
Herbert Groiss, Michael Dobrovnik

Business Process Management with
@enterprise

Groiss Informatics GmbH

Preface

Business Process Management is a very broad and multi-faceted term, so
we want to clarify the main focus and the scope of this book. It will cover
the basics and concepts of the enactment of business processes by means of
business process management systems (BPMSs). We emphasize the technical
realization aspects and not the economic or organizational issues.

The presentation of the implementation will be based on the BPMS @ enterprise .
All examples and screen shots have been created with this system. Comparison
with other products is not intended and is conducted rather sparingly.

So it is possible to tackle the topic of the technical implementation of business
process management in a concise and focused manner.

Besides the basics, some current trends like Mobile Process Management, Social
BPM and Cloud Computing are discussed.

The intended audience of the book includes project managers, process analysts,
business process consultants and developers, simply everybody concerned
with enactment of business process management.

We will use the following structure: the first chapter explains the terminology,
gives a motivation for the deployment of BPMSs and presents a case example.
Chapter 2 deals with the modeling aspects of business process management,
while the execution of such models via technical business process management
systems is discussed in chapter 3. The potential for optimization of business
processes via enactment are presented in chapter 4. We conclude with chapter
5 concerned with specifics of the phases of a business process management
project.

4

The BPMS @enterprise can be downloaded from the homepage of Groiss
Informatics GmbH http://www.groiss.com, or can be tried out on line. A 60-
day evaluation license is provided free of charge, thereby giving a hassle free
opportunity to practically exercise and implement the techniques presented in
this book.

Klagenfurt, June 2014 Herbert Groiss, Michael Dobrovnik

Contents

1 Introduction 9
1.1 Business Process Management 9

1.1.1 Process Capturing and Modeling 10
1.1.2 Process Execution . 11
1.1.3 Monitoring and Optimization 16

1.2 Process Classification . 17
1.2.1 Core Processes . 18
1.2.2 Supporting Processes . 20
1.2.3 Management Processes 20

1.3 The Process Centered Organization - A Case Study 21

2 Process Modeling 25
2.1 Defining the Organizational Structure 26

2.1.1 Organizational Units . 26
2.1.2 People . 27
2.1.3 Roles . 27

2.2 Modeling the Flow . 29
2.2.1 Selection of a Process Modeling Language 30
2.2.2 Activities . 32
2.2.3 Control Structures . 34
2.2.4 Sequence . 36
2.2.5 Alternatives . 36
2.2.6 Loops . 39
2.2.7 Parallelism . 39
2.2.8 Synchronization with Events 44
2.2.9 Workflow Patterns . 47
2.2.10 Power and Completeness 50
2.2.11 Correctness of Process Diagrams 52

6 Contents

2.2.12 Exception Handling . 54
2.2.13 What will not be modeled? 55
2.2.14 Process Definition using Rules 56

2.3 Definition of the Agents . 57
2.4 Data Modeling . 60

2.4.1 Form based Data Modeling 60
2.4.2 Data Presentation with XForms 64
2.4.3 Form Visibilities . 72

2.5 Conditions . 72
2.6 Functions . 74
2.7 Process Modeling with @enterprise 75

2.7.1 Organizational Modeling 75
2.7.2 Process Modeling . 77
2.7.3 Tasks and Roles . 79
2.7.4 Forms . 79
2.7.5 Process Documentation 80

2.8 A complete Example . 83
2.8.1 Data . 83
2.8.2 Process . 84

3 Process Execution 89
3.1 Architecture . 89
3.2 The Workflow Engine . 90

3.2.1 Structure of Run Time Data 91
3.3 User Interface . 95

3.3.1 Worklist . 97
3.3.2 Functions in the Worklist 98
3.3.3 Versions and Traceability 101
3.3.4 Search . 102
3.3.5 User Interface Customization 103
3.3.6 Mobile Access . 104

3.4 Social BPM . 106
3.5 Flexible Process Flow . 109

3.5.1 Going Back . 109
3.5.2 Going Forward . 111
3.5.3 Copy to... 111
3.5.4 Change Agent . 111
3.5.5 Insertion of Steps . 112
3.5.6 Run-time Process Definition 113

Contents 7

3.6 Permissions . 114
3.6.1 Proces-Independent Permissions 115
3.6.2 Process Related Permissions 117

3.7 Substitutions . 119
3.8 Interfaces and Application Integration 120

3.8.1 Organizational Data . 123
3.8.2 Authorization . 123
3.8.3 Services . 124
3.8.4 Data Import and Export 126
3.8.5 API-Programming in the BPMS 126
3.8.6 Application Integration at the Client 128
3.8.7 Security Aspects . 129
3.8.8 Further Aspects of Application Integration 130

3.9 Customization of the @enterprise User Interface 131
3.9.1 GUI Configurations . 131
3.9.2 Adaption of Styles . 132
3.9.3 Internationalization . 132

3.10 Playing through a Process . 134
3.11 Elements of a BPM Application 135

4 Monitoring and Optimization 137
4.1 Run Time Data Analysis . 137

4.1.1 Reporting . 138
4.1.2 Dashboard . 141
4.1.3 Process Cockpit . 142

4.2 Process Optimization . 145
4.2.1 Optimization within the BPMS 146
4.2.2 Optimization by Operative Management 147
4.2.3 Optimization by Strategic Management 148
4.2.4 Changing the Process Structure 148
4.2.5 Optimization of Tasks . 151
4.2.6 Implementing the Optimization 153

5 Workflow Projects 155
5.1 Survey Phase . 155
5.2 Requirements Specification Phase 157

5.2.1 Process Description . 159
5.2.2 Process Data . 161
5.2.3 Functions . 162
5.2.4 Timer . 162

8 Contents

5.2.5 GUI . 162
5.2.6 Reports . 163
5.2.7 Integration . 163
5.2.8 Project Deadlines . 163

5.3 Product Selection . 163
5.4 Design and Implementation . 169
5.5 Test Phase . 170

5.5.1 Lab Simulation . 170
5.5.2 Field Test . 171

5.6 Installation . 172
5.7 Application Upgrade . 173
5.8 Operation . 175

5.8.1 Technical Administration 175
5.8.2 Organizational Administration 176
5.8.3 Process Administration 177
5.8.4 Error and change management 177
5.8.5 BPM in the Cloud . 178

Chapter 1

Introduction

1.1 Business Process Management

Process management is concerned with the elicitation, documentation, design
and optimization of business processes (Wikipedia).

Examples for such business processes are order processing, travel applica-
tions and expense administration or billing and invoice activities. More and
more, processes are viewed as being in a central focus in a modern business
environment. We can distinguish the following aspects:

q Process capturing: the first step is the analysis of the as-is processes. How
are operations carried out, which tasks are executed, who is involved,
under which constraints; that are some of the main questions to be an-
swered here. The results are documented in an appropriate manner. The
form of this documentation and the notations used are discussed in detail
in chapter 2.

q Process execution: the area of workflow management specifically deals
with the execution of the processes by means or with the support of
process centered IT systems. Such systems control the concrete execution
of process instances, thereby coordinating manual as well as automatic
work steps (activities). The documented as-is processes have to be de-
signed in a sufficiently detailed manner to allow for the interpretation by
a workflow management system.

10 1 Introduction

q Process monitoring and analysis: Workflow systems document the ex-
ecution of each process instance (case), enabling insight into processes.
Data about every step is gathered and compacted, thereby allowing to
get vital information about process performance and the ability to react
with appropriate measures in a timely manner.

q Process optimization: Data from the analytical component can also be
used to adapt the process models themselves. This business process
reengineering would lead to a more efficient way of carrying out the
business (faster, cheaper, better).

Since the optimization is a kind of re-modelling, the steps can be depicted as a
cycle like in fig. 1.1. Repeated and consequent analysis and optimization can
lead to continuous improvement.

Modeling

Execution

Control

Optimization

Figure 1.1: Business Process Management Cycle

To present the business advantages of carrying out the tasks of process man-
agement, we will now look at the phases in somewhat more detail.

1.1.1 Process Capturing and Modeling

Explicit documentation of processes prescribe how things should be done.
Such documentation (a "process handbook") can serve as a guideline for ev-
erybody and facilitate the communication between the involved parties over
organizational boundaries. Especially for new employees or in the case of new
procedures, such documents provide vital orientation.

1.1 Business Process Management 11

The idea of a documentation for the ways an organization operates is quite
old. An early example are the instructions in the "Regula Benedicti" by Saint
Benedict of Nursia, dating from the sixth century (see figure 1.2). One of the
main reasons of writing down the operational principles would clearly be
that in an international organization with wide spread locations (especially
considering contemporary communication round trip times) it is virtually
impossible for a ’chief executive’ to literally explain the work procedures to
each novice.

Figure 1.2: Regula Benedicti, early example of process instructions, 8th century copy

To be able to present proper documentation about processes is also a condition
for industrial certification efforts like ISO9000 or for accreditation via govern-
mental imposed constraints like e.g. the rules of the US-american Food and
Drug Administration (FDA), which governs the pharma and food sectors.

The collection of an organizations documented processes is called its process
handbook. Chapter 2 will be concerned with state of the art process notation.

1.1.2 Process Execution

The second step of the process management cycle is the execution of the busi-
ness processes via IT systems. Such systems are known as Business Process
Management System (BPMS) or Workflow Management System (WFMS).

12 1 Introduction

Concerning the terminology: Workflow system or workflow management
system are the traditional names for IT systems focused on process automation
and on "real" execution of processes. Since 1993, the Workflow Management
Coalition (http://www.wfmc.org), an organization of vendors of such systems,
devotes itself to the creation and promotion of industry standards in this area.

The newer term business process management is to be understood in a some-
what broader perspective. It subsumes organizational aspects as well as busi-
ness economics. Business process management systems can be mere drawing
or semantically richer modeling tools, can be execution enactment systems on
be analyzing and monitoring functions.

Since the terminology shifted from workflow management to business process
management, and the workflow systems try for complete coverage of the
business process management cycle, the current accepted general term seems
to be business process management system [?].

Execution of processes in a BPMS means the system to be in control of the
process. When a user decides, that a certain task is completed, she will inform
the system. Then the BPMS will select the following task and the following
agent according to the process definition.

While this implies that there will be an existing executable process definition,
this needs not to be true in every case. Flexible BPMS allow the definition or the
enhancement of the process path during execution. Section 3.5 will elaborate
on that aspect.

On the other hand, not all defined processes will necessarily be automatically
executed by a BPMS. We would like to give three criteria which determine if
automated execution makes sense:

q Existence of a process structure: the tasks are performed in a logical
or natural sequence by several participants based on division of work.
Usually, there is no direct cooperation of several agents in a common
location.

If a certain task has to be performed by a single person, this situation
does not necessarily call for a BPMS (exceptions might apply). Tasks that
cannot be decomposed in a sensible manner into smaller actions are also
not likely to be qualified for BPMS. This holds especially for tasks to be
carried out somewhat creatively within a team or in a meeting of several
people.

q Need to document process execution: when there are strict traceability

1.1 Business Process Management 13

requirements (i.e. to be able to determine who did which tasks at what
point in time), the consequent usage of an BPMS really makes sense (even
when the structure of a process is rather simple or virtually nonexistent).
And we would like to emphasize here that transparent ways of work are
almost always highly desirable.

q Automation of some steps: each step of a structured process definition
could be carried out manually or could be automatically be executed by
an IT system. The BPMS is not responsible for the automated execution
itself, but is concerned with data transfer and conversion to and from the
other systems, to react upon reception of events from those systems, and
of course with the overall coordination aspects.

If some of the three criteria apply, there are clearly potential advantages for
deploying a BPMS:

q Quality: Process execution adheres to the process definition and thereby
to the prescriptions of the process designers. While some deviations from
the defined paths are possible for the sake of flexibility, those are carried
out in a controlled manner and are always meticulously documented by
the system.

q Swiftness: The process execution speed is increased based on the follow-
ing factors:

– no physical transport times (e.g. like paper transport)

– potential for automation of whole tasks or some part of them

– possibility for parallel processing

– feasibility for continuous status reporting, and awareness or control
of progress

q Traceability: every task completion action and each change of data is
documented by the system. There is immediate potential to provide
information about who did what change at what point in time, who
signed off what item, etc.

q Optimization potential: The accumulated run time data of the process
executions can be analyzed to find potential areas for enhancements.
Answers to question like "Which steps do take unreasonable long time?",
"Where are the bottlenecks?", "At which points do exceptions occur with
a high frequency?".

14 1 Introduction

The ultimate decision about the deployment of a BPMS is obviously a business
judgment. Either the projected benefits of the combined effects of the before
mentioned aspects is higher than the price tag attached to the introduction
of such a system, or the potential loss from non-application is a justification
for the implementation. Potential losses may result from non traceable or non
repeatable execution paths, from violation of rules and constraints, or from
processes being stuck a some arbitrary stage without being aware of them or
any possibility to apply appropriate escalation measures.

The literature is a rich source of impressive examples of savings and other
positive effects resulting from the deployment of workflow systems, e.g. see
[?] or [?].

Figure 1.3: Potential of Workflow Management, from [?]

A study [?] undertaken by Capgemini for the UK government has scrutinized
six workflow projects in the public administration sector. As can bee seen in
figure 1.3, the most impressive effects were minimization of cycle time, but also
service quality like flexibility and customer satisfaction could be significantly
improved. Process transparency was definitely better. Additional savings in the
areas of paper consumption and office space requirements were measurable.

How could someone be reluctant to apply workflow management technology?
Surely, the handling of business processes with workflow systems does also

1.1 Business Process Management 15

bear some potential problems, e.g. elaborated in Wikipedia [?]. To summarize,
the following arguments are presented there:

1. "Employees loose their individual responsibility and initiative, by strictly
adhering just to the prescribed processes. This leads to a lesser degree of
motivation and mere work to rule.

2. Increasingly turbulent business environments are a factor for a gap be-
tween workflow model and reality. Creativity and ideas for improvement
are rather tightly framed by the technology.

3. Diminished or delayed ability to react upon less frequent or unforeseen
events."

The first argument is concerned with the loss of control of the individual
employees over the process. Alienation and bad motivation like in monotonous
assembly-line work can be observed. Simply put, it is a management decision
who is in control of a specific process, and to what degree this control is
executed. Flexibility could be explicitly designed into the process, so that at
least part of the control remains at the level of the individual participants and
makes productive use of their experience and abilities.

A crucial issue for acceptance of a BPMS is the ergonomic design and imple-
mentation of the user interface. A clearly structured style of presentation of all
information needed to carry out the tasks is essential. Along with the the pos-
sibility to trace the processes by the employees themselves and the increased
transparency, this could outweigh the discontent about a stricter and more
structured way of doing things. It is especially important to try to give decision
making leeway to the users whenever possible, like e.g. decide on which task
to operate next, or to take take influence on further tasks.

The second argument is build around lost agility and flexibility. The effort to
implement a process changes in a BPMS might be higher than merely changing
some paragraphs in a document. But the impact of the change is much higher
and can be applied instantaneously throughout the whole organization, thereby
achieving a maximum level of agility. Nevertheless, processes with a high
rate of change are to be eyed with a healthy portion of awareness. Maybe
consequent reliance on system inherent flexibility features could help in such
cases.

The third area of concern is the ability to cope with exceptional situations, to
allow for deviations from predefined and prescribed execution paths. This

16 1 Introduction

again calls for flexibility features in the BPMS as such as will be dealt with in
section 3.5.

1.1.3 Monitoring and Optimization

Let us now have a look at the last two areas of the process cycle, the monitoring
and the optimization of processes. During process execution with an BPMS,
a large amount of data is generated; first for traceability requirements but
also for ex-post analysis of processes performance. Compaction and adequate
presentation of those data can lead to a level of insight which allows to make
informed decisions and appropriate improvement actions for the processes but
also at the scope of the whole organization. Effective continuous improvement
by holistic process management is feasible on this basis.

So far we used the division of process management in modeling, execution and
monitoring and optimization. Diverse variants of categorization and tasks of
process management exist in the literature. Some of the classifications use a
form of maturity model. We would like to briefly present the Business Process
Maturity Model (BPMM) [?] of the Object Management Group. This model is
based on the well known Capability Maturity Model from the area of software
engineering. The BPMM distinguishes five levels of sophistication:

1. Initial: no process management, inconsistent and ad-hoc decisions

2. Managed: the processes are defined locally and in a repeatable manner

3. Standardized: enterprise wide global standardization of processes

4. Predictable: process performance is analyzed and managed

5. Innovating: continuous improvement of processes

A comparison of the previously discussed cycle model and the maturity model
reveals some commonalities: the layers Managed and Standardized imply that
the processes are standardized (at different organizational scopes). The most
sophisticated layer Innovating resembles the optimization phase. The Predictable
layer is roughly equivalent with the phase execution from the cycle model.
BPMN defines targets and postulates prescriptions, but does not deal with
implementation issues (like IT-support) at all. A requirement is e.g. ([?], page
350):

1.2 Process Classification 17

Measures of process attributes and performance and quality re-
sults emerging from the organization’s product and service work
are collected on a periodic basis and stored in the organizational
measurement repository.

From a pragmatic perspective, such data about process executions are only
available in a ready usable form, when the processes are really implemented
on the basis on a (technical) BPMS. Both presented models are rather similar to
each other when viewed from a step back.

In the following section, we will have a look upon which classes of processes
can be typically found in business organizations.

1.2 Process Classification

Several classification approaches for business processes exist (cf. [?] for an
overview). Commonly, three groups of process types can be distinguished, like
depicted in figure 1.4:

q Core Processes: those are the processes that are instrumental in fulfilling
customer needs, which are essential to meet the business targets. They
are highly specific within a business sector as well as within a single
corporation.

q Management Processes: those are common processes for corporate man-
agement, reorganization and quality assurance

q Supporting processes: are situated in the areas of finance and controlling,
in human resources, etc.

Similar classifications just differentiate between primary processes, which cor-
respond to the category of core process mentioned above and secondary pro-
cesses which subsume the other two categories, thereby avoiding the somewhat
blurred difference between management processes and support processes.

Several process frameworks devote themselves to a single application domain
or a business branch, a prominent example being the ITIL framework for
processes in IT operations and services [?].

To gain an overall insight into all processes of an organization they are collected
and structured in process maps, process handbooks or process libraries.

18 1 Introduction

ManagementIprocesses

CoreIprocesses

SupportIprocesses

CustomerIRelationshipIManagementI(CRM)

SupplyIChainIManagementI(SCM)

Strategy Controlling
Process
management

Quality
management

...

ProductILifecycleIManagementI(PLM)

...Human
resources

Finance Infra-
structure

IT

Figure 1.4: Processes in Business Organizations

1.2.1 Core Processes

The core processes are essential to achieve the goals of the organization as
a whole. Their importance is captured by the term primary processes. In a
corporation into manufacturing, one would find processes for production and
sales in this category. For a health care organization this would be the processes
for diagnostics and treatment of the patients.

A further subdivision of processes can be made along certain types of organi-
zations. The Siemens Reference Process Framework [?] enumerates processes
for manufacturing sector and distinguished three process groups.

q Product Lifecycle Management (PLM)

q Supply Chain Management (SCM)

q Customer Relationship Management (CRM)

1.2 Process Classification 19

In order to fulfill the ultimate goal of revenue generation by selling the goods,
the future sales items would have to be developed first. This is the area of
Product Lifecycle Management where one can find the following processes:

q Planning

q Construction and Design

q Prototype and sample development

q Product approval and accreditation

When there are prototypes or samples, the production for customers could
start. Relevant processes are:

q Order Processing

q Purchasing

q Production Planning and Production

q Shipment

Customer Relationship Management surely is a group of core processes:

q Customer Acquisition and Prospect Handling

q Quotes and Bids

q Marketing Campaigns

To illustrate the width and scope of the area, we will give some examples for
core processes for specific economic sectors:

q Banking: Loan Management, Account creation

q Insurance: contracting and insurance policy modifications, claims ap-
proval and management

q Public Administration: File Management, travel document application
processing, business registration, building permit processing

20 1 Introduction

1.2.2 Supporting Processes

In contrast to the core processes, the supporting and management processes
are much more uniformly applicable over all branches. They can be further
subdivided into:

q Human Resources: administration of employee centered processes

– Application processing and selection, Recruitment

– Grants and revocations of access permissions and rights

– Vacation administration

– Business trip planning and accounting

– Expense processing

– Sickness leave handling

– Work time and project time accounting

– Employment termination administration

q Accounting: Processes to deal with invoices, dunning, payroll processing

q Infrastructure and IT-Processes:

– Incident Management: Complaint management and classification

– Problem Management: Problem solving and trouble shooting

– Configuration management

– Resource acquisition and maintenance management

– Supplier management

– Customer and user support

1.2.3 Management Processes

Examples for management processes are:

q Strategy: Development and regular evaluation of business strategies

q Workforce Planning and Development: Planning the quality and quantity
of needed personnel, appraisals and evaluations, education and qualifi-
cation measures

1.3 The Process Centered Organization - A Case Study 21

q Financial Planning and Controlling: planning for financial requirements,
solvency assurance, capital and asset management

q Process management: analysis and optimization of business processes,
leading and implementation of reengineering efforts

q Risk management: manage risks in the areas of finance, production,
environmental issues

q Quality management: Elicitation and prescription of quality criteria, regu-
lar evaluation and correction measures, lead of overall quality enhancing
efforts e.g. Six Sigma projects

Notably, this group also includes activities concerned with the processes them-
selves. Planning, elicitation, documentation and design of business processes
are a central management task. Those topics have to be dealt with in an open
manner ignoring organizational boundaries and must be carried out at all lev-
els of the hierarchy, from management to the single employees in the business
and staff departments.

