolidays

public String isHoliday(com.ibm.icu.util.Calendar d) {

if(!(d instanceof GregorianCalendar)) {

return null;

}

GregorianCalendar c = (GregorianCalendar)d;

int wd = d.get(Calendar.DAY_OF_WEEK);

if (wd == Calendar.SATURDAY || wd == Calendar.SUNDAY)

return null;

int day = c.get(Calendar.DAY_OF_YEAR);

int year = c.get(Calendar.YEAR);

int easter = CalUtil.easterDay(year);

if (day == easter - 2) {

return "Good Friday";

} else if (day == easter + 1) {

return "Easter Monday";

} 

// move to next monday if on saturday or sunday

if (day == 1 || wd == Calendar.MONDAY && (day == 2 || day == 3) ) {

return "New Year's Day";

}



© Groiss Informatics GmbH, 2010 194

Holidays – Example (2)

day -= c.isLeapYear(year) ? 1 : 0;
if (day == 359 || wd == Calendar.MONDAY && (day == 360 || day == 361) ) {
return "Christmas Day";

} else if (day  == 360 || wd == Calendar.TUESDAY && (day==361 || day==362)
|| wd == Calendar.MONDAY && day == 362) {

return "Boxing Day";
}
if (wd == Calendar.MONDAY) {
int m = d.get(Calendar.MONTH);
int md = d.get(Calendar.DAY_OF_MONTH); 
if (md >= 1 && md <=7 && m == Calendar.MAY) {// first monday in may

return "Early May Bank Holiday";
}
// last monday in may
if (md >= 25 && md <=31 && m == Calendar.MAY) {

return "Spring Bank Holiday";
}
// first monday in august
if (md >= 25 && md <=31 && m == Calendar.AUGUST) {

return "Summer Bank Holiday";
}

}
return null;

}



© Groiss Informatics GmbH, 2010 195

CalInfo

Description: show your data in the calendar

Definition:

package com.groiss.cal;

public interface CalInfo {

public List<CalEvent> listEvents(Persistent object, Date startDate, Date

endDate) ;

public String getName();

public List<Pair<String,String>> getCaptions();

public com.groiss.cal.CalView getView(String id,User u);

public List<Pair<String,String>>getPossibleViews(User u);

}

Adapter Class: CalInfoAdapter

Declaration: in configuration file (avw.conf), parameter cal.applications contains 
a comma separated list of CalInfo implementations.

In Product: com.groiss.calendar.CalendarAppl

com.groiss.calendar.wf.DueTasks

com.groiss.calendar.wf.FinishedTasks

Demos: com.groiss.demo.OrderDates



© Groiss Informatics GmbH, 2010 196

CalInfo (2)

♦ listEvents returns the events shown in the calendar, a list of CalEvents

normally SimpleEvent instances are created

♦ CalEvent properties:

— subject: short text

— text: detailed text

— start date

— end date

— caption: index in list returned by getCaptions

♦ getCaptions can be used to define the color of the event, return pairs of color 
and name

Customize the views: define a view with sources (CalInfo implementations) for 
participants.

♦ getPossibleViews adds views to the list

♦ getView returns a view: provide a list of CalInfos and Participants



© Groiss Informatics GmbH, 2010 197

CalInfo Example

Example: show the duedates of the order items in the calendar.

public class OrderDates extends CalInfoAdapter {
/** name of this event source */
public String getName() {
return "Order duedates";

}

public List<CalEvent> listEvents(Persistent object, Date startDate, Date 
endDate) {
List<DMSForm> forms = ServiceLocator.getStore().list(
"com.dec.avw.appl.demo_orderitem_1","duedate is not null");

List <CalEvent> result = new ArrayList<CalEvent>();
WfEngine e = ServiceLocator.getWfEngine();
DMS dms = ServiceLocator.getDMS();
Date now = new Date();
for(DMSForm form: forms) {
DMSForm mainform = dms.getMainForm(form);
ProcessInstance pi = e.getProcess(mainform);
Date due = form.getField("duedate");
SimpleEvent event =
new SimpleEvent(pi.getId()+":"+ pi.getSubject(),due, due);

event.setEventType(EventType.Task);
event.setCaption(now.after(due) ? 1 : 0); // set color
event.setOnClick(
"window.open('com.groiss.avw.html.HTMLGui.showDetail?pi=" +
pi.getOid() + "')");

result.add(event);
}
return result;
}



© Groiss Informatics GmbH, 2010 198

CalInfo Example (2)