1.3 The Process Centered Organization - A Case
Study

The following small case study helps to illustrate, how successful and inte-
grated application of BPM concepts might look like:

A Internet Provider "SuperSurfer" applies BPM principles universally. The
core processes as well as the supporting and management processes are imple-
mented. The sound base for this is the deployment of a BPMS which holds all
relevant information in a data base.

The corporations core processes are:

q CRM: From the first contact with a prospect until order reception. The
CRM module in the BPMS allows the administration of customer data,
contact data, appointment management and contact protocols. Quoting,
bid processing, and order processing are integrated.

q SCM: The order processing forms an interface to the area of produc-
tion. According to the order, new processes like "Creation of an Internet

22 1 Introduction

Connection" are started. Those processes consist of interactive and of au-
tomatic steps. Interactive steps are carried out by an employee, automatic
steps are performed by some program, a third party system or by calling
web services in external organizations like domain registrars. Production
processes culminate in shipment and installation as well as in producing
an invoice.

q Service: Ongoing customer care like inquiry and service request process-
ing, and maintenance operations as well as appropriate customer contacts
via sales conclude the cycle and hopefully result in further acquisition
actions.

The supporting processes comprise:

q Human Relations: Regular and special vacation applications, flexitime
administration, business trip applications and accounting, expense re-
porting, leave for sickness, general and project specific time accounting,
employee selection and hiring.

q Infrastructure and IT: Acquisition of hardware and software, infrastruc-
ture maintenance.

q Project management: execution of projects e.g. in the areas of software
development, quality assurance and process reengineering.

The spectrum of the processes contains highly structured, high volume pro-
cesses which are deeply integrated with other in-house and third party IT
systems as well as rather simple processes with hardly any structure at all. But
all those diverse processes are performed within the controlling and logging
capabilities of a state of the art BPMS, which facilitates some crucial advantages.
Let us illustrate this via some example scenarios:

q Each employee can access all his tasks electronically, even when being
in the road and by means of a smartphone. The tasks can be structured
arbitrarily in hierarchical folders providing much needed orientation and
focused views.

q Responsibility transparency: Each and every running process is assigned
to one participant (parallel processing could lead to a multitude of per-
formers). The ability to provide instantaneously information about the
state of each process ("Where is it now?", "Who has it?", "When will it be
ready?", ...) is gained.

1.3 The Process Centered Organization - A Case Study 23

q Integrated central calendar: The calendar is integrated with the BPMS
and allows to present different views (vacations, business trips, leaves
for sickness) linked together with arbitrary appointments and dates and
deadlines from running processes.

q Central Database: All data relevant for customers and production are
in a central database. In trouble-shooting scenarios, service personnel
can access customer data, contact data, current orders, previous service
cases and so forth. They have current and comprehensive information
immediately on hand.

q Controlling: The reporting component can deliver all facts for intra-
organizational controlling. Answers to questions like: "What is the load
of the employees?", "How many orders were processed in the current
period?", "How well did we do in comparison to last month?" can be
provided. Flexible ad-hoc reporting is possible and also standardized
repeatable reports are provided.

q Agility: When there arises the need to change a process, like e.g. to
incorporate an additional checking step or some additional tasks when
certain conditions hold, the process definitions get adapted. From this
point in time, processes are executed adhering to the new definition. The
whole organization can react quickly to changing requirements. Changes
in the data structures, like new fields for customer data records are
likewise deployed almost effortlessly.

The next chapters will deal with the essential steps to implement such a process
oriented organization.

24 1 Introduction

Chapter 2

Process Modeling

Process modeling is the transformation of the information about a process into
a model. Data structures, process participants, the details of the individual
process steps, and the flow of the data and control of the process are described.
To put it bluntly:

Who does what when with what means?

We have to define which actors perform which activities with which data using
which tools and in what sequence. Before we will explicate the modeling steps,
we have to ask ourselves, what the ultimate purpose of this modeling is. In the
previous chapter, we presented the process management cycle with modeling
being the initial step. Usually, the next step is the execution of the model under
the control of a BPM system. But there could be circumstances, where an
immediate execution capability is not intended. Reasons for that might be:

q the process is not suited for the execution in a BPMS, since it describes
actions performed by a single person.

q the process is not (yet) described or understood in sufficient level of detail.
The description should serve as a guidance for process executions, details
will have to be elaborated and formalized later on.

In both cases, a thorough modeling of the process could nevertheless make
sense in order to incorporate it into a complete process handbook which cap-
tures all business processes.

26 2 Process Modeling

The different perspective from a modeling point of view is the level of detail
needed. An executable process calls for complete and thorough definition of
data structures, elaborations of conditions and technicalities of calls to external
systems. For documentation purposes alone, such effort is not needed.

Before we delve into the center of process modeling, we will have a look into the
organizational environment were such processes are executed. Subsequently
we will discuss the process flow as a controlled sequence of activities, and then
process data aspects will be treated with.

2.1 Defining the Organizational Structure

In order to be able to define business processes, we have to define the structural
and functional elements or the organization, namely the organizational units
and the roles within.

2.1.1 Organizational Units

Any organizational entity (corporations, government institutions) of significant
size is structured in progressively smaller specialized units; examples are:
accounting office, human resources department, production division.

Organizational units can be typed, like in a university, there are schools, de-
partments, research centers, etc. The type of the organizational unit its called
its organizational class.

Organizational hierarchy

The individual organizational units are usually arranged in a form of hierarchy,
thereby forming the organizational tree which can be depicted in an organiza-
tional chart. Capturing this structure and to map it into the BPM system is of
importance, since the processes often flow between the units and hierarchical
layers.

There is a kind of potential conflict concerning the rather static boundaries
implied by the organizational structure and the desire to implement corporate
wide process flows. Where should the responsibility for process execution
be placed? A viable compromise is the introduction of a matrix organization,
where the hierarchical structure is enhanced and overlayed by virtual units

2.1 Defining the Organizational Structure 27

stemming from process definitions. The pure (or extremal) form would be a
process structured organization, where the original organizational structure is
substituted by the business processes. This topic is discussed e.g. in [?].

2.1.2 People

For the mere modeling purposes, it is not necessary to deal with each and every
person who will be participating in the process. We strive for the processes to
be independent from concrete persons, we will use roles to provide a suitable
abstraction concept.

At run time, for execution purposes, the persons that shall use the BPMS must
be known to the system. Certain attributes, like name and unique id as well as
other properties like e-mail address, phone number, street address are stored.

2.1.3 Roles

Each type of organization will have different bundles of functional tasks or
capabilities which are assigned to members of this organization like secretary,
head of department, software developer or spanish-speaking.

Such bundles are called roles and might also subsume or imply a set of rights.
Consider the role "system administration" which will usually allow to carry
out some privileged actions.

Besides the roles already existing in an organization, there are roles that must
be defined specially for a process or for an application. Such process specific
roles form a virtual group of persons, which potentially carry out certain tasks
in a process. There might be a role "Approver" designating all persons that
may act as approving instance in a particular process.

Roles can be differentiated along their relationship to the organizational struc-
ture. There are roles which apply within an organizational department, e.g.
someone being a "Research Director" of a specific lab. Such kind of roles are
said to be local roles.

Other roles might be significant within a particular department as well as all
subordinate units below it in the hierarchy. Being the "Dean" of a school also
implies being "Dean" of all departments within the school. Such roles with a
deep scope are called hierarchical roles.

A third form of roles is applicable without any organizational context: "spanish-

28 2 Process Modeling

speaking" is not dependent on ones position. Such roles are said to be global
roles.

When assigning roles to users, for local and for hierarchical roles an organiza-
tional unit must be stated to provide the proper scope. Assignments of global
roles do not require this.

Mr. Muller is Manager
in Production

Management

Production Marketing Development

...Production
Hardware

Production
Software

Mr. Gomez speaks Spanish

Ms. Smith is Clerk in
Development

Figure 2.1: Organization and Roles

Figure 2.1 depicts the scope of the different role assignments. The role "Spanish-
speaking" is a global role, therefore the scope of the role assignment is the
whole organization tree. Role "Clerk" is a local role, a role assignment for this
role requires an organizational unit and is only valid in this particular unit. The
"Manager" role is a hierarchical one, role assignments are valid in the assigned
organizational unit and in all subordinate organizational units as well.

A straightforward schema to define organizational structures is presented in
figure 2.2. One can find the entity classes "User", "Role" and "Organizational
unit". The class "Role assignment" defines the relationship between those three
entity classes. A recursive 1:n relationship on "organizational unit" represents
the organizational hierarchy.

Users can be assigned different roles in different organizational units, but there

2.2 Modeling the Flow 29

Role Role
assignment

User

Organizational
unit

Organization
class1 n

1

n

n 1 n 1

1 n

Figure 2.2: Schema of Organizational Data

are some constraints involved:

q Some roles can only be assigned once per organizational unit. This applies
for roles which capture the aspects of a function or position (e.g. there
can only be one "Head of Department" per department).

q A user can be assigned a particular role just once. This is obviously the
case for global roles, and also often applies to functions or positions (one
person cannot be "Head of Department" for several departments).

Since a particular user can be assigned roles in different departments, the
modeling of matrix organizations is possible using this scheme. Besides the hi-
erarchical organizational structure, there can be further "virtual" organizational
units which subsume users from different "real" departments. There could be a
joint "Project X" organizational unit which includes employees from marketing,
from sales, from engineering, etc.

Two further aspect of organizational modeling, namely substitutions and au-
thorizations will be dealt with in chapter 3 "Process execution".

2.2 Modeling the Flow

We would like to clarify some terms before we will turn towards the topic of
process modeling:

q Process definition: this is the mapping of a business process to a model
(e.g. "business trip administration").

30 2 Process Modeling

q Process instance: this is a single case, a concrete instance of a process
definition (e.g. the business trip of Mr. Smith to Washingtion from the
Oct. 2nd, 2013).

q Activity: is a step of a process definition, can be elementary or can
be structured in itself (being a subprocess definition, e.g. application
procedure for trip funding).

q Task: is an elementary step in the process (e.g. approval of trip funding).

q Application: a set of topically related process definitions (e.g. "Personnel
processes"

The terms are closely related to the Glossary of the Workflow Management
Coalition [?].

2.2.1 Selection of a Process Modeling Language

The first consideration in process modeling will clearly be the selection of an
appropriate modeling formalism and a corresponding notation. Since the field
has a certain history and maturity, there are many viable candidates originating
from diverse sources. We will mention just some of them:

q Formal Notations: The most prominent representative in the area or
formal methods are Petri-Nets, a particular modeling language building
on them would e.g. be YAWL [?].

q Notations emerging from products: ARIS, a tool (of Software AG) for
process modeling being in widespread use, employs the "Event-driven
process chains (EPC)".

q Standards: The widely known modeling method UML originating from
software engineering, also allows to model processes via the UML "Ac-
tivity Diagrams". In the domain of business processes, the UML method
is being used less and less.

The Business Process Model and Notation (BPMN) 1 [?] of the Object
Management Group (OMG) has prevailed as the standard and meanwhile
most of the products support this notation (or an extended subset of it).

1BPMN originally was the acronym for Business Process Modeling Notation, since version 1.2
more emphasis is put on the model, and the acronym now means Business Process Model and
Notation.

2.2 Modeling the Flow 31

The Business Process Execution Language (BPEL) [?] is a language to
specify the interplay of processes in which there are hardly any interactive
steps at all. Main focus is the "orchestration" of automatic processes.
While this notation has been promoted by large vendors for some time, it
looses foothold against BPMN, especially since BPMN got an execution
semantics in version 2.0.

For some time, an extension of pure BPEL to also include interactive steps
has been in the works (BPEL4People [?]).

All those methods (with BPEL being an exception here) rely on a graphical
notation, the resulting process model being a picture, which are supposed to
facilitate communication and understanding of the model with rather limited
effort.

The main drawback of a comprehensible graphical notation is the omission of
details which would be needed for implementing the processes in a BPMS. Ad-
ditional textual annotations and details are needed for real technical enactment.
This is an inherent dilemma in process modeling, as it serves two purposes: on
one hand to be a representation of the process that is easily graspable by all
(human) participants, on the other hand to be an exact and detailed base for
the execution of the processes in an IT system.

A second problem of the graphical modeling methods is, that the notation is not
really restrictive at all, one can "draw" quite a lot of absurdities: unstructured,
never terminating processes, or processes being stuck under certain conditions
e.g. because of omission of some edges and flows between steps. Sadly, this
often is recognized just when the process should be deployed in a BPMS. The
following citation taken from the definition of BPMN ([?], page 439)is revealing
here:

Not all BPMN orchestration Processes can be mapped to WS-BPEL
in a straight-forward way. That is because BPMN allows the mod-
eler to draw almost arbitrary graphs to model control flow, whereas
in WS-BPEL, there are certain restrictions such as control-flow being
either block-structured or not containing cycles.

In the light of those reasons, we will take a slightly different approach here:
the description of a process corresponds to the description of an algorithm. In
the area of precise description of algorithms, programming languages were
introduced in the field. There are many different programming language fami-
lies founded on diverse paradigms (procedural, object oriented, functional and

32 2 Process Modeling

logical being some examples). For the purposes of defining business processes,
the structured paradigm seems to be the most promising one. Graphical rep-
resentation of control structures is straightforward and can be conveyed with
minimal effort.

But to formulate a business process (just) in a mere programming language, is
not really appropriate. The modeling should be manageable also for persons
without any special programming skills or groups not interested in technical
details. As solution we represent the control structures of the procedural
languages in a graphical manner like in the area of Visual Programming [?].

The approach used here is the definition of a procedural script language for
business processes along with a corresponding graphical representation using
the elements of BPMN [?]. The pure textual notation will be called Workflow
Definition Language (WDL).

All needed control structures like sequential execution, alternative execution,
repeated execution, parallel execution and event handling are representable
in BPMN, as well as the definition of elementary activities. We will not use
all BPMN constructs, but deliberately employ just a reasonable subset in a
more constrained structure. The consequence is, that any modeled process is a
correct BPMN process, but not every BPMN process complies to the structural
restrictions imposed by us.

We will now introduce the BPMN notation along the language elements of
WDL. The most basic elements of the graphic process model are nodes and
edges. Nodes can be activities, events and gateways. For edges, we will singly
use the control edge of the BPMN notation.

2.2.2 Activities

Let us start with a look at the different types of elementary activities:

Manual activities

are referred to as "Tasks" or interactive activities. They are executed by a person
(usually abstracted and represented by members of roles) and are not divided
or structured for process modeling purposes. Each task at least has a unique
id and a name. The name does not need to be unique, the same name can be
used in different locations within the process definition or in other process
definitions.

2.2 Modeling the Flow 33

Figure 2.3 shows the graphical representation. The box is marked with a person
icon in the upper left corner. The inscribed text states the agent of the task (a
role-id) and the tasks name.

Manager Approve();

Figure 2.3: Manual Activity

In WDL notation a task is described as follows:

agentid taskid "(" [form {"," form }] ")" [stepname] ";"

The id of the agent is followed by the id of the task. The process data used in
the step can optionally be designated as forms within the round brackets. The
details of the specification of agents and process data will be dealt later on. For
now it suffices to assume that an agent id is just a unique name of a role, and
that the process data structures are empty.

System activities

are executed by a program. We differentiate between synchronous and asyn-
chronous evaluation:

(a) synchronous: during process execution, some calculations or transforma-
tions are made directly or programs are called immediately. There is no need
to wait for external third party systems. Figure 2.4 depicts the representation
in BPMN and WDL.

system send.result()
"Send results";

Figure 2.4: System activity

The somewhat subtle difference from the notation of a manual activity is the
parchment scroll in the upper left corner. In WDL, after the keyword system
the name and argument list needed to call a (Java-)method are needed:

"system" methodname([arg {"," arg }] ")" [stepname] ";"

34 2 Process Modeling

(b) Asynchronous execution: a third party system will be contacted, the execu-
tion of the process will commence when the communication with this system
has been completed. The graphical notation shows cog wheels, in WDL the
keyword batch is used, followed by the name of a class which implements the
details of the communication, cf. figure2.5.

batch demo.batch.Main
"Process in external system";

Figure 2.5: Batch Step

Subprocesses

Subprocesses can be used to break down larger processes into smaller, more
manageable pieces. A possibly complex, interrelated part of the process is
graphically removed from it. In the process, just the call to the subprocess
remains, we abstract from the details of the subprocess here, the exact definition
of the structure can then be found elsewhere. Besides hierarchical decomposi-
tion to achieve an uncluttered big picture, subprocesses are a means of reuse;
recurring process parts just need to be defined once and can be referred to
multiple times.

In WDL, the keyword call designates a subprocess:

"call" processname ([arg {"," arg }] ")" [stepname] ";"

The BPMN rectangle of a subprocess has a boxed "+" in the lower middle area,
thereby symbolizing the hidden structure of the element.

call Approval();

Figure 2.6: Subprocess

2.2.3 Control Structures

A possible course of execution for a process is denoted by composing single
activities via special control structures. In BPMN, where are special nodes for
control structures, the edges between the nodes represent the control flow.

2.2 Modeling the Flow 35

Figure 2.7 shows a simple, but complete process. Each process begins with a
start node and finishes with an end node. Graphically, the end node can be
distinguished as being the one with a thicker border.

begin
Role1 Task1();
Role2 Task2();

end;

Figure 2.7: Sequence

Directed edges connect the nodes and define the control flow. The minimal,
empty process consists of a start node, an end node and an edge leading from
the start node to the end node. Further constructs can be inserted into this
process by obeying to the following principle: replace an edge by a complete
construct and by two edges, one edge leading to the construct and one edge
leading from the construct to the original endpoints of the detached edge. This
transformation rule is illustrated in figure 2.26, all such rules together constitute
a graph grammar.

→

Figure 2.8: Transformation Rule of Graph Grammar

Each of the control structures we will be introducing in the following can

36 2 Process Modeling

be incorporated into the process graph in this manner. A process graph is
valid in our notation when it can be constructed by repeated application of the
transformation rules starting with the initial primitive graph. An immediate
consequence of this approach is, that each graphical model can be translated
to the scripted form (the WDL). Both notations are therefore semantically
equivalent (the graphical notation is naturally richer concerning the position
and sizes of the elements). The complete definition of the graph grammar will
be given in section 2.2.11. The implementation of the graphical process editor
of @enterprise follows the the rules imposed by this grammar, no syntactically
incorrect processes can be created with the editor.

We will now discuss the control structures.

2.2.4 Sequence

A sequence is the succession of two or more steps, one after the other. In WDL,
the activities are simply written in this textual order. In the graphical notation
the activities are connected by a directed edge (an arrow) leading from the
previous to the next step.

In figure 2.7, a complete process has been depicted, beginning with a start node,
followed by a sequence of two activities, which will be executed consecutively,
succeeded by an end node. In WDL, the start and end nodes are represented
by the keywords begin and end.

2.2.5 Alternatives

There is a selection of one concrete execution path from two or more possible
execution paths. We distinguish between a system imposed selection versus a
selection carried out manually. The first form is called an If, the second one is
termed Choice, thereby indicating the involvement of human judgment.

If

The selection of the execution path is accomplished by the system through
evaluation of a predefined condition. The WDL notation corresponds to the
one known from structured programming languages. In the graphical notation,
there is a diamond shaped condition node annotated with the condition text.
Two edges lead from this node. One edge is followed when the condition is
true, the second edge (the one with the little diagonal line) is the one that is

2.2 Modeling the Flow 37

followed when the condition evaluates to false. In BPMN notation, such lines
denote default edges.

In a colored model, the first edge (condition true) will be drawn in green, and
the second one will be drawn in red. Both paths from those two edges converge
in a single diamond box.

if (f.x = 1) then
Role1 Task1();

else
Role2 Task2();

end;

Figure 2.9: if construct

In general, a node has either one black edge (or maybe several of them) origi-
nating in it, or a green and a red edge leading from it. In the second case, the
node is a condition node and depending on the outcome of the evaluation of
the condition, one of those two edges is activated.

Multiple selections can be modeled with the elsif construct, in the graphical
representation all the different paths will lead to one single node cf. figure 2.10.

For a technically sound and complete specification of the selection condition,
we need a formalism which allows the precise denotation of boolean expres-
sions. We will use a simple expression syntax or XPath, but will defer the
presentation of this aspect until chapter 2.5.

Choice

The second form for selecting one of a set of alternative paths is the manual
choice by the human agent of the task at the process instance run time. The
current agent of a task determines, at which of the successor paths the process
instance execution will continue. There are several successors. Each of the
successor paths can be optionally annotated with a condition. The user can
at run time choose one from those paths without a condition and from those
paths where the condition evaluates to true.