/** colors and legend of the events */

public List<Pair<String, String>> getCaptions() {

return Arrays.asList(

new Pair<String,String>("green","not yet due"),

new Pair<String,String>("red", "already due"));

}

/** id and name for selection */

public List<Pair<String, String>> getPossibleViews(com.groiss.org.User u) {

return Arrays.asList(

new Pair<String,String>("demo_orders","Order duedates"));

}

/** return this view */

public com.groiss.cal.CalView getView(String id, com.groiss.org.User u) {

if("demo_orders".equals(id)) {

return new SimpleCalView(id,null,

Arrays.<Persistent>asList(u),Arrays.<CalInfo>asList(this));

}

throw new IllegalArgumentException();

}

}



© Groiss Informatics GmbH, 2010 199

6. Deployment and Upgrade

♦ package your application

— most resources are loaded from the classpath and can therefore be packaged in a 
jar file

— you may need other jar files of third-party libraries

♦ using install application

package the application into a zip file

— jar files in lib sub-directory

— classes in classes sub-directory

— appl.prop in root with the following properties

– avw.application.id application id

– avw.application.name application name

– avw.application.class application class

– avw.export.file comma separated list of XML export files

use the function "Install application" on the target system

see demos.zip or hr_proc.zip for examples



© Groiss Informatics GmbH, 2010 200

Deployment and Upgrade (2)

♦ initial deployment

— install @enterprise and then the application zip or

— install a complete installation with a database dump

♦ application upgrade

— code: replace the jar file(s)

— database-objects: make a new import or import parts of the application

— put an action in the upgrade method of the application adapter class



© Groiss Informatics GmbH, 2010

7.

System administration



© Groiss Informatics GmbH, 2010 202

1. System Requirements

♦ Operating System

— should run everywhere: tested on Windows, Solaris, Linux

♦ Database

— Oracle, >= 10g

— DB2 UDB or Z/OS

— MS-SQL Server

— Derby

— Postgres

— Firebird

— MySQL: experimental

♦ Java

— 1.6



© Groiss Informatics GmbH, 2010 203

System Requirements - Client

♦ Operating System

— should run everywhere: tested on Windows, Linux, Mac, 

mobile devices like iPhone

♦ Browser

— MS Internet Explorer 6,7,8

— Firefox 2,3

— Safari 4

♦ Java

— Java Plugin 1.6 for process editor (developers only)



© Groiss Informatics GmbH, 2010 204

Database Configuration - Oracle

♦ Create Oracle user with the following rights:

CREATE SESSION

ALTER SESSION

CREATE TABLE

CREATE VIEW

♦ Example:

SQL> create user epcourse identified by epcourse default tablespace 

users;

User created.

SQL> grant create session, alter session to epcourse;

Grant succeeded.

SQL> grant create table,create view to epcourse;

Grant succeeded.

SQL> grant unlimited tablespace to epcourse;

Grant succeeded.

SQL> 



© Groiss Informatics GmbH, 2010 205

Database Configuration – SQL Server

♦ Database Installation

— use option „case-insensitive“

♦ create a database

♦ create a user who is dbowner

♦ before creating tables:

execute the standard procedure:

EXEC sp_dboption <dbname>,’ANSI null default’, true

or change in database options: check ANSI null default



© Groiss Informatics GmbH, 2010 206

Database Configuration – DB2

♦ create Windows user

♦ create a Database user with the rights

— connect

— create table

♦ create a dabase schema for this user



© Groiss Informatics GmbH, 2010 207

2. Installation

1. Double click setup80.jar or execute

java –jar setup80.jar

2. select the installation directory

3. select a Java runtime environment

4. select a HTTP-port

5. optionally install as service (Windows only)

6. start the browser and the batch file



© Groiss Informatics GmbH, 2010 208

Installation



© Groiss Informatics GmbH, 2010 209

Installation



© Groiss Informatics GmbH, 2010 210

Installation



© Groiss Informatics GmbH, 2010 211

3. Initial Configuration

After starting the batch/script file, the browser is used to complete the installation:

♦ License information

♦ database connection

♦ load database schema

♦ start services

♦ set password for system administrator

♦ add a user and an organizational unit

♦ load examples

♦ the system is ready and the login mask is shown



© Groiss Informatics GmbH, 2010 212

Initial Configuration

♦ Welcome screen of Setup



© Groiss Informatics GmbH, 2010 213

Setup

♦ Server-Id: id for this server, visible in the GUI, no special characters

♦ License key provded by the vendor

♦ language: standard system language (can be changed later)