38 2 Process Modeling

Figure 2.10: if .. elsif .. else

In the graphical notation, cf. figure 2.11, the BPMN intermediate event node
is used (a double circle). The starting node of the choice construct contains a
pentagon, symbolizing that one of many events will be waited for (the events
being the manual choosing by the agent). Each of the paths starts with a node
that contains a triangle, which means to wait for some event. Below each of
those nodes, there are the conditions and an explanatory text. All the paths of
this construct converge in a single diamond shaped node.

choice
"order directly",
f.amount < 500:
Assistant Order(f);

"check again":
Manager Check(f);

"Don’t order":
system test.fileIt()

"Fie";
end;

Figure 2.11: Choice

2.2 Modeling the Flow 39

At run time there may arise two special cases:

q None of the choice paths is selectable, since all the conditions evaluate to
false. Then the system will signal an error when the agents tries to finish
the task leading to the choice.

q Just one of the paths is selectable, then there will be no selection mask
presented to the user, and the successor step is started immediately,
without any further user involvement.

2.2.6 Loops

Repeated executions of process paths are expressed in the model via loops. The
actions within the loop (the loop body) are executed again and again as long or
until a condition holds. There are several kinds of loops cf. figure 2.12.

In a While loop the condition is checked before the loop body is executed even
once. The loop body is executed when the condition is true. From the end of
the loop body an unconditional edge leads to the initial condition node of the
loop construct, there is no special end node in while loops.

In a Repeat loop, the content of the loop body is executed at least once, the
diamond shaped start node of a repeat unconditionally leads to the loop body.
After the loop body, a condition node is responsible for checking the condition
and thereby for deciding if the loop body should be executed again. If the
condition is false, the loop body is executed again, else, the loop execution
leaves the loop.

There is a third loop variant, depicted in figure 2.13, where the condition is
neither checked before the loop body nor after it but rather at an arbitrary point
within the loop. Graphically, it resembles the repeat loop, the difference being
that the path from the condition checking node to the start of the loop is not
a simple edge, but can be a whole path of constructs. In WDL, we denote the
condition checking note by exit when.

2.2.7 Parallelism

Using parallelism, the execution path of a process can be split up in several in-
dependent and structurally different execution paths, each of which progresses
at its own speed. All of the splitted paths converge in one join node. Again,
there are several variants:

40 2 Process Modeling

while (f.x = 0) do
Role1 Task1();
Role2 Task2();

end;

repeat
Role3 Task3();

until (f.x = 0);

Figure 2.12: While Loops and Repeat Loops

loop
Role1 Task1();
exit when (f.finished = 1);
Role2 Task2();

end;

Figure 2.13: General Loop

1. The execution after the parallel construct commences when all paths are
finished. This is called an Andpar.

2. The execution commences, when the first path is completed, this variant
is termed to be an Orpar.

2.2 Modeling the Flow 41

3. The execution commences, when m out of n paths are finished(1 ≤ m ≤
n). n is the number of parallel branches, m is defined by the process
modeler.

4. The execution commences, when m out of n paths are finished, with m
being determined at run time.

In the last three cases, there has to be a an arrangement what should be done
with activities within the independent execution paths which have not yet been
finished, when the parallel construct finished. There are two possible courses
of action, namely terminating the branches or letting them continue in their
execution.

Figure 2.14 shows syntax and graphical representation of the Andpar construct,
in figure 2.15 the Orpar is illustrated. The first node of a parallel construct
is denoted via a diamond shape with an inscribed +. Unconditional (black)
edges lead from it, indicating that all paths originating at this node are put into
execution (at the same point in time). The diamond node with the inscribed * is
the end node of the construct, all paths originating at the + node will arrive here.
The end node is annotated with the condition for termination of the parallel
construct. In the WDL, the different branches are separated via a vertical bar |.

andpar
Role1 Task1();

| Role2 Task2();
end;

Figure 2.14: Andpar

The cases three and four are being modeled like an Andpar, the end node with
the * will be annotated with a method or a description that is responsible to
determine if the whole parallel construct is finished. This method will be
executed every time one of the parallel branches is finished (when its execution
arrived at the end node).

42 2 Process Modeling

orpar
Role1 Task1();

| Role2 Task2();
end;

Figure 2.15: Orpar

The forth case - when the parallel termination condition is dynamically deter-
mined at run time - is the most relevant in practice, illustrated by the following
two examples:

q An application is routed in parallel to three people responsible for deci-
sion. Unanimous vote is needed. Whenever a single negative decision is
made, the outcome is determined, all other paths can be terminated.

q When more than the half of the involved agents is in favor or opposed to
a decision, the outcome is determined, the process can commence after
the parallel construct (vote by single majority).

In the graphical notation, the (arbitrary complex) condition is not shown but
should be represented via a correspondingly meaningful annotation or node
name.

Parfor

The Parfor construct is a further variant of parallel execution. Its applicable for
the parallel execution of of several paths which are structurally identical. The
number of those branches is known solely at run time.

There are two possible sources for this number of branches: 1)it is explicitly
modeled in the data structures, or 2) it is determined dynamically via a function
call.

The Parfor depicted in figure 2.16 first determines the number of data elements
(e.g. number of lines in a table of a form). Then a corresponding number of

2.2 Modeling the Flow 43

parallel for review in mainform.1 do
review.agent Task1(review);

end;

Figure 2.16: Parfor

uniformly structured branches is instantiated and activated. In each of the
branches, one of the data elements (one review line) is worked on.

Graphically, the Parfor is represented as a large container node which envelopes
the constructs of the parallel path. The parallel execution is further indicated
via the three parallel lines in the lower middle border.

Process execution after a Parfor will commence, when all instantiated branches
are finished. Additionally, a function (like in the forth case of parallelism) can
be used to dynamically decide about process continuation.

Branch

A further form of parallelism is the Branch. From the main process flow, an
independent execution flow is forked. This branched flow is not synchronized
in any way with the originating process, the branch even continues to run
when the process instance terminates. This control structure is quite useful for
tasks of lesser importance like e.g. pure informational activities where a person
is merely informed about a process state or progress, without technically acting
on the process.

branch
Role1 Task1();

end;

Figure 2.17: Branch

44 2 Process Modeling

The graphical notation starts with a diamond shaped gateway node (like in
the case of Andpar and Orpar). From this node, two edges sprout. The normal
execution flow of the process is a black edge, the flow into the branch is drawn
in blue. Additionally the end node of the branch is also inked in blue.

2.2.8 Synchronization with Events

When there are several parallel execution paths in a process, they are running
independently from each other until the parallel construct ends. But often,
some kind of coordination within the parallel paths is required; a way of
synchronization is needed to assure that a certain step in one branch is not to
be started before another step in a different branch has been finished.

In order to be able to model this kind of dependencies, we introduce the
constructs RaiseEvent and Sync.

RaiseEvent is used to generate ("raise") an event, Sync can be used to wait for
such an event. Figure 2.18 shows an example adopting those two elements: in
a parallelism, activity task4 should be started not before the parallel activity
task1 has been finished.

The RaiseEvent statement has the following parameters: the first one defines
an event-id (e1, which must be correspondingly stated at the Sync node. The
second argument is rather technical and refers to the transaction environment in
which the event handlers are executed (current_tx is the current transaction).
The third arguments provides a context, either the keyword process for the
current process instance, or a designation of a data element (a form or a form
field).

The Sync node must state the event-id, an event-handler and the context. The
event handler is a set of functions which allows to properly react upon reception
of an event via a program.

In the graphical representation, a BPMN event node with a blackened triangle
is used for the RaiseEvent construct, the Sync is depicted as event node with an
outlined triangle.

This completes the definition of the basic control structures. In the follow-
ing, we will discuss some interesting combination of those elements in more
complex situations.

2.2 Modeling the Flow 45

andpar
role1 task1();
raiseEvent(e1,

current_tx, process)
"task1 completed";

role2 task2();
|
role3 task3();
sync(e1,
com.groiss.event.EventHandler,
process)

"wait for finished task1";
role4 task4();

end;

Figure 2.18: Synchronization

Parallelism within loops

When parallelism is used within a loop construct, and when the parallelism is
finished when not all of the parallel branches are finished, and the remaining
branches will not be aborted prematurely, then the following phenomenon like
illustrated in figure 2.19 arises.

There we have a m of n parallelism within a general loop. Assume, that m = 1,
and task1 terminates. Then the whole parallelism terminates (and task2 is still
active). When the following condition evaluates to false, task3 is executed. After
this task is completed, a new instance of the parallelism is created, thereby
instantiating one task1 and one task2 activity. What we would get at this point
are two instances of task2, one originating from the previous loop execution
and one stemming from the current loop.

This situation can be quite confusing for the users, therefore we choose to
apply the event mechanism for the synchronization of the loop executions
in the following manner: when all branches of an parallelism are finished,

46 2 Process Modeling

Figure 2.19: Parallelism within a Loop

Figure 2.20: Parallelism within a Loop with Synchronization

the workflow engine will generate automatic events for Andpar and Orpar
constructs. These events can be uses to synchronize upon before the next loop
cycle starts. Figure 2.20 shows the implementation. The Sync node waits for
completion of all the branches of the parallelism (task1 and task2). The Sync
node itself must be placed in a parallelism to task3, so no signal gets lost during
the execution of task3.

2.2 Modeling the Flow 47

The same situation can also arise in the context of the Parfor construct, it is
handled in a similar manner.

2.2.9 Workflow Patterns

Starting on the foundation of the elementary control constructs, similar execu-
tion paths can be observed over and over again in business process modeling.
Those similarities were first treated by the group of van der Aalst in the seminal
article "Workflow Patterns" [?] in a systematic way. Starting with 20 such pro-
cess patterns, they extended the pattern catalog to 43 items [?]. Those patterns
are well suited to evaluate languages for process definitions and to be the base
of a comparison framework for such languages.

The patterns were soundly presented as Petri nets. The main difference be-
tween this formalism and the presentation so far is that there are no explicit
control structures like If, Andpar or similar constructs at all. Instead, Petri nets
contain just the most elementary concepts of process graphs: single nodes and
conditional edges. Several of the patterns are not directly mappable to the
notation used here, often two patterns correspond to one control structure. E.g.
the If construct is mapped to pattern nr. 4 exclusive choice, which corresponds
to the If node and also to pattern nr. 5 Simple Merge, which corresponds to the
end node finishing the If construct.

In a previous work [?], we have shown how those patterns can be implemented
via the discussed notation and concepts. We will therefore abstain from an
exhaustive presentation of the whole pattern catalog, but will exemplarily
choose four of them and present their implementation within our modeling
formalism.

Persistent Trigger

Two process paths should be synchronized via events. The event should be
stored persistently, until the process gets to the synchronization point. This
pattern can be modeled without support for persistent triggers, in fact it is a
special case of the situation already depicted in figure 2.20.

Event storage is modeled by positioning the Sync node in such a place of the
process, where the event can be received and handled. A process instance
would run in parallel to the Sync node; the parallelism will end where the Sync
would be placed when persistent events would have been used.

48 2 Process Modeling

Multi-Choice

This is a parallelism with n branches, where just m of them get instanciated.
This can be modeled via a combination of Andpar and Ifs. An example with
two branches can be found in figure 2.21.

Figure 2.21: Multi-Choice

Multiple Instances without a Priori Run-Time Knowledge

Additional branches should be added to a Parfor construct at run time. In
principle, this can be accomplished like presented in figure 2.22. In the left
path of the parallelism, additional Parfor branches can be added by insertion
of new review subforms followed by calling the function addParforSteps. The
model does not explicitly show this, but when the modeling of data, function
and access permissions will be done, one could see that the addReviews task
lives up to its name, that is to allow for instantiation of additional subforms
and Parfor branches.

A further interesting variant of this solution is, that the addition of Parfor
branches should only be possible as long at least one of the existing Parfor
branches is still being executed. This could be modeled with an additional
synchronization, depicted in figure 2.23 for the BPMN and in figure 2.24 for
the corresponding WDL.

2.2 Modeling the Flow 49

Figure 2.22: Parfor with additional Branches at Run Time

As long as the left branch (with the addReviews task) is still active, the branches
in the Parfor (and consequently the whole Parfor) will be waiting for the com-
pletion of this task. As long as the task is active, additional reviews could
be attached and treated in new Parfor branches. When the addReviews task
completes, the event is triggered, all waiting Parfor branches will complete, too.

The Sync node is conditionally executed within an If, thereby avoiding dead
ends when the left addReviews task has already been completed even when
there are still active makeReview tasks (since events are not persisted in our
environment).

Recursion

With subprocesses and calls to them, recursive processes can be defined. Ex-
ample: for a loan application process, the approval is modeled as a distinct
subprocess, which consists of the steps "Approve", "Credit assessment" and
"involve superior". The last step is optional and is again a call to the subpro-
cess itself, since the supervisor should again execute the process or be able to
involve her supervisor, as long as there is one.

50 2 Process Modeling

Figure 2.23: Parfor with additional Branches at Run Time and Synchronization

2.2.10 Power and Completeness

As a conclusion for the central part of process modeling, we would like to
discuss the chosen approach in terms of of power and completeness. Since
just a part of the manifold of language constructs of BPMN is being used and
supported, there is the question if we can model every conceivable process
on this compact base. The answer is a clear Yes, every potential program and
therefore every possible process can be expressed with the set of constructs
introduced her (the approach is Turing-complete). There remains the issue
of how comfortable and how concise the expression gets, since we require
the usage of structured constructs ("overhead"). In the area of programming
languages, this discussion has been going on in the 1960s (cf. e.g. Edsger W.
Dijkstra, "Go To Statement Considered Harmful", [?]). There, a broad consensus
is established, that the additional effort by the systematic use of structured

2.2 Modeling the Flow 51

andpar
Editor addReviews(f);
raiseEvent(finishParfor, current_tx, f);

|
parallel for review in f.1 do

review.agent makeReview(review);
if com.groiss.wf.SystemAction.isActive("addReviews") then

sync(finishParfor, com.groiss.event.EventHandler, f);
end;

end;
end;

Figure 2.24: Parfor with additional Branches at Run Time and Synchronization - WDL

elements and the restriction to them does far the disadvantages.

In the area of business process modeling, the discussion did not yet lead to
such an agreement. Freund and Rücker show in [?] an example for a process
(cf. figure 2.25), that does not lead itself to simple structured reformulation.
But actually, its not that complicated; a reformulation can take place along the
structure presented above in figure 2.18.

Figure 2.25: An unstructured Process

52 2 Process Modeling

In the Business Process Execution Language (BPEL) already mentioned before,
solely structured constructs are used. Granted, this language has the focus on
execution and is not targeted as tool for process analysts. For quick sketch of
a process, especially in the analysis phase, a unstructured approach without
really formal restrictions is often easier to grasp and therefore appropriate. The
ultimate formulation of a business process nevertheless should be carried out
in a structured way.

2.2.11 Correctness of Process Diagrams

On what base can be decided if a given process graph is a syntactically correctly
structured one? We construct a graph grammar like already mentioned above
[?]. This formalism defines a start graph and a set of transformation rules. Each
graph that can be generated from the start graph by successive application of
the transformation rules, must be a correct one in terms of this graph grammar.
Figure 2.26 shows the graph grammar on which our model of process definition
is based.

For the definition of this graph grammar, we have to describe types of edges
and types of nodes. The edge types are well known; there is the standard edge
and there is the default edge leading from conditional evaluations.

Also the node types are well known at this point. But for the sake of a sim-
ple formulation of the grammar we will merge several node types together
resulting in an activity node, and we will also differentiate between some nodes
which share the same representation in BPMN. In particular, there are the fol-
lowing node types: activity denotes all elementary activities (Task, Subprocess,
Batch, System step). If, while, exit_when are conditional nodes in the correspond-
ing control structures. par and branch signify the start of parallelism; andjoin
and orjoin are used at the end of parallelism; end_if, end_choice, loop: are nodes
where the executions of two paths converge; begin, end, end_branch: process
start and process termination.

In the graph grammar, we define the initial graph, which is just a Begin node
and an End node connected by a standard edge. Then the individual rules
follow. Most of them substitute an edge by a complete but rudimentary con-
trol structure; in the substituting structure, the edge type (variable x) will be
retained for one edge. Every edge can be substituted by this principle, with the
exception of the edge between the choice and choice_branch nodes. The rules for
par branch and choice branch insert a new edge into those structures.

2.2 Modeling the Flow 53

Sequence While

If

elsif

Choice

Choicewbranch

Loop,wrepeatwuntil

Andpar,worpar

Parwbranch

Parfor

activity

if

end_if

if if

end_if

choice

choice_branch

end_choice

parfor

end_parfor

par

andjoin,orjoin

par

andjoin,orjoin

loop

exit_when

while

x

x

x

x

x

x

x

x

x

x

x

x

Start
begin

end

+

+

Branch

branch

end_branchx
x

+

*

*

x

if

end_if

+

*

Figure 2.26: Graph Grammar

54 2 Process Modeling

Normally the designer is not concerned with the syntactic correctness of the
resulting process diagram, since it is constructed with the help of a tool that
ensures the rule conformity (e.g. the @enterprise Process Editor).

2.2.12 Exception Handling

During process execution there can arise a number of exceptional situations,
which should already be taken into account during modeling.

Temporal exceptions

will be handled by escalation actions. There are several constellations where
exception handling would be needed:

q overrun process due dates,

q overrun due dates at tasks,

q timeout at waiting for an event,

q delayed start of a task

With such temporal exceptions, we can associate escalation actions that will
be initiated with a temporal offset to the (potential) event, e.g. in anticipation
some hours before the due date or reactively some days afterwards.

The escalation action can be to start a task or a process, it can be just the
notification of responsible personnel via mail, or it could involve arbitrary
complex processing via self written methods.

Error handling

Errors occurring in a step which is carried out automatically without user
interaction (batch steps or hitherto unmentioned web service calls) can be
handled by predefined actions. In the process we can associate an escalation
path with those steps. Within this path an appropriate action can be taken.

All other errors occur in circumstances where a user action triggered them. The
run time environment catches those errors, rolls back the changes imposed by
the action and presents an error message to the user.

2.2 Modeling the Flow 55

2.2.13 What will not be modeled?

Its highly advisable during process modeling to concentrate on the common
and general case first. Thereby one can get an uncluttered big picture and coarse
structure which is usually quite easy to comprehend. One interesting question
then would be which and to what extend special cases, seldom occurring
deviations and ad-hoc changes have to be incorporated into the model.

Let us start with a simple trouble shooting process (see figure 2.27).

Figure 2.27: Trouble shooting Process

The Solve step is followed by a Test step. There is some (not too small) probabil-
ity, that the tester would find some remaining issues and the process has to be

56 2 Process Modeling

returned to the developer. This could be explicitly modeled with a loop. Rather
often, it is better to abstain from modeling the loop and to allow the ad-hoc
returning (go back) to a previous step. In chapter 3 we will discuss the different
deviations from the standard process execution path in somewhat more detail.

2.2.14 Process Definition using Rules

There is a class of processes for which the modeling with the aforementioned
constructs is tedious. Usually this are unstructured processes or processes
which are not completely structured. A simple example would be a process
consisting of three tasks, which are not dependent on each other, they could be
executed in an arbitrary order, or in an order to be determined at run time by a
previous participant. Such "semistructured" processes are not easily modeled
in a strictly structured way.

An example may show the practical relevance of such process classes:

Electronic File Processing - There are a number of different, more or less
precisely defined tasks, e.g. Approve, Handle, Check, Issue, but no predefined
sequence between the tasks. But there is a catalog of rules, when and under
what conditions a particular task may be carried out. E.g. after an Approve step,
there might be an Issue step but no further Handle step.

For processes which fall in the class of the above example, rule based descrip-
tion and modeling is most suitable. The process definition adheres to a set of
rules; each rule has a condition part and an action part:

The condition part describes a certain state of the process (like: what is the
current step, which step have already been carried out, what data is attached to
the process) and denotes the circumstances under which the rule is applicable.

The action part is a possible course of further process actions (possible successor
steps, agents to be assigned to those steps and updates to process data).

The execution of such a process works like this: upon finishing an activity, the
current process state is passed to a rule engine, which selects the applicable
rules and determines candidate successor actions. A user interaction would
select the specific actions. If there are no applicable actions, the process would
terminate.

Let us conclude the process modeling section with the comment that there
are processes which cannot be modeled with all the mechanisms presented
above. Quite simply this are processes where the further course of action is not

2.3 Definition of the Agents 57

known ex ante, neither as structure nor via existing rules. The process would
be treated in a solely "ad-hoc" manner, either at the process start or even during
run time. We will treat this aspect in section 3.5.

2.3 Definition of the Agents

Up to now, we focused on the sequence and flow of the activities. For each
interactive activity, is must be stated by whom it is to be carried out. There are
several possible classes to describe such agents:

User

The activity is to be performed by a specific user and this is to be modeled
in the process definition. Hardly ever this makes sense. Even in the case of a
single person available for the step, the particular person could change over
time. In a process definition, do not use single persons as agent description; it
is better to use "General Secretary" rather than "Ban Ki-moon" 2.

Role

The declaration of a role is the most important and widely used variant of
agent description.

Role within organizational unit

The combined notation of role and organizational unit restricts the potential
agent to those who were assigned the given role in the given organizational
unit, e.g. "Head of Department" in organizational unit "Marketing".

Agent of previous step

This is a reference to the agent of a particular (and already finished) step in
this process instance, e.g. when the agent most acquainted with the case from
a previous participation is to be consulted again with this case, or when the
applicant which started the process should be informed about its outcome.

2In contrast, determining a certain person at run time is perfectly sensible.

58 2 Process Modeling

Agent from process data

Determining the agent can also be done in a very flexible ad-hoc manner. The
agent of a successor step can be read from the process data (from a form field).
In a previous step, the agent for another step has been determined and written
to the form field. This agent could again be a user, a role, or a combination of
role and organizational unit.

Agent from program

The agent can also be determined at run time via a call to a method, e.g.:

q Rotation principle: the tasks are evenly distributed upon the members of
a role (round robin).

q Load based assignment: The assignment mechanism takes into account
the workload of the users. The user with the least load "wins".

q Data driven assignment: like distribution by initial character of surname
or via area of residence.

Combinations are also feasible; like stating a role in the process model and to
determine the specific agent at task creation time via a program.

Empty agent

When no agent is stated at an interactive activity in the process model, the con-
crete agent must nevertheless be determined. This is ensured by the workflow
engine; when a user finishes a step where the agent of the successor step in not
known, the user is prompted to manually enter the agent of the successor step.

The example in figure 2.28 illustrates some of the possible agent descriptions:

An order process is to be started by every user (role All). The orders should
be executed by arbitrary users. The issuer starts the order process and fills in
an application form. One of the form fields form.agent is designated to contain
the person who should process the order. After finishing the order task, the
process will be routed to this person. If the designated agent is not able or
willing to process the order, she could change the content of the agent form field
and send send it on. If the order can be processed, form field finished is set, and
the process execution resumes at the originating issuer (the actual performer of
step order), in task inform.

2.3 Definition of the Agents 59

begin
<order> all order(form);
loop

form.agent dojob(form);
exit when form.finished = 1;

end;
if (form.notify = 1) then
order:user inform(form);

end

Figure 2.28: Job processing

The agent definitions in the process are: a role in the order step, an agent from
process data in the dojob step, and an agent of previous step in the inform step.

An additional example demonstrating the different agent definitions can be
found in section 2.8.

60 2 Process Modeling

2.4 Data Modeling

A central feature of BPM systems is the ability to transport data along the
process path, to react to external changes to the data and to apply changes to
the data. Data that are directly related to a process are called Process Data. Data
that are being used in the system but are concerning more than one process are
called Process Relevant Data. The process data are usually being administered by
the BPMS itself. The process relevant data can also be placed and administered
in external systems. When the need arises, they could be retrieved by the BPMS,
and possibly written back in a changed form to the original location. We will
deal with the aspect of communication with external systems in section 3.8.

When creating a model for a process which manipulates data, also this data
has to be modeled at a certain extend. Two aspects have to be taken into
account; the intrinsic logical schema of the data and the data presentation. In
the following we will deal with both areas; for the schema, we will use the
form paradigm, the presentation will be based on the XForms standard.

2.4.1 Form based Data Modeling

The main classification of data is along the axis structured versus unstructured
data.

Structured Data

The definition of the data structure is usually centered around a conceptual
schema denoted by an Entity-Relationship diagram or a similar formalism.
After such a data schema has been designed (the definition of it is outside the
scope of this publication, see e.g. [?]), we separate the data into the categories
of process data and process relevant data.

The following simple example will help to illustrate this. Figure 2.29 depicts
the data schema for an order process. The process instance itself is represented
as an entity. The order and the order items are the process data. There is exactly
one order per process instance and vice versa (it is a 1:1 relation). Each order
references one customer, each order item references one product. Customers
and products are process relevant data.

Unstructured Data

Unstructured data are data which are not further decomposed in their parts
within the BPMS, like pictures or text documents. Each of those unstructured

2.4 Data Modeling 61

Order

Product

Customer

Order
item

Instance of
Order process

1

n
1 n

1 n 11

Process relevant
Data

Process data

Figure 2.29: Data Schema for an Order Process

documents may have a set of (usually structured) meta data attached, which
must be administered by the system.

The kind and structure of the meta data depends on the nature (the type) of the
data object. For an ocr-ed text document we may be interested in the creator,
the recipient, the reception date etc., for a photo we would like to know when
and where the photo has been taken.

Forms and Documents

To store structured data, we use the Form metaphor. A data structure instance
is administered as a form, its structure is captured by a form type. One form
type is employed to describe and store uniformly structured data of one type.
A form type definition consists of a set of the fields of the form, each of which
has a name and a data type, of information for the display of the form and of
notions relevant for filling out those forms (data creation and updates). The
fields are scalar ones, i.e. they have a single value and no further structure.

To represent tabular data in forms, we use Subforms. At the containing form
- the main form - we define that a second form type relates to it in an 1:n
relationship (the main form has a table consisting of n uniformly structured
lines). When a user fills out the main form, she can insert, update and delete
the subforms. In figure 2.30 such a main form with a subform is depicted.

For unstructured data, we use the Document metaphor. Since documents can
contain meta data, we represent those metadata as form types as well. Such

62 2 Process Modeling

Figure 2.30: Example Form Representation

form types would consist of fields for the structured meta data and also have
an additional "content" field to hold the unstructured content of the document.
In analogy to form types, we use the term Document Type.

A special kind of unstructured data are Notes. They can be attached to process
instances or to documents. Usually they emerge during process execution as
an ad-hoc kind of communication between the participants, serve as reminders,
explanations, or logs of decisions.

Documents can be filed into folders. Folders also have the characteristics of
forms like some meta data and a screen mask. The definitions of folders are
called Folder Types.

Data Types

For the individual fields of the forms, the data types must be stated. The usual
standard data types like Boolean, String, Integer, Float, Date etc. can be used.
The type of a field can also be a (reference to a) form, or can refer to some of
the master data of the BPMS like users, roles, organizational units.

Enumeration types, also called list of values are a further kind of types. Those
types can only hold values from a predefined set (e.g. languages, countries,
product groups). In practice, the representations of those enumerations can
vary over time. Value-List Forms support this change by providing a flexible
mechanism to define such sets of values.

Each value list has a unique id and a set of values. For each logical value a
fixed value for storage and a changeable display value can be stated.

2.4 Data Modeling 63

Connecting Data and Processes

The connection between processes and forms is part of the detailed process
definition. In WDL, there will be a form declaration line in the process header,
the syntax is explained on the base of the following example:

forms order orderform, del deliveryform;

After the keyword forms there is a set of comma separated pairs of form name
and form type. Each of the form names can be used in the rest of the process
definition like a variable name (it can e.g. be used to construct conditions for
alternatives or loops). The form fields can be accessed via a dotted notation
(e.g. order.customer). When a process instance is being started, for each of
the form variables a form instance is created correspondingly. The forms can
be acted upon via a user interface.

Documents attached to the process are deposited in a folder that belongs to the
process instance in a 1:1 relationship.

For process relevant data, we have to model initial navigation roots. That
can be particular folders in the process independent part of the document
management system which themselves can contain folders and documents, or
can be links to other data like tables of master data.

The next step is the mapping of the conceptual schema to the form paradigm.
The entities will be represented as form types. The relationships between the
entities can be mapped as follows:

q 1:n Relationships: there are several alternatives, according to existence
dependency of the objects:

– Subforms: are employed for relationships to n dependent objects, e.g.
an order holds n order items or a company has n street addresses.
Subforms are attached to main forms when the main form is defined.

– Storage of the foreign key: for relationships with independent ob-
jects, e.g. consider a publication having exactly one author, the
key of the author object is stored as foreign key in a field of the
publication objects form type.

– Folder: this kind of representation is advantageous when the de-
pendent entities are heterogeneous (have several different types) or
are unstructured data (ie. documents). There would be a folder as
container object in which the diverse entities can be inserted.

64 2 Process Modeling

q n:m Relationships: for each of such relationships, a separate relation form
type must be created. This form type could be defined as a subform of
one of the related entity types. The other entity type could be referenced
via a foreign key. The decision which form type to use as the main form
of the relationship subform is influenced by logical dependencies or the
preferred way of presentation and manipulation. As an example, the
assignment of roles to users is usually administered from the viewpoint
of the user entity, ie. we would add a subform UserRole to the user main
form. The UserRole form contains a field for selection of the related role
object and further optional fields.

Relationships that relate more than two entity types (like n:m:k relationships)
are treated like binary n:m relationships, we create a relationship type and
reference the form types of the related entities via foreign key fields.

On the basis of the order process example presented in figure 2.29, this means
that Customer, Product, Order and OrderItem are defined as form types. Or-
derItem is a subform of Order, a Customer form is referenced in the Order
form, a Product form is referenced by the OrderItem form.

In the document management system, there will be a folder for customers
where the Customer form instances will be stored as well as a folder where
Product form instances will be inserted.

The discussed approach allows to define arbitrary complex data schemata on
the basis of the elementary data structures and to relate data and processes in
an appropriate manner.

2.4.2 Data Presentation with XForms

Besides the data schema and the mapping to data structures of the system, the
data representation is the second aspect of data modeling. In this section, we
will discuss how form data can be presented by application of the XForms stan-
dard of the World Wide Web Consortium (W3C) [?]. This standard describes a
set of form elements and the associated logic.

The form elements can be embedded in an XML based language, with XHTML
(the XML version of HTML) being the natural choice. The naming of the
form elements is closely related to the corresponding HTML elements, like the
following selection field:

2.4 Data Modeling 65

<select1 ref="method">
<label>Select Payment Method:</label>
<item>

<label>Cash</label>
<value>cash</value>

</item>
<item>

<label>Credit</label>
<value>cc</value>

</item>
</select1>

The element is used to select one of several alternatives. It is notable, that:

q There is no specification, whether the selection takes place via radio
buttons or with a drop down list. The exact kind can be specified by the
optional attribute appearance.

q Labels are part of the form elements. This is quite helpful for visibilities
and input assistance mechanisms, etc.

q There is no value attribute. The select element references by means of the
ref attribute to another element of an XML structure which contains the
instance data. The reference is formulated as XPath expression. XPath [?]
is a language to navigate in XML documents.

The structure of the form and the content (the form instance data) are separated
from each other. The instance data is represented in an XML document, the
structure of this document is not prescribed by the standard. In the form,
the instance data is embedded in a model element, which also holds some
additional information. The following XML fragment shows such a model
element (from [?]):

<model>
<instance>

<payment>
<method>cc</method>
<number>1234539299549</number>
<expiry></expiry>

</payment>
</instance>

66 2 Process Modeling

<submission action="http://example.com/submit" method="post"/>
</model>

The data is nested in a an instance element. The submission Element desig-
nates where the form should be send when the user submits it.

A complete XForm consists of a document embedded in a host language
(e.g. XHTML), which has a model element in the header and where the form
elements are positioned arbitrarily in the XHTML document.

Part of the presentation layer of the data is the logic in the context of insertion
and update operations. The main aspects here are:

q Input check and assistance: assurance, that only valid values can be
entered. Easy input of compound values e.g. combinations of date and
time. Selection of existing data objects (e.g. Customers, Products).

q Dynamic rendering: fade in and fade out of form parts, depending on
context (current step in current process instance), depending on values of
other form fields, according to user privileges.

q Calculation of dependent values: summing up fields, etc.

In XForms, this logic can be specified with bind elements and XPath expres-
sions. A bind element may have the following attributes, all of them (excluding
the type attribute) are XPath expressions:

q type: specification of data type. The input can be restricted to permissible
values, and appropriate input assistance can be provided automatically
(e.g. a date picker).

q constraint: additional restrictions of the range of values can be ex-
pressed as constraints. Also dependencies between fields can be stated.

q required: denotes if the field is mandatory.

q readonly: denotes if the field can be changed.

q relevant: denotes if the field will be rendered at all.

q calculate: an expression can be used to calculate the fields value.

2.4 Data Modeling 67

A special feature of XForms is the declarative nature of those definitions, there
is no need to use other scripting languages like JavaScript.

The elements for form entry at the user interface are the usual ones provided
by such frameworks:

q Input fields: single line fields, multi line text areas, fields used for pass-
words

q Single Selections: Radio-Buttons, Select-Lists

q Multiple Selections: Select-Lists, Checkboxes

q Sliders: to select numerical values

The run time component responsible for XForm rendering and processing
recognizes the types of the fields and can adapt the input field accordingly, e.g.
an input field for a boolean value is rendered as a checkbox, an input field for
date values is decorated with a calendar widget.

The XForms repeat construct allows to operate on tables which are embedded
into the form. Insertions, changes and deletions are possible, cf. subforms in
section 2.4.1.

Figure 2.30 on page 62 already showed such a form with diverse elements. The
fields Employee and Project are of type User and Project, therefore a selection
list with search capabilities is rendered. The Period of Time field has a selection
list for month numbers (with fixed set of values) and an input field for the year.
The table lines below are placed within an repeat element, the table can be
changed with the buttons positioned below it.

XForms Run Time Component

The processing of a form instance in the BPMS can be outlined as follows:

1. The XForm template for the form type is fetched from its storage location
and is being parsed.

2. In the model element, an instance element with the form instance data
and the context data is added. The fields of the form are addressable via
XPath (e.g. via /data/form/fieldname).

3. The predefined field visibilities are inserted as bind elements of the model
element.

68 2 Process Modeling

4. Appropriate submit buttons and corresponding URLs are added to the
actions.

5. The XForm is rendered as HTML page: the individual form elements are
translated into their HTML equivalents, are filled with the data from the
model and are rendered according to the visibilities.

The following example shows the model of a form instance with the fields name,
country and amount in the context of a process for business trip approval:

<xf:model>
<xf:instance>

<data xmlns="">
<form object="com.dec.avw.appl.wiztest_1:1000074412">

<transactionId>4</transactionId>\
<avwcreatedby>herbert groiss</avwcreatedby>
<avwcreatedat>2009-04-06T07:05:22Z</avwcreatedat>
<avwchangedby>herbert groiss</avwchangedby>
<avwchangedat>2009-04-07T08:28:22Z</avwchangedat>
<name>John Doe</name>
<destination>Wien</destination>
<cost>40011</cost>

</form>
<context>

<activityinstance oid="42420">158</activityinstance>
<processinstance oid="42417">158</processinstance>
<task oid="10185" id="request">Anfordern</task>
<processdefinition oid="10090" id="hr_businesstrip">
Business Trip</processdefinition>

<viewmode>view_text</viewmode>
</context>

</data>
</xf:instance>
<xf:bind nodeset="/data/form/name" required="false()"

type="string" />
<xf:bind nodeset="/data/form/country" required="false()"

type="string" />
<xf:bind nodeset="/data/form/amount" required="false()"

type="decimal" />
<xf:submission replace="instance" validate="false"

action="com.groiss.storegui.FormWrapper.updateNoAction"
id="submit0" method="post" />

<xf:submission method="post" id="submit1"

2.4 Data Modeling 69

action="com.groiss.storegui.FormWrapper.updateAndAction?\
javaAction=finish&afterSubmit=top.right.location=comingFrom"
/>

<xf:submission afterSubmit=parent.parent.changeTab()"
action="com.groiss.storegui.FormWrapper.updateAndAction?\
method="post" id="submit2" validate="false"/>

</xf:model>\

Besides the form fields, some context is inserted to to allow for convenient and
immediate access to the most important environmental data:

q activityinstance: the object id (oid) and the textual representation of
the current activity instance

q processinstance: the oid of the process instance and the process (in-
stance) id

q task: oid, id and name of the current task

q processdefinition: the oid, the id and the name of the process defini-
tion

q viewmode: the viewmode indicates whether the form is being opened for
viewing, for editing or for printing

We will illustrate the application of XForm concepts by giving several examples
of form fragments. The particular path strings, URLs and access to list of
values and configuration data correspond to the XForms implementation of
@enterprise. Other implementations may differ in this aspects.

Example: Summing up Subforms. In a billing form there is a subform with the
individual items. In the main form, the summarized amount is to be displayed.
A bind element with a calculate attribute can be used for summation:

<xf:bind nodeset="/data/form/totalamount"
calculate="sum(/data/form/subform/form/itemtotal)"/>

Example: Hiding of a field. Depending on the data of some form field, other
fields should be either displayed or being hidden: the input field for description
of transport should only be shown when the selected option for transport type
was miscellaneous. In the model, this is defined by the following bind element:

70 2 Process Modeling

<xf:bind nodeset="/data/form/transpdesc"
relevant="/data/form/transporttype = ’misc’"/>

In the form, there is an output field defined for transporttype, while transpdesc
is an input field:

<xf:select1 ref="/data/context/transporttype">
<xf:item><xf:label>Train</xf:label>

<xf:value>train</xf:value></xf:item>
<xf:item><xf:label>Car</xf:label>

<xf:value>car</xf:value></xf:item>
<xf:item><xf:label>Miscellaneous</xf:label>

<xf:value>misc</xf:value></xf:item>
</xf:select1>
<xf:input ref="/data/form/transpdesc">

<xf:label>Transport Description:</xf:label>
</xf:input>

Example: Conditionally set a field to read only. Field curecost is only editable
when field reason has the value cure.

<xf:bind nodeset="/data/form/curecost"
readonly="/data/form/reason != ’cure’"/>

Example: Usage of value lists (cf. section 2.4.1). We will show how value lists
can be put into use. The different types of absences (holidays, nursing leave,
sickness, etc.) are captured in a value list.

The value list can be edited in the document management system of @enterprise.
In a folder, one can create a new value list, define its id (absencetype) and create
the individual values and their corresponding labels. In the XForm, we give a
individual model element for the value list:

<xf:model id="valuelist">
<xf:instance
src="com.groiss.wf.html.ValueList.show?id=absencetype"/>

</xf:model>

As src attribute, this URL must be stated, the id parameter of the URL is the id
of the value list. When more than one value list is used, the id parameter of the
URL is the comma separated list of the ids of the value lists.

2.4 Data Modeling 71

Within the body of the XForm, there is a selection element that references to a
value list by giving the id of the model element (valuelist) and the id of the
value list (absencetype):

<xf:select1 ref="/data/form/type"><xf:label>Typ:</xf:label>
<xf:itemset model="valuelist"

nodeset="/valuelists/list[@id=’absencetype’]/item">
<xf:label ref="label"/>
<xf:value ref="value"/>

</xf:itemset>
</xf:select1>

In the former example, we do not explicitly state the data in the model element
but rather specify an URL as a method for obtaining the data.

Example: Configurations data. In the form, we would like to display the
currency symbol that has been chosen in the system configuration, and the
kilometer allowance should be calculated based upon the rate which has also
been defined in the configuration.

To use configuration parameters in an XForm, the model element must get an
additional instance element with an includes a configuration element. In
this nested element, all the names of the needed configuration properties are
stated. The names consist of application id prefix, a colon, and the parameter
name within the application. For system parameters, no prefix is given. The
current values of those parameters will be appropriately inserted at run time.

<xf:instance>
<data xmlns="">

<configuration>
<property name="staffprocs:kmallowance" />
<property name="staffprocs:dailyallowance.domestic" />
<property name="staffprocs:currency.symbol" />

</configuration>
</data>

</xf:instance>
...
<xf:bind id="currency"

nodeset="//property[@name=’staffprocs:currency.symbol’]"/>
<xf:bind nodeset="/data/form/kmamount"

calculate="//property[@name=’staffprocs:kmallowance’] *
/data/form/km"/>

72 2 Process Modeling

To summarize: the tasks in data modeling start with the definition of a concep-
tual data schema which also means to classify the data according to its usage in
the processes and their interdependencies. On this base, form types and their
relationships can be defined. For each form type there is an XHTML page with
the corresponding XForms elements, like input fields and bind elements. The
creation of such forms in @enterprise will be presented in section 2.7.4.

2.4.3 Form Visibilities

The definition of the visibilities of form field with XForm concepts, namely with
XPath expressions in the three attributes relevant,readonly and required is
rather cumbersome. Especially when we need to define the visibilities for each
formfield for each process step. We map the four sensible combinations of the
attributes to four form field modes:

Mode relevant readonly required
invisible (inv) false false false
read only (ro) true true false

read write (rw) true false false
mandatory (man) true false true

For subforms (which are embedded tables) there is an additional mode. The
individual forms are editable but deletion of subform instances or creation of
new subform instances is forbidden.

Those modes can be defined for all form variables per form field and per
process activity in a set of tables.

Figure 2.31 shows the visibilities of a form in a process definition. For each form
variable, a tab would be shown. The columns of the table are the individual
process activities, the lines of the table are the form fields. In the tables cells the
aforementioned modes can be found.