© Groiss Informatics GmbH, 2010 214

Setup

♦ upload the JDBC driver, depends on used database



© Groiss Informatics GmbH, 2010 215

Setup

♦ Database specific 
settings



© Groiss Informatics GmbH, 2010 216

Database Selection



© Groiss Informatics GmbH, 2010 217

Setup

♦ Test the database character set



© Groiss Informatics GmbH, 2010 218

Setup

♦ Tables are created

♦ Services started



© Groiss Informatics GmbH, 2010 219

Setup

♦ Change sysadm password (default is digital)



© Groiss Informatics GmbH, 2010 220

Setup

♦ Add a user and an organizational unit



© Groiss Informatics GmbH, 2010 221

Setup

♦ Load an example process 
and reports



© Groiss Informatics GmbH, 2010 222

Setup

♦ Setup completed, login



© Groiss Informatics GmbH, 2010 223

@enterprise Directory Structure

♦ ./ start scripts ep.bat and ep.sh

♦ ./bin contains the optional command-line administration shell

♦ ./classes empty directory, allows to shadow @ep resources

♦ ./conf configuration file avw.conf

♦ ./doc example files, demo application

♦ ./forms form classes

♦ ./lib Jar-Files of @enterprise, documentation

♦ ./log log files

♦ ./service files for installation as a windows service

♦ ./tmp temporary files

♦ ./WEB-INF configuration of HTTP-Server (Jetty)

♦ ./ws configuration for web services



© Groiss Informatics GmbH, 2010 224

4. Administration Tasks

functions for administration and operating

♦ Server

— Monitor, Restart, Timer, Class path, …

♦ User

— Permission check, disable login, ...

♦ Import/Export

— Install applications

— archive data

♦ Reorganisation

— change role assignments, find stuck process instances

♦ Communication

— communication with other systems (E-Mail, LDAP,…)



© Groiss Informatics GmbH, 2010 225

Server Monitor

Overview of system activity



© Groiss Informatics GmbH, 2010 226

Server Control

♦ shutdown or restart server

♦ update the system

♦ initialize the log file

— copies away the current one

♦ reload the configuration

— for example after manual changes

♦ show and reparse the reporting definition



© Groiss Informatics GmbH, 2010 227

Event Log

♦ List of events stored in the database, can be used in applications.

— @enterprise writes startups and shutdowns into the log



© Groiss Informatics GmbH, 2010 228

Worklist Cache

♦ View and change the state

♦ reinitialize the cache structures

— Org.structures after changes in organzation: new application, org.unit, role, changes 
in org. hierarchy

— Activity instances: should not be necessary (except manual changes in DB)

♦ check match between database and cache for one user



© Groiss Informatics GmbH, 2010 229

Classpath

@enterprise reads programs and resources from the libraries and directories in 
the classpath

The page has three functions

♦ show the complete classpath 

three sections

— boot classpath

— system classpath

— application classpath

♦ find resources in classpath

— from where are they loaded

♦ find shadowed classes

— and their locations



© Groiss Informatics GmbH, 2010 230

Timer

system-defined and application-defined timers for periodical actions

♦ Attributes:

— Classname: TimerTask interface

— First time: first run

— Period: seconds or cron-pattern: use sub-window to enter value

— Active

— Run on startup

— Run on each Node: in cluster

— Thread-Id: run in own thread?

♦ on error:

— E-Mail to the Administratior

— timer is passivated: must be reactivated manually

— warning icon is shown in active column



© Groiss Informatics GmbH, 2010 231

Manage Certificates

Set up SSL

♦ enter keystore path, password, and certificate password in Configuration -> 
Security

♦ enter HTTPS port in Configuration -> HTTP Server

♦ restart server

♦ generate a self-signed one

Attributes

— Alias: name in keystore

— other information about organization

— key size

— duration

♦ optionally: generate a certification request, send it to a CA

and import the returned certificate chain



© Groiss Informatics GmbH, 2010 232

Further Administration Tasks - Server

♦ Object History: Find changes of objects

— select object class

— confine time span

♦ Interface Forms

♦ Pending Changes

— list of scheduled updates of master-data objects

♦ Event Registrations

— Process instances waiting for events, finishing them manually



© Groiss Informatics GmbH, 2010 233

Further Administration Tasks - Server

♦ Running Nodes Monitor

— for cluster

♦ Full-Text Search

— initialize the cache structures

♦ Query-Tool

— perform selects on the database

— activate with the parameter "database.direct.access=true" in configuration 
file