2.5 Conditions

During process modeling we had to formulate conditions. Naturally those
conditions reference process data, therefore we deferred the treatment of this
aspect until the data modeling has been discussed. Now we can catch up on
the topic of conditions. Those occur at the following locations in a process
definition:

2.5 Conditions 73

Figure 2.31: Form Field Visibilities

q Alternatives

q Loops

q Selection (Choice)

Another part of process definitions are postconditions of tasks, that are condi-
tions that must hold after a task is completed and which will be checked when
a participant wants to finish the task.

All those conditions can refer to data from several form variables and to other
data as well. We provide three mechanisms to define conditions. In WDL,
simple conditions can be constructed directly by combining comparison expres-
sions with boolean operators; the WDL examples for If, Choice and the different
forms of loops already contained such conditions (cf. section 2.2.5).

The second possible way to formulate conditions is via XPath expressions,
those have already been mentioned in the context of the XForms. For such
XPath conditions in the process context, we provide the access to all process
form instances and additional information via predefined variables:

q pi: the process instance

74 2 Process Modeling

q ai: the activity instance

q user: the current agent

q form_{id}: the form variable with the stated id

q configuration: the system configuration

q configuration_{applid}: the configuration of the application with the
stated id

Starting with this variables, we can now formulate conditions.

Example: The value in field totalamount of form order must be greater than
3000:

$form_order/totalamount > 3000

Naturally, the variable form_order references the process form variable order,
there must be a formfield with the name totalamount.

Example: Is the value of the field toagent in form order equal to the agent
who started the process?

$form_order/toagent = $pi/agent

The third way for condition formulation are arbitrary (Java-) methods, es-
pecially used when complex requirements exhaust the power of XPath with
respect to formulation of conditions (e.g. access to external systems). In this
methods, an easy way to access the process context is provided as well.

2.6 Functions

Interactive tasks require the agent to perform certain operations, e.g. to fill in
the process forms or to attach documents. But also programs can be called,
thereby achieving partial automation of the task. Data from an external system
or from another process instance could be used or inserted into the current
process instance.

Part of modeling is also to determine which functions should be provided in
which tasks to deliver effective assistance to the agents and to relieve them

2.7 Process Modeling with @enterprise 75

from routine operations. Those functions are to be defined according to their
interfaces to the system, but also concerning their integration in the user inter-
face.

Besides task related functions, there are also global functions which could
be executed independent of a certain process context or state. Usually those
functions are in the area of process relevant data, like triggering data transfers
between the BPMS and external systems.

2.7 Process Modeling with @enterprise

In this section we will sketch the concrete modeling of processes with @enter-
prise.

The first step is to get access to an @enterprise installation. This can be achieved
after after a quick (no obligations or costs apply) registration via the web site
of Groiss Informatics GmbH (https://www.groiss.com). Then the system can be
downloaded for local installation or an online demo instance can be created.

In both variants, an account is created by choosing a user name and a password.
This can be used to log into the system, where the workflow client interface of
@enterprise is displayed (see figure 3.7 on page 96). Clicking on the administra-
tion link (in the right corner of the top toolbar open the user settings, choose
administration) opens the administration console view, depicted in 2.32.

Starting with this mask, all functions for modeling are accessible. A detailed
description can be found in the @enterprise administration manual. We will
give just a brief overview here. In the left of the window, there is the navigation
area with links to all the administrative functions. In the top area there is the
tool bar which presents all functions applicable for the current view in the main
area.

2.7.1 Organizational Modeling

The first group of links in the navigation area can be used to capture the
organizational data. Editing of the individual object types follows a common
pattern. Clicking the navigation link presents a table view of the respective
objects. A double click on a line opens the detail view of the selected object. In
the tool bar, the functions Create, Edit (corresponds to the double click action),
Delete and Quick Search are available.

76 2 Process Modeling

Figure 2.32: @enterprise Administration

In the opened detail windows, the mandatory fields (which can be recognized
via their labels in bold face) must be filled in. The edit operation is completed
by clicking either OK or Apply.

Each object has a key value in the Id field. This field must not be empty, may not
contain special characters or white space. It serves as unique identification label
of the object. In the area of organizational data, there is a second mandatory
field, the Name field.

We start with the entry of organizational units. This can be accomplished like
described above from the table of organizational units, or it can be initiated from
the organizational hierarchy. In the detail view of the default organizational
tree, a click on the Hierarchy tab opens this view where new organizational
units can be entered and be placed in the tree.

Then we define the users and assign them to organizational units. In the
navigation we click on Users and then on tool bar function New. After entering
Id, First Name and Surname, the user object can be stored by clicking the button
Apply. The second tab of the user object detail mask (Role assignments) can be
used to assign the newly created user to an organizational unit. For this, the
role Home must be assigned and the desired department must be selected.

2.7 Process Modeling with @enterprise 77

Figure 2.33: Processes of an Application

Additional role assignments would require the definition of additional roles
first, this will be described later on.

2.7.2 Process Modeling

The second group of navigation links is devoted to an Application which is
the term used to describe a group of related process definitions and their
supporting components. Examples for such process groups are the ones from
chapter 1: personnel processes, IT service processes. Before we can define a
process, we have to create such an Application.

After an application has been edited (filling out the Id and Name fields is
sufficient), a new group of navigation links will appear below the name of the
application in the navigation area. The first link leads to the list of processes
(ie. to the process definitions) see figure 2.33. Process definitions can be created
by means of a process editor, which is activated via the first link in the tool bar.

Process Editor

The process editor is the tool that allows to model the process flow in a graphical
manner. Related components like tasks and roles can also be created with it.

After defining a complete process with the editor, instances of it can be imme-
diately created and executed in the workflow engine. It is also possible to use

78 2 Process Modeling

the process editor in an early modeling stage, without the need to define it
completely at the moment. Incomplete process definitions often do not exactly
specify the data or are sketchy concerning the conditions in decision nodes. In
a later modeling stage, enhancements, amendments and details can be applied
to the process definition successively until it is fully defined and executable.

When creating a new process definition, an Id and a Name must be assigned by
selecting the properties item in the process menu and entering both information
in the mask.

Figure 2.34: Process Editor

As discussed during the treatment of the graph grammar, a new empty process
consists of a start node and an end node connected by a directed edge like in
figure 2.34. New process nodes are created by selecting one of the constructs
in the left area and then clicking an edge. A node or structure of the selected
type is inserted at this place. The original edge is replaced by edged properly
connecting the new nodes. Deletion of a node carries out the inverse operation.

2.7 Process Modeling with @enterprise 79

Generally, every edge can be used as the target of an insertion operation, with
the exception of the edge between a Choice node and a subsequent condition
node.

For most node types, it is necessary to define some properties after creation of
new node instances. Double clicking a node opens the type specific property
window.

If the process is not yet intended to be executable, the entry of just a descrip-
tion would be sufficient here. When executeability is desired, the following
information is needed in a correct manner:

q Tasks: selection of an existing task or creation of a new one. Entry of an
agent.

q Subprocess: selection of a defined subprocess to be called.

q Conditions: for loops and alternatives, the conditions must be defined.

q Choice: each path must have a name, the condition is optional.

More detailed instructions for operation of the process editor can be found in
the administration manual of @enterprise [?].

2.7.3 Tasks and Roles

Tasks and roles can be created during process definition in the process editor,
and can also be independently created via the navigation links below the
application object.

Especially roles like Head of Department or Clerk which are rather independent
from particular process definitions will be created in this manner. We rec-
ommend to concentrate process independent roles in an application (e.g. the
Default-application).

2.7.4 Forms

Data modeling is accomplished via the navigation link Forms in the applications
navigation tree (see figure 2.33).

Clicking on the first tool bar item "Create new form type" opens the form editor
(see figure 2.35), in which both the layout and the data types can be defined:

80 2 Process Modeling

Figure 2.35: Form Type Creation

q The HTML layout is defined in the first tab. The individual input el-
ements (see the left area in the figure) can be added to the form with
drag-and-drop.

q In the second tab - Scheme - the individual database fields can be defined:
names, types, length of the fields in the database etc., see Fig. 2.36. The
layout can also be created from this schema information (Menu function:
Create standard layout).

q In the Bindings tab, XForms bindings can be defined for the fields.

q In the last tab, Source, the HTML can be edited directly.

When saving, you have to assign a name and an ID, then the Java class and a
database table are created and the HTML is stored in the file system.

2.7.5 Process Documentation

Generated documentation for processes modeled with @enterprise can be
displayed with function "Process Overview". In a single HTML page or a PDF

2.7 Process Modeling with @enterprise 81

Figure 2.36: Form Type Creation - Determining Fields and Types

document all aspects of a process are depicted: graphical process definition,
WDL, tasks, roles, forms, form field visibilities. Figure 2.37 shows the HTML
format, clicking the icon in the right upper corner would generate the PDF
document.

The process overview is meant as documentation and can facilitate the discus-
sion with process participants. In section 4.1.3 we will introduce the process
cockpit, which combines a representation of the defined process types with
current run time data of the process instances.

82 2 Process Modeling

Figure 2.37: Process Documentation

2.8 A complete Example 83

2.8 A complete Example

To conclude our discussion of the process modeling, we will present a small
but complete example. The requirements for our process are:

We need a process to facilitate the requesting, approval and granting of per-
missions to employees. A permission in this context is the assignment of a
resource to an employee. This can be in several functions (or roles). E.g. for the
resource "ERP system" the function "super user" can be assigned.

Requests should be initiated by the applicants themselves. The request is to
be approved by a manager. There can be partial approvals, that is a manager
can selectively remove individual application items from a request. After
approval, the resource assignment takes place by an employee responsible for
this resource. Finally, the requester is informed about the completion of the
process.

2.8.1 Data

The designed data schema is depicted in figure 2.38.

Resources have a name and a responsible employee. There is an 1:n relationship
between resources and functions. For functions, @enterprise roles could be
used directly; an approach which would give more flexibility for later adaptions
and extension would be the definition of a separate function entity class.

The permission request has an applicant field, a 1:n relationship to permissions
and a boolean field to indicate approval or denial of the request.

One permission request can be used to apply for several permissions, each of
those permissions reference a resource and a function.

The mapping to forms is as follows: each entity type is mapped to a form type,
permissions are a subform of permission request, functions are a subform of
resource.

The forms can be created with the form wizard. The resources are placed in a
folder of the document management system. The figures 2.39 and 2.40 show
the source of the permission request form and its rendering in the browser.

84 2 Process Modeling

Permission
request

Function

Resource

Permission

Process
instance

1

n

1 n

11

Process relevant
Data

Process data

1

n

1

n

Name
Responsible

Name

Applicant
Approved

Figure 2.38: Data Schema for Permission Request Process

2.8.2 Process

The process graph can be found in figure 2.41, the WDL script is shown in
figure 2.42.

The definition of the agents should be noted. The first step is assigned to
the role all, each employee who has been assigned this role, can start the
process. The approval is carried out by a manager. The grant operations are
carried out in parallel for each permission via the parfor construct. The agent
is the employee responsible for this particular resource. Since this cannot be
expressed in WDL directly, a function is used for agent assignment in this
step. The last step references the agent of the first step (the original applying
employee).

After process flow and data structures have been defined, the field visibilities
can be determined for each step. The table in figure 2.43 shows the form
visibilities used here.

Each line shows the same pattern, a field is first invisible (it is not relevant in an
early process step), then is is editable (rw) or mandatory (man) in one step, and
in later steps it is just read only (ro). Normally, a process form will be filled in
from top to bottom, ie. the fields relevant for the first step are located at the
top of the form, then the fields relevant for the second step will be positioned
below them, etc. Therefore, a typical pattern for the form visibility table is a

2.8 A complete Example 85

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xf="http://www.w3.org/2002/xforms">

<head>
<link rel="stylesheet" type="text/css"

href="../html/avw.css"></link>
<xf:model></xf:model>

</head>
<body id="theform">
<div id="title" class="title">Permission Request</div>
<table id="formtab">
<tr><td>

<xf:input ref="/data/form/applicant">
<xf:label class="label100">Applicant</xf:label>

</xf:input>
</td></tr>
<tr><td>

<xf:repeat formtype="com.dec.avw.appl.demo_permisson_1"
subformid="1">

<xf:label class="label100">Permissions</xf:label>
</xf:repeat>

</td></tr>
<tr><td>

<xf:input ref="/data/form/approved">
<xf:label class="label100">approved</xf:label>

</xf:input>
</td></tr>

</table>
</body>

</html>

Figure 2.39: Form for Permission Request

Figure 2.40: Permission Request Display

86 2 Process Modeling

Figure 2.41: Permission Request Process Graph

diagonal area from the upper left corner to the lower right corner, where the
field visibilities are rw or man. The lower left triangle area has many inv, the
upper right triangle area consists mainly of ro entries.

2.8 A complete Example 87

process br_assignpermissions()
version 5;
name "Permission Request";
forms request br_permissions "Form";
application permissions;
begin

<Applicant> all br_request(request) "Apply for permissions";
br_manager br_approve(request) "Approve";
if com.groiss.wf.SystemAction.getFormFieldValue(

"request.approved") then "Approved?"
parallel for permission "Permission" in request.1 do

com.groiss.wf.SystemAction.getFormFieldValue(
"permission.resource.responsible")
br_grant(permission, request) "Grant permission";

end;
end;
Applicant:user br_inform(request) "Inform";

end

Figure 2.42: WDL of Permission Request Process

Form Fields Request Approve Grant Inform
Applicant man ro ro ro
Permissions rw rw ro ro
approved inv man ro ro

Figure 2.43: Form field visibilities

88 2 Process Modeling

Chapter 3

Process Execution

After discussing process modeling in the previous section, this chapter will
deal with process execution within a BPM system. We will start with the
description of the architecture of a BPMS and a workflow engine, will introduce
the user interface and essential functions of the system and will also discuss
the permission system and aspects of systems integration.

3.1 Architecture

A BPMS consists of all software components that are needed to model and
execute business processes and to analyze their run time behavior. The already
mentioned Workflow Management Coalition (WfMC) has developed a reference
model as part of their glossary [?]. Our model presented in figure 3.1 is based
on this reference works. It contains the following elements:

q Modeling: the modeling component allows to define processes, data
structures, organizational structures and additional application elements.

q Execution: the run-time component (the workflow engine) is responsible
for the execution of the processes. The document management system allows
to store and retrieve documents. A timer is used to support time based
events and actions.

90 3 Process Execution

Data-
Repository

Organisational
data

Process
definitions

Process
instances

Process data

Process relevant
Data

- Workflow-Engine
- Document management
- Timer

- Administration functions
- Server Control
- Search and Reporting

- Processes
- Data
- Organization
- Applications

Client
(Browser)

Modeling component

Run-Time component

Administration component

Figure 3.1: Architecture of a BPMS

q Administration: there is an administration component for management
of organizational structures, user accounts, etc.; it provides search and
reporting capabilities.

q Data-Repository: includes definition data, master data and run time data.

q Client: Usually, clients are standard web browsers, maybe with addi-
tional plugin components. But also special BPM clients could be used
alternatively.

In the following sections, we will describe the components in more detail.

3.2 The Workflow Engine

The workflow engine is responsible for the control and execution of the pro-
cesses. It is an interpreter for process definitions and creates process instances
and activity instances.

3.2 The Workflow Engine 91

At a high level, the operation of the workflow engine can be described by
just two functions: startActivity and finishActivity. A brief pseudo code
representation of the two functions is given in figure 3.2.

When a process instance is started, the procedure startActivity is called with the
initial node of the process graph. An activity instance gets created. The behav-
ior of the function depends on the type of this node. When the type is begin,
par, loop, end_if or end, function finishActivity is called immediately (cf.
below). When the node has a condition (node type is if, while, exit_when),
the condition is evaluated and depending on the result, either the then path or
the else path is followed; finishActivity with the condition node and the
path to be followed is called. The two types of nodes that end a parallel con-
struct orjoin and andjoin) are treated like this: for an orjoin, the execution
will immediately continue at the successor node, when an andjoin is reached,
nothing happens until all parallel branches are finished. When the node is of
type task, the optional preprocessing method is executed, an agent is assigned
and the function terminates. While the agent would find a new work item in
the corresponding worklist, the engine stops here and waits for the agent to
complete the task. For a system step, the defined method will be called, and
then again finishActivity is executed. For nodes of type process, the first step
of the subprocess is determined and the method gets called recursively with
this step.

When a user completes an activity (with function finish from the worklist client),
the function finishActivity is called. All successor nodes of current node
are determined. The second parameter of finishActivity states the type of
the edge to be followed (normal, then, else). For all those corresponding
successors, startActivity is executed.

For the sake of a principal understanding, the functions were presented in a
simplified manner, we deliberately abstained from describing the workings for
the node types batch, parfor, sync and event.

3.2.1 Structure of Run Time Data

When a process is started, a corresponding ProcessInstance object with a unique
process id is being created in the database. Fore each activity (every time the
function startActivity) is called, an ActivityInstance is created. Those objects
are the core of the run time data, since they are being instantiated during the
run time of a process instance. In contrast, the data objects created during the
modeling phase are named build time data. The life cycles of process instances

92 3 Process Execution

function startActivity(node)
ActivityInstance ai := create_instanceof(node);
if typeOf(node) in {begin, par, loop, end_if, end} then

finishActivity(ai, "normal");

elsif typeOf(node) in {if, while, exit_when} then
if executeExpression(node)

then finishActivity(ai,"then");
else finishActivity(ai,"else");

end if;

elsif typeOf(node) = orjoin then
if this is the first finished branch then

finishActivity(ai, "normal");
end if;

elsif typeOf(node) = andjoin then
if this is the last finished branch then

finishActivity(ai, "normal");
end if;

elsif typeOf(node) = task then
executeProcedure(ai);
assignAgent(ai);

elsif typeOf(node) = process then
node1 := initial node of process node
startActivity(node1);

elsif typeOf(node) = system then
executeProcedure(ai);
finishActivity(ai, "normal");

end if;
end;

function finishActivity(ai, edgetype)
if no successors of ai then

finishActivity(parent(ai));
else

for all successor nodes succ of the ai node with type edgetype do
startActivity(succ);

end do;
end if;

end;
Figure 3.2: Central Functions of the Workflow Engine

3.2 The Workflow Engine 93

and activity instances are depicted in the state transition diagrams in figures
3.3 and 3.4.

After a process has been started, it is in state started; when is is completed (its
last step has been finished) the state changes to finished. A running process can
be canceled by the administrator, it is then in state aborted. Processes can be
reactivated from both the finished and the aborted state.

start process
started

finished

aborted

reactivate

finish the last step

abort

reactivate

Figure 3.3: Process Instance States

An ActivityInstance (see figure 3.4) starts its life in state started (when the agent
is a role) or in state active, when the agent is a user. Taking an item from
a role worklist changes the state of the corresponding ActivityInstance from
started to active, giving it back effects to the reverse state transition. Temporal
interruptions on the work items lead to state suspended and the placing of
the item in the suspension list. The "recall" operation reverses the transition
and restores the previous state. Finishing an activity leads to state finished
in the corresponding ActivityInstance in the general case. The state waiting is
an intermediate state resulting from the need to interactively select an agent
when there is no agent specified at build time or from a half-finished Choice
node where the user has not ultimately decided on the path to be taken. After
completion of those actions, the state changes to finished. When a process is
aborted, the corresponding unfinished ActivityInstances are transitioned to state
aborted. A finished ActivityInstance can be marked as compensated, when the
function "Go back" is applied to the process.

Let us now discuss the interplay between process instances and activity in-
stances. As stated before, during the start of a process, a process instance is
created for it; each start of an activity creates an activity instance. The process

94 3 Process Execution

finish predecessor
or start process

started

suspended
[Agent= Role]

active

suspended
[Agent = User]

finishedcompensated

waiting

aborted

take
finish

finish

abort

abort

select next agent
or choice path

go back

into/out of
suspension list

into/out of
suspension list

give back

[Agent= Role]

[Agent = User]

Figure 3.4: Activity Instance States

instances and the activity instances are in a 1:n parent-child-relationship. When
there is a subprocess call, the created activity instance is both the child of the
super process instance as well as the parent for all the activity instances arising
from the steps in the definition of the subprocess.

Figure 3.5 presents an example of a run time data graph. The nodes are activity
instances and process instances. The solid edge represents an instance of a
corresponding flow edge from the process definition (a successor relation),
the dashed edges indicate the child-parent (belongs to) relationship. We have
a process instance pi1. The process has four steps, one of them (pi2) is a
subprocess. The activity instances ai1, ai2 and ai3 are those of the main process
pi1. The objects ai4, ai5 and ai6 are the activity instances of the subprocess pi2

On the basis of the data schema in figure 3.6, we will now discuss the interplay
of build time data and run time data. The build time process definition graph
is represented by the two entities Step (the nodes) and Flow, the edges and
the directed relationships between them. A process step relates to an Activity,
which can be an elementary Task or itself be a process in the case of a subprocess
call.

The single entity ActivityInstance represents both process instances and activity
instances. It captures the current state information. The recursive relationship

3.3 User Interface 95

ai1

pi2

ai2

ai3

pi1

ai4

ai5

ai6

Belongs to

Succession

Figure 3.5: Run Time Object Tree

models the parent-child relation (cf. the dashed edges in figure 3.5).

Activity

Task Process
definition

Step

Flow

Activity
instance

1 n 1 n

1 n1

n

1

n

Build-time data Run-time data

parent

src target

Figure 3.6: Schema for Build-time and Run-time Data

3.3 User Interface

The main functions of the user interface (the client application) in a BPMS
are to display the list of tasks to be worked on (the worklist) and to provide
appropriate means and tools to edit the process data and act on the tasks. In
figure 3.7, the @enterprise user interface is depicted. This section will discuss
central aspects of this interface.

The individual functions are accessible via a navigation area, where the follow-
ing items can be found:

96 3 Process Execution

Figure 3.7: User Interface, Worklist Client

q Worklists

q List of startable processes

q List of application specific functions

q Search functions and reports

q Document management area

q Calendar

q User specific properties

q Dashboard

q Organizational structure and process overview

The precise set of items that are visible and accessible depends on the roles of
the agent as well as on the configuration of the client.

3.3 User Interface 97

3.3.1 Worklist

This is the most central point of the user interface. It contains the tasks to be
worked on. Usually this view is structured in several lists:

q personal worklist: contains activity instances that are either personally
addressed to the user or have been taken by her from a role worklist

q role worklist: those activity instances that where addressed to a role
(which has been assigned to the user)

q suspension list: personally addressed activity instances, but not ready to
be worked on at the moment

q role suspension list: activity instances addressed to a role, but not ready
to be worked on at the moment

The structure corresponds to the four states started, active, suspended/user and
suspended/role depicted in the state diagram in figure 3.4 on page 94.1

The worklist contains the tasks to be completed by an individual employee;
dependent on the degree of automation and the breadth of processes deployed
in the system, a typical worklist can comprise several dozens of entries. To
cope with the bulk, some features to organize the entries are provided. A
hierarchical folder structure and be created to categorize the tasks e.g. as: to
be done today, for tomorrow, urgent, waiting for Godot, Filtered views for
selecting the entries upon their content values are available to gain additional
overview and allow to focus on similar tasks, e.g.:

q process instances of one particular process definition

q all processes exept support processes

q received today

The worklists are tables, the table lines are activity instances (work items), the
individual columns are essential properties of the items, like:

q Process instance id: the unique identification of the process instance

1Activity instances in the states compensated, finished and aborted cannot be acted on from this
interface. Any activity instances in state waiting are displayed in the worklist indicating the action
they are waiting for.

98 3 Process Execution

q Organizational unit: where the activity instance belongs to

q Agent: the current agent (in the personal worklist, this is always the user
id, so this column is dispensable there)

q Process name: name of the process definition

q Task name: name of the task (the step in the process definition)

q Subject: a characterization of the process instance

q Functions: a list of specific functions available for this activity instance

q Forms and documents: links to access the process data

q Received: timestamp of arrival in the worklist

q Due at: the deadline for this activity

q Priority: process instance priority

The tabular view does not necessarily show all those information, some columns
may not be displayed at all, some columns may be links to the detailed data.
Additional navigation links are provided for:

q location within the process instance: a graphical view with the current
tasks highlighted

q previous flow: the history of the process instance, all the previously
executed tasks and agents, including the corresponding time stamps and
data

q process data: process forms, notes and documents attached to the process

Figure 3.8 shows the detail view of an activity instance, the functions will be
discussed in the following section.

3.3.2 Functions in the Worklist

The worklist displays the work items and provides functions to handle them.
The essential functions are process related calls of the workflow engine like
start process or complete and also editing functions for process data (forms and
documents).

3.3 User Interface 99

Figure 3.8: Detail View of an Activity Instance

Process and activity related functions

q Complete: the work item is completed by calling the corresponding
function of the workflow engine (cf. function finishActivity in section
3.2).

q Complete and assign: When the next step in the process flow is an activity
instance that is addressed to a role, it is often preferable to select a specific
user from the set of users with this role. The user selection is triggered
after the completion of the item.

q Go back: The process can be send back to a previous step. This is dis-
cussed in detail in section 3.5.1.

q Change agent: delegation of the work item to another user. The process
remains in the current step, just the agent of the step is changed. This
action is also traceable in the history.

q Copy to: sending of a read only copy of the process to another user, e.g.
for informational purposes.

q Give back: if the activity has been taken from a role worklist, it can also
be put back there.

100 3 Process Execution

q Suspend: if the activity instance cannot be worked upon at the moment,
it can be suspended. This removes the work item from the personal
worklist and puts it into the suspension list. Suspended items can be
recalled manually as well as automatically by specifying a resume date.

q Abort process: the process is being deliberately finished, but in an abnor-
mal way.

Data handling functions

Those functions are provided in the detail view of an activity instance. They are
the central means to act on the work item (besides completing it in the sense of
the workflow engine).

q Form handling: In the detail view, the leftmost tabs are the process
forms. The forms will be displayed according to the form field visibilities
specified for the particular step in the process definition.

Figure 3.9: Process documents

q Process documents: the next tab after the form tabs in the detail view
shows the documents attached to the process, cf. figure 3.9. For each

3.3 User Interface 101

process instance, there is also a folder for storage of unstructured data
(like pictures or some texts). The available functions are: document
upload, edit, delete, make version, copy, paste, etc.

q Notes: short notes can be attached to processes, the set of notes of a
process is accessible via a tab in the details view.

q Change process info: some data of the process instance can be changed
at run time, like priority, the due date or the process instance description.

Additional Functions

Depending on the application, additional functional may be available, cf. sec-
tion 2.6.

3.3.3 Versions and Traceability

Figure 3.10: Process History

Being able to trace, audit and verify executed process actions is one of the main
reasons for BPMS deployment. For every process instance, there is detailed
data about the historical process flow available. This process history contains
the following information:

102 3 Process Execution

q Process flow: a tabular view of the executed steps; with the performing
agent and corresponding timestamps for each manual step. Optionally
the non-interactive steps can be included in the display (alternatives,
loops, end nodes, . . .).

q Data modifications: each data modification is being logged. For each
step, the form versions current at those step can be displayed. Changes
are traceable down to form field level.

The process history is not only relevant ex post (after process completion), but
also during run time for handling the process; providing answers to questions
like: "Who completed the previous step?", "By whom and when has this form
field been changed?".

3.3.4 Search

Search functions are one of the core components of a workflow system. Each
and every process instance, either currently active ones or already finished
ones must be findable according to some criteria. We distinguish three search
functions:

Short search

There is one input field provided for a search term; it will be searched for in
the subject or process id fields. The search field is permanently visible in the
navigation area, providing a quickly accessible basic search capability.

Standard search

Several search fields are provided. Search criteria are e.g. process start time
interval, process type, participating person, process data. 2

The result of short search and standard search actions is a list of process in-
stances matching with the entered criteria. The following columns are dis-
played:

q Process instance id
2Why is there a rather complex search mask provided, when the usual interface for Internet

search engines consists of a single field? The reason is the large amount of very similar data that
will accumulate. There might be several thousands of orders for one specific article within the
current year. Heuristics like click frequency are of no real use here.

3.3 User Interface 103

q Process definition name

q Tasks and agents where the process is currently located

q Subject

q Process instance start time (and completion time, if applicable)

Extended Search (Report Designer)

The extended search module provides the capability to define search criteria
on all the available data and to flexibly combine them. The form of the result
can be adapted to a great extend. Data aggregations like multilevel counting,
summing up and calculation of averages over several process instances are
supported and are a main tool for analyzing process instances (cf. chapter 4).

The creation of such queries requires considerable knowledge about the princi-
pal structure of the data and is therefore neither intended nor suitable for the
general user population. Usually, an administrator defines frequently needed
searches. Those queries or reports can be stored. Permissions to execute the
reports can be granted to users with certain roles. Those users can execute the
reports (in a parametrized manner) quite easily without requiring any special
in depth knowledge. A list of reports the user is permitted to execute can be
accessed via the link Stored queries in the navigation area.

In all search functions, the permission system must be taken into account: not
everyone is allowed to see each process or to access the process data. Section
3.6 elaborates on the permission system.

3.3.5 User Interface Customization

A crucial point of the user interface is its adaptability. This is in particular true
for BPMS as illustrated by the following aspects:

q Presentation of process data: the worklist should not only display com-
mon and general data but also process specific and application specific
information.

q Functions dependent on roles and process progress: the set of executable
functions is dependent on the roles assigned to the user and on the step
of the process.

104 3 Process Execution

q Higher ranking employees like heads of departments would be allowed
to execute additional reports and may perform additional functions too,
like e.g. maintaining some application specific master data.

The user interface must be adapted with respect to (1) the permissions and
roles of the user and (2) dependent on the application, since different data is
needed in different application domains. The adaption of user interfaces in
@enterprise is discussed in section 3.9.1.

3.3.6 Mobile Access

Up to now, we have been discussing a web based interface that is suitable for
common desktop environments. With the almost ubiquitous availability of
smartphones (a mobile phone with at least an Internet browser but also other
capabilities), this class of devices is becoming more and more relevant for user
interface considerations. The most influential factors are:

q Universal device availability (literally billions of smartphones have been
sold).

q Universal Internet access with acceptable speed via mobile nets or wifi
hotspots.

q Universal device acceptance and usage for mobile work. A report of
Optus [?] states that 6% of the employees do work from their home, 36%
are working regularly from outside the office (at home or during travel),
39% access the company network via a mobile device.

Until quite recent times, the integration of mobile devices implied to deliver
a carefully selected basic (almost rudimentary) subset of the whole function-
ality like reception of messages, sending of status information or information
retrieval.

Currently, an almost complete variant of the capabilities available at the desktop
must be provided on the mobile device, too. Prominent challenges are: security,
ergonomics, integration of the application with common smartphone functions.

The security aspects will be dealt with in section 3.8.7; in the following, we will
discuss the other two topics.

3.3 User Interface 105

User Interface at Smartphones

There are two possible ways to implement a smartphone client: a web-application
that utilizes the devices browser as user interface or an application (an "app")
that is to be installed at the smartphone. Both methods have their specific
advantages and pitfalls. Here, we will restrict the discussion to web based
interfaces.

One main aspect of interface design is the adaption of the navigation and
handling to the restrictions arising from available input methods and from
small screen areas. In figure 3.11, the start page and the worklist of a mobile
version of @enterprise is shown. We abstain from using frames, broad tables
and toolbars with small icons. The single real restriction is in the area of
document management and document processing, due to the lack of suitable
applications on the client.

Integration of mobile functions

The forefather of the smartphone was mainly being used to make phone calls
while being on the way. Communication functions do also play a central role in
current smartphones (making calls, SMS (Short Message Service), MMS (Multi-
media Messaging Service), e-mail services. In the collaboration of several users
on a business process, the need to communicate with other process participants
would arise rather frequently. Integration with smartphone communication
services is easy. A profile page provides e-mail address and phone number
for each user, they could be specially linked to the corresponding application.
Profile pages could be directly accessible from e.g. the history view of a process
or from a form.

Another feature of smartphones is the availability of location information via
GPS (Global Positioning System), providing the physical position of the device.

Figure 3.12 shows an application for location based services via GPS integration.
An employee of a utility maintenance company is on the road and gets a task
into his worklist. The form contains the position of the problematic device, a
click on button Show on Map switches to a map view of the position. Likewise,
a click of Set to Current Loc. inserts the coordinates of the current position in a
form when recording an issue.

Additional integration with smartphone capabilities like attachment of photos,
videos or audio recordings to processes are equally feasible.

106 3 Process Execution

Figure 3.11: @enterprise on a Smartphone

3.4 Social BPM

The previous section presented the integration of communication tools and
the BPM application. Going a step further, we arrive at a general integration

3.4 Social BPM 107

−→

Figure 3.12: Form display and GPS integration

of collaboration and communication frameworks with BPM software. The
resulting collective system is termed a Social BPMS.

Social software facilitates the communication between persons, the term sub-
sumes a set of different systems like blogs, wikis, chats, forums, and social
networks themselves. The central aspects are concerned with information from
and about the other participants and provision of straightforward communica-
tion patterns.

Let us first deal with the information aspect from the focus of business process
management. Collaboration in processes builds groups of people which com-
municate about and via those processes. Further groups are implied by the
assignment to roles or organizational units. In a BPM the following information
about users could be provided:

108 3 Process Execution

q User profile: via the organization tree browser or the process history, a
profile about each user can be accessed. It contains basic contact data,
current work items, location, ...

q Location in a Map: another view of locations could be provided in form
of maps, especially suited for mobile work patterns.

q Availability and absence lists: can provide information about who is
currently online.

The actual reason for the provisioning of such information is to enable com-
munication between the participants. The following mechanisms could be
provided:

q Conferencing: telephone conferences or audio/video conferences (Skype)

q Chat: short bursts of textual communication

q Wiki: creation and collaborative editing, extension and revision of (tex-
tual) information

q Blog: user created texts centered around a special topic, usually with
sequential character. Normally not being revised but comments may be
attached.

q Tagging: tags or keywords can be attached to documents and be used
to quickly find and access the corresponding data. Tag clouds could be
used for visualization of key word frequencies.

Not all of those communication patterns ("media") need to be integrated directly
in the BPMS. The crucial point is that they can be seamlessly started and
accessed directly from within the system (being "just a click away"). The forms
of wikis, blogs and tagging are well suited for integration with the document
management system of the BPMS.

The communication facilities can be used for collaborative work and problem
solving during work on a process instance, but can also be used during the
modeling phase. Especially in the case of a mobile working pattern, it en-
ables more seamless interactions and can compensate some shortcomings of
telecommuting [?].

3.5 Flexible Process Flow 109

3.5 Flexible Process Flow

The basic idea of workflow is the uniform execution of predefined processes,
so that a set of business processes adheres to a prescribed flow or to prescribed
rules. When there are rules, in practice there will be exceptional cases. It is
not possible nor feasible to anticipate and model all exceptions. The arising
complexity would not warrant the perceived completeness of the model. A
much more desirable way of handling special cases would be the ability of the
BPMS to provide appropriate flexibility functions for treatment of exceptions.
In the following, we will present a set of typical exceptional situations, in figure
3.13 they are depicted.

3.5.1 Going Back

A common change in the process flow is to go back (cf. figure 3.13 a). The agent
of a step recognizes, that for whatever reasons, he can not complete the step.
He wants to send the process back to a previous step or a previous agent, e.g.
allowing an applicant to clarify the reasoning for an application before it can
get approved.

Since the normal execution of the process up to a point implies also the possi-
bility for integration of system steps or the execution of post-conditions with
arbitrary effects, a naive going back functionality could lead to undesired side
effects. There must be the possibility to apply predefined compensation actions
during going back to ensure a consistent process state. Going back several
steps possibly means to execute a sequence of such reverting actions.

Parallel constructs do also need special attention during going back. When
going back from a step within a parallel construct to a step before the parallel
construct, the other parallel branches would have to be aborted. The abortion
of steps – that is the elimination of steps from worklists – is a privileged action,
a special permission abort step is needed to be able to go back when other
parallel branches are still active.

Also going back into a parallel construct that has already been completed poses
some complications. A main issue is how to treat other branches of the parallel
construct; there is no general answer, @enterprise does not support going back
into parallel constructs.

Going back could also be modeled explicitly by an appropriate loop construct.
The following pattern can frequently be observed: in the first step of a sequence,

110 3 Process Execution

a) Go back b) Go forward c) Copy to...

d) Change agent e) Insert steps

Figure 3.13: Deviations from Process Flow

3.5 Flexible Process Flow 111

a job is executed, a subsequent step is concerned with checking the result. A
negative outcome would effect to recurrent execution of the first step. This
would continue until the result is adequate.

Modeling this pattern with a loop makes it explicit. This enables to have a
slightly different treatment for the correction step than for the initial step, e.g. to
assign a shorter due date. Also standard reporting could explicitly differentiate
between initial work and corrective actions. Even in a moderately complex
process, the modeling and explicit addition of all possible ways to go back
would lead to unduly complexity and rather cluttered and incomprehensible
process definitions. Explicit modeling for going back is appropriate only when
there is special treatment of the correctional step or when it is an integral or
central process part.

3.5.2 Going Forward

Going forward (cf. figure 3.13 b) is even more problematic than going back:
the process designer would need to define which steps could be skipped and
which steps are mandatory. In @enterprise this functionality is not provided.

It must be mentioned, that going back like presented above is always meant to
be to return to a previous step in the process structure and not according to the
process history. Going back in the process history could mean to "go forward"
in the process definition (e.g. when there are loops in the definition or when
the "going back" function has been used earlier).

3.5.3 Copy to...

Sending a copy of the process data (see figure 3.13 c) is also an ad-hoc extension
of the process structure. Another agent would receive a work item in her
worklist with a read only view of the process data for reference or consulting
purposes. This action is universally applicable.

3.5.4 Change Agent

When an item is routed to an agent A and this user is not in the position to
work on the item (has no time, is not really competent, ...), he wants to hand
off the item to another user. When the new agent completes the work item, the
prescribed process path will be followed again (see figure 3.13 d).

112 3 Process Execution

This is a widely used feature, but one has to bear in mind, that in some processes
there are firm restrictions about who is entitled to work on which items (e.g.
an application must always be approved by a manager). Unconstrained agent
changes would violate such process restrictions.

In @enterprise, this function can be forbidden for individual tasks. (this is a
property of the task definition).

This function could also be implemented via explicitly extending the process
model. When an agent change is likely to take place at a certain step in the
process, a loop could be introduced where the agent assignment gets newly
determined for each loop execution by reading it from a form field. The loop
would be terminated via an explicit condition upon a second form field (see
figure 2.28).

3.5.5 Insertion of Steps

Insertion of steps is a further common modification of the process flow (cf.
figure 3.13 e). Those new steps are inserted after the current one and before the
next one, as a kind of detour.

To maintain the integrity of the process, two issues must be considered:

Permissibility of Tasks

Only tasks that are related to the process may be inserted in it. That are
tasks, that are already present in the ordinary process flow, but also additional
tasks that were explicitly added to the process definition at build time by the
designer as ad-hoc tasks. For all those tasks, the agent definitions and the form
field visibilities are predetermined. But it still could be a problem that the order
and position of those ad-hoc tasks are defined at run time. E.g. an additional
edit step after an already finished approve step would lead to unapproved
changes.

@enterprise allows to check for such conditions in the preprocessing. Insertion
of ad-hoc steps can be used in unstructured or semistructured uncritical pro-
cesses or could be restricted to tasks that can be used universally in the process
(e.g. because their rather restricted form field visibilities).

Permissibility of Control Structures

Usually the insertion of steps is carried out by end users. Normally they can not
be expected to have appropriate knowledge to correctly express conditionals

3.5 Flexible Process Flow 113

PROJECT PROCESS

Description Project plan: individually
created on general princi-
ples

Process Definition: common
prescribed schema, individ-
ual adaptions

Control Comparison of target and
real progress, maintained by
the project manager

Data from the process his-
tory and from forms

Forwarding manual, informal communi-
cation

automatically by an engine

Figure 3.14: Project Management versus Process Management

or similar process components. Insertion of complex control structures should
be avoided or forbidden in ad-hoc runtime modeling.

In @enterprise, the function "Send to" can be used to insert steps, it supports
individual steps, sequences and parallel constructs.

3.5.6 Run-time Process Definition

Starting with a minimal process definition consisting of just a single task, the
aforementioned mechanisms allow us to construct almost arbitrary complex
processes at run time. This is essential when the individual process instances
differ significantly from each other so that individual control flows are pro-
vided. There is no prescribed process definition, but rather an instance specific
plan is created at process start time. Such processes are often called projects
and the systems for their management are project management systems (and
not process management systems).

Let us briefly elaborate on the differences between project management and
process management (cf. figure 3.14):

When a BPMS allows to define ad-hoc processes and provides functionality for
insertion of steps at run time, also projects could be executed and managed
within a BPMS, thereby retaining the needed flexibility and also gaining the
advantages of progress monitoring. In figure 3.15 a sketch of such a general
project process is given.

There, the task Manage is being executed parallel to the individual project tasks
in the parfor construct. The project manager (the agent of the Manage task)
would gradually enter new project tasks, assign appropriate agents and would

114 3 Process Execution

Figure 3.15: Project-Process

start the new tasks via a dedicated function. The tasks would be executed
in parallel, but additional steps could be attached in sequence to each of
them. This lines out that the execution of complex projects could be supported
adequately and in a very flexible manner.

The described process is contained in the @enterprise demo application Project
management. It can be downloaded from the web site of Groiss Informatics.

3.6 Permissions

A crucial component of a BPMS is the permission system. This is the subsystem
that checks which user has access to which data in what form. Taking into
account the sometimes very personal nature of the data used in the BPMS, it is
quite clear, that there must be restrictions for access to e.g.:

q Processes that deal with payments or salaries or with termination of
employment

3.6 Permissions 115

q Search results, especially condensed ones that can allow to infer employee
efficiency

The code of conduct according to such data can very much depend on the
context. What is perfectly permissible in one country or company might
be shunned upon or even be forbidden by legislation in another country or
company.

In this section, the elements of the permission system will be introduced.