— available for users with execute right on all objects (for example through the sys 
role)

— useful in development system, don't activate in production

♦ Process Mining / Duration Statistics

— create statistics for time management



© Groiss Informatics GmbH, 2010 234

Administration Tasks - User

♦ Disable/Enable Login

— disable login for administration tasks

♦ Permission Test

— check whether a user has a right for an object

♦ Expired passwords

— list of users with expired password



© Groiss Informatics GmbH, 2010 235

XML Export

Transfer data between @enterprise installations

♦ for example between development and production

♦ Export "packages"

— applications

— process definitions

— org.units

— users

— permission lists

— reports

— timers

— LDAP settings

— mail boxes

— dashboards

— process instances

— DMS folders

— forms



© Groiss Informatics GmbH, 2010 236

Further Administration Tasks - Import/Export

♦ Archive Processes

— delete from database

— archive class may write the data to an external system

♦ Install Application

— upload an application zip file

— extract it, modify the application class path

— import the contained xml files

♦ File Import

— upload a csv file and synchronize the content with a database table



© Groiss Informatics GmbH, 2010 237

Further Administration Tasks – Reorganize

♦ Change Role Assignments

— copy roles from one org.unit to another

♦ Analyze Process Instances

— find "stuck" process instances

♦ OU History

— maintain a relation between org.units (reorganization szenarios)



© Groiss Informatics GmbH, 2010 238

Further Administration Tasks – Communication

♦ MailBoxes

— maintain mailboxes, actions can be performed on incoming mails

♦ LDAP

— synchronize org. data with an LDAP directory

♦ BatchJobs

— overview over running or finished BatchJobs

— change status

♦ WfXML

— communication with other workflow engines

♦ Web Services

— maintain local services

— resolution of links to other systems



© Groiss Informatics GmbH, 2010 239

Dashboard

♦ is shown in working area when you enter the administration

♦ arrange desired pages for a quick overview

— list of timers

— reports

— server monitor

— ...



© Groiss Informatics GmbH, 2010 240

5. Configuration

@enterprise 
configuration 

masks

configuration 

masks for 

applications

View and change the @enterprise configuration
- stored in a property file, normally ./conf/avw.conf



© Groiss Informatics GmbH, 2010 241

Configuration - License

♦ @enterprise License key

— check it in system monitor -> server info or at the begin of the log file



© Groiss Informatics GmbH, 2010 242

Configuration - HTTP

♦ Allowed and Denied Hosts or Networks:

— comma separated lists of pairs of IP addresses and network masks, for example 
10.205.112.0/255.255.255.0

— empty allow list means access from every host except the denied ones is allowed



© Groiss Informatics GmbH, 2010 243

Configuration - HTTP

♦ Access Control

combination of IP-address, URL prefix and right

Syntax:
{ ( ip-specifier | "*" ) SPACE (url-prefix | "*") SPACE

( "*" | "DENY" | ( right { SPACE right }* ) COMMA }*

The rules are evaluated in the given order until a match is found.

If no match is found or the right of the matched rule is DENY access is denied.

Examples:

127.0.0.0/255.0.0.0 * *

Access from local host subnet is not restricted.

10.205.112.26/255.255.255.255 * DENY

Access from 10.205.112.26 is not allowed.

10.205.112.0/255.255.255.0 com.groiss.org.PasswdAuth *

Login of hosts from subnet 10.205.112.0 is allowed.

10.205.112.0/255.255.255.0 * internal

All operations of hosts from this subnet are allowed if users have the right internal.

* com.groiss DENY

Access to com.groiss.* classes and methods is denied to every host.



© Groiss Informatics GmbH, 2010 244

Configuration - Database

♦ see installation and initial configuration



© Groiss Informatics GmbH, 2010 245

Configuration - Database

♦ Size of connection pool

— see Server Monitor for actual needs

♦ Session Environment

— statements executed after database connect,

for example in SQL Server: set textsize=1000000

♦ Reconnect Try Interval

— wait seconds between reconnect tries

♦ Reconnect Tries

— number of reconnect tries

♦ Query timeout

— maximum duration of a dabase statement (not supported in every database)



© Groiss Informatics GmbH, 2010 246

Configuration - Directories

♦ Home-directory: base directory for all relative paths in the system



© Groiss Informatics GmbH, 2010 247

Configuration - Logging

♦ Logfile: Name and location of log file

♦ Restart: either daily or on startup

♦ Numer of Logs we keep

♦ Trace-Level (Log-Level): 

— 0: only errors are logged

— 1: HTTP requests are logged (Timestamp, User, IP-Address and URL).