The principal means of permission granting or revocation is achieved via role
assignment. This is known as Role Based Access Control (RBAC) [?]. Unfortu-
nately, the power of this concept is not sufficient for our purposes, we need
additional rules for a more precise description and definition of permissions.
Such systems are known as Attribute Based Access Control (ABAC) [?].

A central differentiation when deciding about permissions is the separation of
process independent permissions from process related permissions. A process
related permission would be granted to a user when she participates in a pro-
cess (e.g. has worked on one of its items in the past). We begin our discussion
with the process independent permissions.

3.6.1 Proces-Independent Permissions

The schema depicted in figure 3.16 is the foundation of the administration of
permissions. An agent is granted the permission to execute a right on a target
object.

Agent Permission

Right

Target
1 n

1

n

n 1

- User
- Role
- Role in OU

- Edit object
- Delete object
- Administration
- ...

- All objects
- Object class
- Object
- Objects of an OU

Figure 3.16: Permission Schema

116 3 Process Execution

q Agent: this can be a user, a role or a role within an organizational unit.
The permission would apply to all users which were assigned this role
(respectively who were assigned this role in the corresponding organiza-
tional unit).

q Right: this signifies the intended operation (e.g. view an object, edit an
object, execute an object). It might be a right already predefined by the
system or could be an application specific one.

q Target: targets can be individual objects, the permission would apply
to this single object; targets could be an object class, the permission
would apply to all instances of the class (e.g. to all reports). Universal
applicability of a permission would be to define no target at all.

There are two other forms of target set definition, based on the relation-
ship of a target to an organizational unit. The permission scope objects
of an organizational unit denotes either the objects of a specific organiza-
tional unit (the objects created by or owned by it), or the objects of the
organizational unit in which the role was assigned to the user.

Examples for permissions are:

q The role Sys is permitted to execute all functions (right execute on object
class function).

q The role Manager in the organizational unit Controlling may view all
processes.

q Persons with role clerk may view such processes that where started in the
department where the role has be assigned ("started in their department").

Negative Permissions:

Negative permissions (that is the explicit revocation of a permission by attach-
ing a "false" attribute to it) can be used to concisely formulate exceptional cases.
E.g. Mr. Heller may view all objects of department "Hexagon", except the
object "Catch-22".

Rules: To avoid the explicit statement of who is permitted to operate on an
object for each single (subordinate) object, we can define object class specific
rules. For example, the edit permissions for the role assignments of a user are
implied by having edit permissions on the user. The check for edit permission
on the object "role assignment" is transformed to a check about permission

3.6 Permissions 117

to edit the user object of the role assignment. In @enterprise, such rules are
formulated in Java.

A prominent rule is the Owner Rule: when an object has an owner, the owner is
automatically entitled to use the rights edit, view and delete on this object.

Permission Lists: allow easier maintenance of permissions according to the
following two aspects:

1. Individual permissions can be grouped to permission lists. Such lists can be
attached to several objects. Changes to the permission list would apply to all
objects with this list.

2. For each object class, one permission list can be designated as the standard
permission list. To each newly created object, this special list will be attached.

The administrative function "Permission Test" can be used to check whether
a certain user has a particular permission (see figure 3.17. It can also provide
insight, why the permission is being granted (on the basis of which entries in
the permission system).

Figure 3.17: Permission Test

3.6.2 Process Related Permissions

Let us review the actions that can be applied to process instances and the
related data:

118 3 Process Execution

1. Find process instances, view process history

2. view current process form data

3. view the process documents and their content

4. edit forms

5. edit documents, attach new documents, delete documents

6. standard functions in the worklist: give back, put into suspension, finish,
go back, put into user folder

7. change agent of a process step

8. execute application specific functions on work items

9. abort and reactivate process instances

10. archive or delete process instances

Some of those actions are essential for a participant to be able to perform the
task. Those actions should be available as default, without the need to explicitly
assign permissions. The permission system contains a rule, that items 1 to 7
from the list above are permitted for the agent.

For functions of the application (item 8), explicit permissions are needed.
Certain functions could be made available to only to some of the users.

A further rule of the permission system is concerned with previous process
participants (those users, that worked on some activity of the process instance
in the past). Those agents are permitted to find the process instance and to
view the process history (item 1).

Some actions may be useful for non-participating users (persons that did not
work on tasks of the process instance): finding processes (1), view some details
(2,3), change current agents (7), abort, reactivate and archive the process (8,9,10).
For those purposes, individual permissions for special rights must be assigned
to the users. In @enterprise, the following rights for process instances are
predefined and imply the corresponding actions:

q view process instances

q change agent

q edit process instances: abort and reactivate processes, change agent

3.7 Substitutions 119

q configuration: process archiving

Only in exceptional cases, permissions would be assigned for particular process
instances. What makes sense in practice is to target all instances of a certain
process definition or all instances started within a certain organizational unit.
Accordingly, the four rights of the list above can have process definitions and
organizational units as targets in a permission.

In the permission system, a rule would transform the question "Has user U
the right change agent on process instance P?" into "Has user U the right change
agent or the right edit process instances either on the organizational unit in which
P was started or on the process definition of P?".

3.7 Substitutions

The definition of substitutions is needed to deal with absences of employees.
For the period of absence of a person U, another person S would take over the
work of U. User S is a substitute of user U. For S, in order to be able to work on
the items assigned to U, there must be permissions set up for S. User S must
get (at least part of) the permissions of U for the period of substitution.

Since a person has to fulfill several functions (has been assigned to several
roles), substitutions must me definable on the basis of this roles. Some tasks
of an absent department manager might be delegated to an assistant, other
task categories require another department manager or even a superior as
proper substitute. Substitutions for individual role assignments are called role
substitutions.

For a substitute it must also be possible to act on tasks which were directly
assigned to the substituted user. This is called personal substitution. Personal
substitutions can optionally include all role substitutions, thereby minimizing
maintenance.

It should be possible to define different substitutes for different periods of
absence, e.g. for a two weeks leave, designate user S1 as substitute for the first
week and user S2 as substitute for the second week.

Let us briefly summarize the possible functionality concerning substitutions:

q several personal substitutes, each with an optionally attached period of
validity, including or excluding role substitutions;

120 3 Process Execution

q several role substitutes, each with an optional period of validity.

3.8 Interfaces and Application Integration

The execution of business processes is always paired with data manipulation
operations. The data are linked to other data of the company (or the organiza-
tion.). Since the BPMS is not the sole system that processes data, some form of
data exchange has to take place.

Let us look at an example concerned with applications for leave. The process
itself will be rather simple, the process data will usually be one single form.

Is there even the need for integration in the case of such an almost trivial
process? Typically, the answer is yes, and not to a small extend:

q The process is started via a web form which is integrated in an internal
web site or a portal. This allows users to start processes without the need
to explicitly log into the system and with minimal navigation effort.

q When the leave has been approved, some bookkeeping must be done
against the holiday allowance in the human resource system.

q People directly involved (like team members, supervisors, substitutes)
should get an informational e-mail.

q The periods of leaves should be aggregated and displayed department-
wide (also considering other absences like business trips, sickness, etc.).

q A personal calender entry should be generated.

q As assistance for data entry, the amount of working days of the leave will
be calculated automatically.

This rather basic example nevertheless allows to get an idea of the amount and
depth of integration to ensure effective and comfortable usage of the process.
Each BPM project is also a software development project and in particular an
integration project.

In figure 3.18, the integration landscape is depicted. The BPMS (and the
business processes) are in the center, surrounded by integration functions and
components.

3.8 Interfaces and Application Integration 121

Fi
gu

re
3.

18
:A

pp
lic

at
io

n
In

te
gr

at
io

n

122 3 Process Execution

1. Migration of legacy data: Often, the necessity to import instance data
from a predecessor system arises.

2. External process start: Processes are started in an external system like
e.g. triggered by a support request in form of an e-mail or by an incident
message in an alarm system.

3. Authorization: The simple case of login to the workflow system is a
system internal list of accounts and passwords. More comfort can be
provided by checking the password against some centrally administered
directory server. Additional convenience is achievable when the browser
client already knows the credentials of the user and uses it to provide
seamless login (Single Sign On, SSO).

4. Organizational data: The administration of users, roles, organizational
departments and role assignments can also take place externally to the
BPMS.

5. Database access: process relevant data may be in external systems (like
e.g. an inventory system). Seamless access and provision of external data
is crucial to achieve the optimization potential of the process. Manual
transfer is painstaking and error prone, it should be avoided by all means.

6. Calling utility programs: the central metaphor for working on a process
provided by the BPMS is the editing of forms in the browser. For effective
operation, mechanisms like input assistance, in-place calculations, con-
text sensitive selections and help texts are needed. But data is frequently
also processed and worked on with external applications. Integration
efforts must ensure direct access to those applications and seamless data
transfer.

7. User Interface Customization: Ergonomic arrangements and dynamically
provisioning of exactly those functions and information that the users
require in the current context (process step).

8. Notifications: Users not working with the BPMS on a regular base must
nevertheless be informed about new work items in a timely and appro-
priate manner (e-mail, SMS, paging).

9. Reports: for report creation, the integrated component of the BPMS can
be used, it could also be necessary to provide instance data (run time
data) for a third party reporting system.

3.8 Interfaces and Application Integration 123

10. Result processing: The instance data resulting from process execution
are transmitted to other systems (e.g. a permit registration system for a
building permit application process).

In the following sections, we will discuss these integration aspects. We will
structure the presentation not along the items presented above but rather
according to their technical implementation.

3.8.1 Organizational Data

The most significant standard for the administration of organizational data is
LDAP (Lightweight Directory Access Protocol) [?], often in the form of AD
(Active Directory) provided by Microsoft.

It is obviously advantageous to import the users and the organizational struc-
ture from such a directory server. In @enterprise an extensible interface for
directory import is provided. One can define the access credentials and the
search path for a directory server. The mapping between the data in the LDAP
server and the @enterprise master data is accomplished via an easily adaptable
API. A standard implementation for the import of users from Active Directory
servers is provided.

Usually, the external directory servers do not provide all the information
needed in the organizational data model of the BPMS, especially role assign-
ments and permissions must often be administered in the BPMS directly. An-
other option is to extend the directory server schema and to provide the missing
data there.

3.8.2 Authorization

The native authorization mechanism in @enterprise is via user id and password.
The plain HTTP protocol sends the password unencrypted, but for extranet
usage, encryption is strongly advisable. There is a special authorization class
SSLAuth, that supports encryption of the password. Proper configuration of
SSL is a prerequisite.

Passwords do pose some security risk, even when they are transmitted in
encrypted form. A sticky note on the monitor frame or on the underside of the
keyboard is often revealing.

When the Single-Sign-On package for windows is installed in @enterprise, it is

124 3 Process Execution

possible to get along without a special @enterprise password.

Passwords could be completely abandoned using smart card technology. The
authorization must be adapted to the API of the particular smart card frame-
work. If the smart card client installs a browser certificate, no @enterprise client
side code is required. An example is provided in the demo class ClientCertDemoAuth.

In a Single Sign On scenario, importing basic user data from an external system
in inevitable.

3.8.3 Services

As mentioned before, one of the central aspects of a BPMS is the integration of
different and diverse applications. The BPMS is used to coordinate (orchestrate)
the calls to the other systems and to appropriately transform data.

The concept of construction of business processes on the basis of individual
applications as building blocks (the services) is known as Service Oriented Archi-
tecture (SOA).

One of the main goals of service orientation is reuse. The call should take place
in a platform independent manner. Web services are the most prominent set
of standards in this area. They use standard protocols like HTTP(S) and XML
based data formats.

In a service oriented architecture, the BPM system itself can be seen as a service
or set of services. Business processes could be started and BPM data could by
accessed by other applications using web services.

The services provided are defined in the application specific master data of
@enterprise. The description of the web services takes place via WSDL (Web
Service Description Language).

Web-Services in the Context of Processes

The process model of @enterprise provides specialized node types for utiliza-
tion of web services. Each node of such a type references a registered web
service. There are three types nodes for interaction with web services:

q Invoke: A web service is being called, the result is processed synchronously.
In the BPMN this is represented as:

3.8 Interfaces and Application Integration 125

q Receive: The process waits for an incoming message. After the message
has been received (the internal web service has been invoked by an
external application), the process continues. If the first node of a process
flow graph is a Receive node, then process start can be accomplished via
web service calls.

q Reply: The Reply node is always a successor of a Receive node (but is
optional itself) and can be used to send a result back to the service caller.
Between receive and reply, system steps may be used to process the data
received.

The data transfer between the web service formats and @enterprise forms
can be done declaratively. Form fields are mapped to XML elements in the
documents being sent and received via web services.

Calling functions of the BPM-Systems

The Wf-XML standard of the Workflow Management Coalition [?] defines a set
of web services as standard means to access basic functionality of BPM systems.
The provided web services of the standard are:

q Get a list of process definitions

q Start a process

q Query the state and data of process instances

q Change the state of activity instances

Additional web-services could be implemented and installed on the BPMS
server.

126 3 Process Execution

3.8.4 Data Import and Export

Accessing external (process relevant) data is a common aspect of handling work-
flow tasks. E.g. when filling out an order form, data about the customer, articles
or prices might be accessed.

The data could be stored either directly in the BPM system or an access to an
external system must be done in one of the following forms:

q Periodic copying the data into the BPMS. In @enterprise a file import
interface is provided. On this base, a frequent import of files exported
from third party data bases can be done.

As an alternative to file based data transport, the data could also be
provided via a web-service.

q direct data access: For instance, a selection could be implemented such
that the data is read from the external database and just the selected item
is transferred to the BPMS.

To provide the BPM systems data to other systems, there are also several
possible concepts:

q Access to the database: the external application could directly access
the BPMS internal database tables in a read only manner. Appropriate
schema adaption and access restriction could be implemented by means
of SQL views.

q The reporting component can be used to create a report that is periodically
being executed by a timer. The results could be made available as a file.

q Application coupling via web services: the BPM system could offer a
web service to execute a report or to retrieve the data.

The decision which form to choose is dependent on the the permissible degree
of coupling between the systems, on the general architecture of the partner
system and on how current the data must be.

3.8.5 API-Programming in the BPMS

The workflow engine provides an application programming interface (API)
to allow the implementation of functionality in a programming language. At

3.8 Interfaces and Application Integration 127

numerous places in the process definition and the subordinate objects of the
workflow applications, extension points (hooks) are provided to automatically
call those functions (e.g. complex calculations, condition evaluations, agent
assignments, preprocessing in tasks).

The following list provides an overview of of the locations where intervention
via API is possible:

1. Process flow

(a) Conditions: alternatives, loops, choices, generalized parallelism
(b) Preprocessing: action before a task is put into the worklist
(c) Postcondition: action at work item completion
(d) System step: automated workflow step with program call
(e) Agent assignment

2. Form handling:

(a) Customization of form editing (input assistance, additional data
display, ...)

(b) Actions before insertion, update, deletion

3. Extension of the GUI via application functions

4. Customization of table display (worklist, DMS, ...)

5. Timer triggered actions: one shot actions or recurring ones

6. Actions at system start or shutdown

A common characteristic of all the hooks is that the API programs often have
very little direct influence on the process flow. For the developers of API
functions, this means that she has to design and implement a method or class
that is being called by the system at the defined extension points. The result
of the call is again interpreted by the BPMS. This concept is called Inversion of
Control, see [?]. The control is in the hands of the BPM framework. The main
advantage for application developers is that they are able to concentrate on
core functionality and to largely ignore technical environmental aspects.

The @enterprise API is founded on this design principle. For the extensions
above, one can implement a single method (e.g. for conditions, preprocess-
ing, systems steps) or an interface consisting of several methods must be
implemented (e.g. for customization of tables). Adapter classes with default

128 3 Process Execution

implementations are provided for those interfaces, so that just the methods
that must be adapted need to be implemented.

The following small method should illustrate the basic concept: in a prepro-
cessing method, the due date of an activity instance should be read from a form
field. The Java method to implement this is:

public void setDuedate() {
WfEngine wfe = ServiceLocator.getWfEngine();
ActivityInstance ai = wfe.getContext();
ProcessInstance pi = ai.getParent();
DMSForm f = wfe.getForm(pi, "item");
Date dt = f.getField("duedate");
if (dt != null)

wfe.setDuedate(ai, dt);
}

The method setDuedate first gets its context – the current activity instance ai,
the corresponding process instance pi, the form f and the value dt of the form
field duedate.

The engine function setDuedate is used to set the due date for the activity
instance.

The context (current process, form instances) is usually passed to the API
functions directly via parameters, or can be accessed from initial navigation
roots by special calls like wfEngine.getContext().

The API programs can execute arbitrary actions, e.g. access databases or other
external systems, send e-mails etc. A transaction boundary is provided by the
BPMS, changes do get committed automatically, errors lead to rollbacks and
do not lead to inconsistent states.

A detailed elaboration of the @enterprise API can be found in the Application
Development Guide and the API documentation. Both can be accessed via the
Groiss Informatics web site (https://www.groiss.com).

3.8.6 Application Integration at the Client

Client side application integration is needed and sensible, when the application
to be integrated has an own or proprietary user interface, e.g. the creation and
processing of documents with office software suites. A pure web client is often
rather restricted, for better integration of local applications and hardware (e.g.

3.8 Interfaces and Application Integration 129

document scanners), additional client installed software is needed. @enterprise
offers a Java based client for such client side integration purposes.

The integration aspects for mobile clients have already been discussed in section
3.3.6.

3.8.7 Security Aspects

In a BPM applications several diverse persons, departments and systems work
together; this imposes additional complexity for the architecture of overall
application security.

External access

A central question concerning security is the location of the access points to
the system. Are the accesses from a tightly controlled dedicated local network,
are they from within a controlled intranet of the organization or are they
originating from the Internet?

When Internet access is possible, the system must be adequately secured. There
will be a non-zero probability of attack. A mere authorization with user id and
password will hardly be sufficient.

Access to system administration should be restricted to dedicated clients or
networks; in @enterprise, an URLChecker can be configured, see the @enterprise
Installation Manual [?], section Access Control.

Authorization

The applications which will access the BPMS must also be subject to authoriza-
tion like real users, see section 3.8.2.

Security in API Calls

The integration with external systems deserves additional thought.

Accesses from the BPMS to other systems are a rather simple case. The other
system has to provide some form of technical access. If the external system has
security or privacy relevant data (like the user data of a directory server), then
this reliance of trust to an external system may become problematic. There may
also be the need to confirm the identity and authenticity of the external system
(e.g. with certificates).

130 3 Process Execution

When external systems are calling the BPMS, the access must be properly
contained. Web services should be specifically restricted to a well defined set of
operations. Also for web services authorization could be required; certificates
could be put to use in this case, too.

System Environment

While this topic is not specific for BPM applications, we would like to point out
that the security of the system environment is a major component and building
block for the security of the overall system. Some issues are:

q securing access to the data base

q securing network access, physical access to the network components

q securing the servers, physical access, basic system accounts, etc.

3.8.8 Further Aspects of Application Integration

Besides the functional requirements and the security requirements, there are a
lot of further aspects for the integration of applications:

Transactions: Proper error handling: some escalation concept and mechanism
must be devised to at least inform the process owners or support personnel
about errors. Procedures for diagnosis and remediation of such errors must be
developed. This is of utmost importance when a change in the BPMS triggers a
change in an external system and the assumption is that both systems are in
perfect synchrony.

Service unavailability: Such interruptions will occur in practice and must be
accounted for. The solutions could include escalation mechanisms or temporal
queuing and replay capabilities.

Logging: Traceability of accesses from external application to the BPMS. Such
operations should be logged in sufficient level of detail to allow for issue
diagnosis. Depending on the particular requirements, data changes should be
logged, sometimes a simple flat file journal might be sufficient, sometimes a
sophisticated persistent logging in the database might be needed.

3.9 Customization of the @enterprise User Interface 131

3.9 Customization of the @enterprise User Interface

A BPMS is a largely domain neutral framework which is suitable for rather
diverse kinds of processes and which provides general functions for process
execution. To allow for efficient process handling in a particular application
or domain, the user interface will have to be adapted. It will provide a subset
of the general functions, removing the unneeded capabilities and enrich this
set with additional functions and views specifically suited and tailored for the
application. We will briefly present the adaptability features of the @enterprise
user interface.

3.9.1 GUI Configurations

A GUI configuration object in @enterprise allows to create a customized ap-
pearance and set of functions for specific roles. Sometimes, just a singular
configuration is sufficient, but when there are different user groups with rather
distinct needs, several GUI configurations must be provided. For each GUI
configuration, one can state for which roles or users this configuration is ap-
plicable. A priority can be used to disambiguate the selection in the case of
multiple assignments.

Example:

Agent configuration Priority
Role all standard 10
Role manager extended 20

Everybody who has been assigned the role all will get the standard configu-
ration. Users in the role manager will be getting the configuration extended,
irrespective of potential assignments of role all.

A configuration defines the GUI, a set of navigation links that lead to the
individual functions. Dependent on the type of the link, several properties can
be modified:

Text: a text in the navigation.

Link: arbitrary link or a link to a basic function of @enterprise.

Worklist: set of columns, type of worklist (personal, role, suspension), and
toolbar functions.