— 2: SQL-Statements and process oriented logging.

— 3: HTTP-Header, parameter of prepared statements, …. (Performance!!)



© Groiss Informatics GmbH, 2010 248

Configuration - Classes

♦ Customize authorization, notification, archiving, error formating

♦ Services: @enterprise is composed of services, that are started in the given 
order. You can add own services



© Groiss Informatics GmbH, 2010 249

Configuration - Localization

♦ List of available languages: user can select one of them

♦ Language, country and variant: system default

♦ character set for communication with the browser: don't change



© Groiss Informatics GmbH, 2010 250

Configuration - Localization

♦ Date and Date-Time format: see installation guide for patterns

♦ Max. Table length: If an (administration) table has more than n entries you 
must use a search to reduce the displayed set of objects

♦ Items per Page: if paging is enabled

♦ Use browser language: instead of the language defined in @enterprise

♦ Enable Wiki Link Syntax: for activity comments (set agent, go back)

you can enter links in the syntax [[ url | text ]]



© Groiss Informatics GmbH, 2010 251

Configuration - Communication



© Groiss Informatics GmbH, 2010 252

Configuration - Communication

♦ SMTP Host for outgoing mails

♦ Mail Sender: sender of system mail

♦ E-Mail Address of Administrator: for receiving alerts

♦ Settings for RMI

♦ Enable the admin-shell: for command-line based administration

♦ WfXML Settings



© Groiss Informatics GmbH, 2010 253

Configuration - Cluster

♦ If cluster is activated, each node must have a unique id

♦ Performance-Factor: for load balancing

♦ Clustercheck Tolerance Time

♦ Heartbeat Tolerance Time

♦ Transport layer for Coherence: JMS, JGroups, MultiCast



© Groiss Informatics GmbH, 2010 254

Configuration - Cluster



© Groiss Informatics GmbH, 2010 255

Configuration - Workflow

♦ Open form on process start: instead of showing the worklist

♦ Inherit Ids to subprocesses: don't generate a new one

♦ All tasks can be selected as adhoc: when an adhoc process is created at run-
time

♦ Enable application-spanning process definition: instead of allowing 
components only from the default application and the application of the 
process

♦ Allow automatic take: form editing and worklist functions are possible in role 
worklist

♦ Organizational hierarchy mandatory: org.unit must belong to a hierarchy before 
it can be used in process instances

♦ Enable Groovy Scripts: for preprocessing, functions, etc.



© Groiss Informatics GmbH, 2010 256

Configuration - DMS

♦ Inherit permission list: of folder to new documents in folder

♦ Basic-Auth in WebDAV: use this authorization for WebDAV access

♦ Do not display hidden documents: documents starting with "."

♦ Character Set for Text Files: text documents are stored without a charset 
information. When sending it to the browser we use this charset (UTF-8 is 
default).



© Groiss Informatics GmbH, 2010 257

Configuration - Search

♦ Parameter for resource care

— Maximum Table Size on Server (rows)

— Cache Interval (minutes)

— Maximum Number of Cached Queries

— Maximum Number of Simultaneous Queries

— Maximum Number of Startable Queries



© Groiss Informatics GmbH, 2010 258

Configuration - Search

♦ Standard search

— how process-ids and subject fields are searched

♦ default for case-sensitive

♦ short search customization

♦ process relation: list of relation type, can be used in applications

— for example "follower"



© Groiss Informatics GmbH, 2010 259

Configuration - Tuning

♦ Reload classes: if they have changed, costs performance but is very useful 
during development

♦ Statement statistics: logging of SQL statement execution times, can be 
checked in server monitor

♦ Settings for permission cache



© Groiss Informatics GmbH, 2010 260

Configuration - Security

♦ Settings for the key store



© Groiss Informatics GmbH, 2010 261

Configuration – Password Policy

♦ Rules for password check algorithm



© Groiss Informatics GmbH, 2010 262

Configuration - Calendar

♦ iMIP: use email to transfer status information about appointments

♦ Resources: define classes of objects that can participate in appointments 



© Groiss Informatics GmbH, 2010 263

Kontakt

Groiss Informatics GmbH
Strutzmannstraße 10/4

9020 Klagenfurt

AUSTRIA

Tel. +43 463 / 504 694 - 0

http://www.groiss.com

herbert@groiss.com