132 3 Process Execution

Structured Worklist: root for user defined folders; modifications like for work-
lists.

Process start: link to the list of startable processes or for the start mask of a
particular process.

Functions: link to the list of task independent functions.

Reports: list of all reports or execution of a particular report.

DMS: root folders of the document management system. Columns and toolbar
functions can be adapted.

Form Table: table of a form type, the columns of the table and the toolbar
functions can be adapted.

In figure. 3.19, an example of such a adapted navigation is presented. Modifi-
cations with respect to the default configuration are: the removal of the role
suspension worklist, the addition of the function "Time recording" and the
introduction of a search field.

3.9.2 Adaption of Styles

The preferences for colors and fonts are rather individual, @enterprise provides
a style configurator to allow the setting of such preferences by the end users
themselves.

On the other hand, centrally administered styles may be needed to achieve a
proper branding or conformance with a corporate style. For this purposes, no
graphical interface is provided, a style sheet must be edited.

3.9.3 Internationalization

BPMS are being used in large multinational organizations and corporations,
where the users can be expected to speak different native languages.

One way of dealing with such a situation would be to develop the whole user
interface in just one preferred language (the corporate language). Often this is
not desirable for reasons of employees with lacking fluency in this language
or for reasons of a specific diversity policy. Then the application has to be
multilingual.

3.9 Customization of the @enterprise User Interface 133

Figure 3.19: Adapted Navigation

134 3 Process Execution

All names and texts which will appear in the GUI, all descriptions and help
texts in forms and all process components must be translated to all desired
languages.

@enterprise offers some support for this aspect. Already in the modeling phase
the names of the process elements can be entered in a multilingual way. For
the names of processes, tasks, forms etc., in the mask we specify not a name
but the key for the name. In additional fields, the translations for the languages
to be used can be entered. A navigation link "Resources" provides access to an
editor for the maintenance of the keys and their language specific values, cf.
figure 3.20.

Figure 3.20: Editor for Internationalization

3.10 Playing through a Process

In the modeling chapter we were concerned with the definition of processes.
This chapter has been dealing with run time aspects. We are now in the
position to actually run process instances. We will start it on the system where
the modeling took place. Deployment to a production system is being treated
in section 5.6.

3.11 Elements of a BPM Application 135

In order to be able to execute a process it must be sufficiently defined. For
each interactive step there must be an agent description and a task id provided.
Each condition must contain a syntactically correct expression and each call in
a system step must be technically sound. When those prerequisites are fulfilled,
the process definition can be set to active and instances can be created.

All roles that are being used in the process must be assigned to at least one user.
The action for process start is found in the navigation below the worklists, see
figure 3.7. After start of the process, the work item of the newly created process
will appear in the personal worklist.

3.11 Elements of a BPM Application

Summarily, the elements of BPM applications are:

q Process definitions: executable process specifications

q Tasks: interactive steps of a process with preprocessing method, post-
condition, etc.

q Form types: describe an entity for persistent data storage, the representa-
tion in the GUI and the types of the fields

q Functions: procedures that support the process execution in some manner

q Roles: to define participants in the processes

q Permissions: to restrict access to data and functions

q Resources: for internationalization purposes, contain translations for
labels

q Web-Service Servers and Clients: definitions of called and offered web
services for application integration

q Reports: data analysis and condensation

q Timer: for recurrent, automatic action execution

Besides those elements (all of which are stored in the data base), the imple-
mentation will consist of program code and further artifacts like HTML pages,
icons and help texts.

136 3 Process Execution

Chapter 4

Monitoring and Optimization

As stated in the introductory chapter, the process management cycle also
comprises the monitoring of the current activities and the optimization of the
processes. Starting point for the optimization efforts are the process definitions
and the run time data of the process instances.

4.1 Run Time Data Analysis

During execution of the processes, the BPMS generates a wealth of data that
can be put to use for process analysis and optimization.

From the data of the process instances and the activity instances, information
like the following can be gained:

q What is the content of the worklist of a particular agent?

q How long are the worklists of the employees in my department?

q How many processes of a particular type are currently active?

Such data base queries or reports can be executed regularly or even periodically,
to get some insight about the current state of the system. Using a set of such
standardized reports, essential conclusions about performance can be drawn.
There could also be specialized reports for particular process types, taking into
account the specific process structure and data.

138 4 Monitoring and Optimization

In the following sections the mechanisms for dealing with the run time data
are described: the reporting component for data extraction, the dashboard for
an overview of the most essential information and the process cockpit as an
overall view.

4.1.1 Reporting

A reporting component is an integral part of a BPMS, it enables the creation of
reports over all the information in the data base. Further examples for reports
(besides the above mentioned run time centric ones) are:

q List of unsettled invoices and overall amount of outstanding payments
(if the processing of invoices is done within a process)

q Number of open incidents per product.

q Monthly trend of issues reported and resolved for a product.

The ability to combine data from the process execution run time and from
application data is a crucial one.

Report design is a complex task, knowledge of the data and their interrelations
is needed. Furthermore, the report designer is entitled to access all the data.
The number of people with this level of access should be minimized. After such
reports have been designed, execution permission for them can be granted to
members of roles. The execution of the reports will be done in real time on
the live data. Starting the report triggers extraction of data from the data base,
calculation of the results and presentation of them.

Figures 4.1 and 4.2 show some masks for report design in @enterprise.

The elements of a report can be defined step by step. Those elements are:

q The display attributes: which data is presented in the result.

q Conditions: specifying restrictions to select the proper set of results.

q Parameters for conditions: conditions can be parametrized. The designer
creates the principal abstract condition, the end user states the concrete
value for each execution of the report. E.g. the report designer would
create a condition that restricts the report results to processes started in a
certain (but unspecified) year, which the end user would fill in.

4.1 Run Time Data Analysis 139

Figure 4.1: Report Designer - Attributes

q Implicit parameters: are used to limit the result set depending on the
execution context. The context contains the executing user, her home
organizational department and the execution timestamp. So, a report for
the processes of the current month in the department of the report user
can be created.

q Aggregations: one of the central features of reports is data condensa-
tion: counting of non-numerical indicators like number of processes or
documents, etc.; summing up, calculations of averages, minimal and
maximal values of numerical data. The aggregations can take place on
several levels, e.g. the first level counts the processes per month, in the
second level the months with the most and least process instances are
determined.

q Presentation: the simplest form of a result is a table, usually rendered
directly in the web browser. For printing or archiving, PDF (Portable
Document Format) is normally used. For further processing in other
systems, the CSV format (Comma Separated Values) might be used. The
MS-Excel format is also directly supported. Business graphics, like bar
charts, line charts and pie charts are provided for better visualization.

140 4 Monitoring and Optimization

Figure 4.2: Report Designer - Conditions

q Links between reports: greater levels of detail could be reached via links
and stepwise drill down capabilities.

An example for linked reports is depicted in figure 4.3. A general report shows
the number of process instances per process type. Clicking on a bar could lead
to a second report that contains the instances of the selected process definition
in the current month, grouped by products and with the categories open and
solved. To see the open or solved issues of a certain product, a click on the
corresponding bar area could get the detailed list of the corresponding process
instances. Those provide navigation links to their form data, documents and
histories.

In the user interface of the BPMS, a link for the list of executable reports will be
placed in a suitable location, but reports can be also be placed in other locations
as well.

4.1 Run Time Data Analysis 141

Report 1: Process instances ITSM

Report 2: Incidents per month

Report 3: Incidents (open, product @enterprise)

?

?

Figure 4.3: Drill-down Reports

4.1.2 Dashboard

The dashboard gives a personalized overview about the system state. Each
user can individually compose and arrange the most crucial information for
her on this page. This can be reports, a worklist overview (with numbers
of new/due/all entries), appointments, current system users, etc. Figure 4.4
shows an example of such a dashboard in @enterprise.

142 4 Monitoring and Optimization

Figure 4.4: Dashboard

The dashboard can also be used as the default start page. It would then be
displayed immediately after logging in.

4.1.3 Process Cockpit

While reports are well suited for obtaining various detail information and the
dashboard is fine for gaining a quick overview, the need for a comprehensive
view of all processes calls for yet another form of presentation. In chapter 1 we
introduced the process handbook as a collection of all documented processes
in the whole organization.

The Process Cockpit is an extended form of this handbook. Not only process
definitions but also current run time information of the process instances is
readily accessible.

Figure 4.5 shows the start page of a process cockpit, where a hierarchical
representation of all the processes of a corporation can be found. The structure

4.1 Run Time Data Analysis 143

Figure 4.5: Process Cockpit, Start Page

is configurable, in the example, it follows the Process Classification Framework
of the APQC (American Productivity & Quality Center) [?]. For each process,
a varying degree of detail is available, depending on the completeness of the
implementation. There are:

1. processes with just a textual description; there is no corresponding work-
flow process;

2. processes which are indeed described via a process definition, but that
are not executed within the BPMS

3. and processes that are properly defined and also executed within the
BPMS.

Accordingly, the process cockpit contains the following information:

q documents that are somewhat connected to the process, textual process
descriptions, execution guidelines and help texts. This type of informa-
tion is available for all kinds of processes.

q a representation of the process description for the processes in groups 2
and 3.

144 4 Monitoring and Optimization

q for processes in group 3, also run time information is accessible.

The process cockpit view of one process type is shown in figure 4.6. The
information about the process definition is grouped in two tabs. The view is
configurable per process definition. One can select the reports do be executed
immediately, the reports to be accessible via links, additional functions and
additional arbitrary links.

Figure 4.6: Process Cockpit, View for one Process Definition

The displayed information is subject to the permission system. Process owners
are allowed to see all detail information for the process instances, mere pro-
cess participants can view those instances they worked on, non-participating
users may view general reports e.g. with some aggregated key performance
indicators.

4.2 Process Optimization 145

4.2 Process Optimization

This section discusses one of the main goals of business process management
and the deployment of BPMS, namely to increase the efficiency of business
processes. While this section is of utmost interest to many readers, it is neither
by chance, nor by bad planning that we are dealing with optimization rather
late. Process definition, handling within a BPMS and analysis of run time data
are prerequisites for process optimization.

On the basis of the detailed information from reporting, dashboard and process
cockpit components, the process optimization can start. The quantitative data
collected in the BPMS are certainly just one facet of the picture and are not
sufficient for a general optimization. Other essential information would e.g.
be customer satisfaction or product quality. Such qualitative data must be
collected, too.

There are several different directions to pursue process optimization:

q Speed: the goal is to achieve short process turnaround times. The focus
can be on average time or can be to avoid extremal values as much as
possible.

q Quality: an optimal result shall be achieved. Errors and corrective itera-
tions should be avoided by all means (e.g. when building a product).

q Resource Utilization: the resources should be utilized in an optimal way
to minimize process cost.

The goals are at least partially in conflict. It is not possible to enhance a process
with respect to all the criteria, better quality may imply longer throughput
times. Less probable timeouts would usually mean less resource utilization. It
is the task of the management to postulate the proper goal mix for the particular
situation.

According to the focus of this book, we do not elaborate on general process op-
timization, but on the optimization closely related to the BPMS. We distinguish
three aspects:

q better resource utilization,

q optimized process flow,

q optimization of the activities.

146 4 Monitoring and Optimization

Further (untreated) facets would be organizational aspects, activity handling
outside of the BPMS, goal definition and goal balancing.

The optimizations can be performed at three levels (cf. [?]), like depicted in
figure 4.7:

Figure 4.7: Optimization Cycles

q Within the BPMS: The system assigns tasks and orders them without
manual intervention.

q Operative Management: The processes are being observed and some
manual intervention takes place.

q Strategic Management: No intervention at process instance level, rather
the process definitions, the tasks and activities or the resource allocation
are targeted.

The levels are different with respect to their time horizon, the effort to imple-
ment them and their sustainable effectiveness.

4.2.1 Optimization within the BPMS

When bottlenecks arise during the execution of business processes, some mech-
anisms in the BPM system can contribute to their resolution.

4.2 Process Optimization 147

Since the resources provided can not be augmented by the BPMS, just reassign-
ment of work is possible. From each of the running processes, two indicators
are considered:

q process priority

q probability of exceeding a deadline

Both numbers can be combined (e.g. by simple multiplication) to compute a
processes urgency.

The second criterion for reassignment of activities is the load of the resources.
The load factor could be approximated on the basis of the number items in the
worklists, balanced with the individual (projected) effort needed.

A scheduling component could implement the following functions:

q scheduling of new activity instances: they are assigned to the agents with
the least load (the take function is executed automatically on the behalf of
the respective users).

q rescheduling of existing activity instances: items in personal worklists
could be reassigned to other users (provided that the work on those items
has not yet started).

q Deadline calculation: determination of process deadlines could be depen-
dent on current workloads and resource utilization.

Assuming that activities in the worklists have priorities or levels of urgency at-
tached to them, the question arises whether to allow users to decide themselves
about the next task they are to carry out. Such freedom would thwart the efforts
of automatic scheduling, but is nevertheless the approach that gets usually
implemented. A system that would force the users to work on exactly the
item that the system prescribes would lead to acceptance problems. Normally,
user satisfaction, efficiency and effectiveness is enhanced by some degree of
freedom and self determination of the work.

4.2.2 Optimization by Operative Management

The operative management can act upon the information provided via the
process cockpit and the performance reports. Possible actions on this layer are:

148 4 Monitoring and Optimization

q Manual assignment: explicit assignment or reallocation of work items to
particular users.

q Increasing capacities: bottlenecks could be eliminated by resource real-
location. Lightly loaded users could temporarily be assigned to roles of
heavy loaded users. Working hours could be increased.

q Deadline adjustment: The current process instances are analyzed. Maybe
deadlines can be extended or priorities can be reconsidered without
breaching any contracts or customer agreements.

q Deadline calculation for new processes: Customers can be informed
about expected delays as soon as possible.

Usually the process owner is responsible for evaluating, deciding and executing
such manual interventions.

4.2.3 Optimization by Strategic Management

In the outermost feedback loop in figure 4.7, there are two possible approaches
to enhance the performance:

q Requisition of additional resources: when all potentials for internal re-
source shifting are exploited and the processes have to be carried out in
the current manner, additional resources must be acquired. This could be
on a seasonal basis and would require some planning and lead time.

q Process optimization: finally, the most essential and high-yielding opti-
mization; the enhancement of the processes. On one hand, the process
structure can be enhanced, on the other hand, the individual steps could
be streamlined.

Resource control is not discussed here, in the following section we will concen-
trate on process optimization as one of the main tasks of corporate manage-
ment.

4.2.4 Changing the Process Structure

An overview of the principal variants of changes to the process structure is
given in figure 4.8.

4.2 Process Optimization 149

a) Parallelization

b) Merge steps

c) Merge processes

d) Eliminate steps

e) Branch

A B C D

A B C D

A B

A B C D

A

A

A

A

A

A

B

B

B

B

B

B

C

C

C

C

D

D

D

D

D

C

C

D

D

Figure 4.8: Optimization via Structural Changes

a) Parallelization

If two steps B and C are executed sequentially, but the results of B are not
needed in C, the steps B and C can be executed in parallel.

b) Merge steps

When one and the same agent usually works on two consecutive steps, then
those steps should be merged into one. Usually this means considerable savings
as some actions are to be executed just once (finding the line in the worklist,
opening the details, reading and understanding the case, closing the case,
finishing the step and selecting the appropriate successor path or agent)

150 4 Monitoring and Optimization

c) Merge Processes

Often the results of one process provide the initial input of a successor process.

A simple example is the application for a business trip. When the trip is
approved, an expense report is to be produced later on. Those are parts of a
larger overall process, that should be modeled and executed as one workflow.
In the period between the approval and the expense processing, the process
can be placed in the suspension worklist, the system will automatically recall
the item when the trip finishes.

Process merging can also be accomplished on a larger scale, crossing orga-
nizational or corporate boundaries have a large potential for savings and
improvements. Detailed and precise agreements with the partners on an tech-
nical as well as on an organizational level are needed. This area of business to
business (B2B) communication is a very extensive one and is not in the scope
of this book.

d) Elimination of Steps

From the run time data, one can find out if some steps are executed rarely or
not even once. Such steps should be scrutinized from a business perspective
as candidates for elimination or possibly merging with other steps, leading to
simpler processes.

e) Branching

Many administrative processes contain steps for approval. Sometimes, such
steps could be substituted by parallel informational steps. Instead of waiting
with process execution for approval by a superior, the process will continue
immediately, the supervisor will just be informed in a parallel step. In case of
usually high approval rates and negligible negative consequences of unwar-
ranted (temporal) process continuations this might be preferable.

A real world example might illustrate this [?]: Public officers in the province of
Styria (Austria) that that want to undertake a business trip to a foreign country
must get approval by the provincial government(!). The rate of denial of one to
two applications per year let the provinces board of audit come to conclude
that this does not warrant the effort and substantial delay in processing. The
auditors suggested to change the process from an delaying approval step to a
parallel information step. The suggestion was not implemented.

Let us now consider the optimization of individual tasks.

4.2 Process Optimization 151

4.2.5 Optimization of Tasks

The optimization of the execution of an elementary task takes place principally
in the areas of form processing and application integration:

a) Form Processing

The processing and handling of forms poses the following optimization poten-
tials:

1. Avoid unneeded data: which of the form fields are changeable, but are
never mandatory in a step? Which fields are not being used in subsequent
systems or in the final product? Both kind of fields are candidates for
elimination.

2. Automatic import of data from other systems or other process instances.

3. Automatic and up front filling in of sensible default values, like the own
name in a form or the number "1" as amount in an order item form.

4. Selection instead of input: selection of a value is usually faster, simpler
and more accurate than to input a value in a free form manner. Context
information like other field values can be used to restrict the permissible
selection to the minimum number needed.

In figure 4.9, a form is presented that has just 4 free form text fields out of 46
fields in total. The other fields are imported from other systems or the values
can be selected with value lists.

b) Structuring of Unstructured Data

The processing of unstructured data (like in documents) does take significantly
longer time than the handling of structured data (like in forms). The quality
of structured data is better, field values can be checked, optional fields can be
indicated, mandatory ones can be enforced. Specific help texts can be placed at
field level (this is why public agencies choose to have an abundance of forms).
Creation of documents with unstructured data should be avoided whenever
possible. Time end effort goes into:

q calling the tools (e.g. office applications)

q collection of the data (often from process forms)

152 4 Monitoring and Optimization

Figure 4.9: Optimized Form

q formatting the documents: years of work time are wasted with the for-
matting and layout of text processing documents.

q integration of the document into the workflow (depending on the BPMS)

Often, manual text processing occurs at the end of a process, when the result
is a letter or official notification. Much more efficient would be the automatic
generation of such documents on the basis of structured process data.

The question, if the user should be able to edit such letters after their generation
is discussable. If the documents are in a standard form, we advise against it to
avoid that effort and time that is wasted time for mere formatting or style.

c) Partial or Full Automation of Steps

BPMS offer a high potential for optimization by (at least partial) step au-
tomation. In section 3.8, the application integration area has been discussed.
Candidates for automation are especially:

4.2 Process Optimization 153

q data transfer between IT systems

q information transfer to persons outside the boundaries of the BPMS (e.g.
sending an e-mail)

q checking of conditions, e.g:

– order of an Internet connection: What kinds of connection are avail-
able at the street address?

– application for a trade license: Does the applicant have the needed
competence and prerequisites?

– opening of an account: What is the customers credit rating?

Several of such checks could be carried out completely automatic or at
least all relevant data could be collected in a process form and presented
to the user in order to enable efficient decision making.

What remains in the process are the productive steps, where new data is entered,
decisions are made and externally (not computer-related) performed actions
are being documented.

4.2.6 Implementing the Optimization

The changes must be designed and developed and lead to new versions of
processes, tasks, forms and integration code. Those new versions can be
technically activated at an predetermined date.

The evaluation of the changes again leads us to the analysis of the run time
data (as having been dealt with at the beginning of this chapter). Execution
times of processes and tasks can now be compared. Since a new version usually
is a conglomerate of several changes, the effect of each individual alteration is
not directly quantifiable.

At least equally important to the analysis of run time data is the feedback that
users and customers of the process will provide. Which of the changes are
viewed as positive which ones are cumbersome or disadvantageous? The soft-
ware ergonomics (human computer interaction) field has seasoned techniques
to gain such answers like questionnaires, observations and video analysis.
Since system performance is largely dependent on the level of user and cus-
tomer satisfaction, the opinion of those people will have a heavy weight in
determining the quality of a change.

154 4 Monitoring and Optimization

Chapter 5

Workflow Projects

Workflow applications are a special kind of software, so the development
process used in workflow projects has much in common with general software
development cycles. Nevertheless, some specific considerations apply for
workflow systems development.

Mathias Weske et.al. have introduced in [?] a reference model for the conduc-
tion of workflow projects. A slightly adapted form of this model provides
the basic structure for the following treatment. The principal phases of the
workflow development process are coarsely depicted in figure 5.1.

We do not explicitly show iterations or feedback loops in this picture. Going
back from a later phase to some earlier one in order to detail or revise previous
work is permissible and sometimes highly desirable.

5.1 Survey Phase

The first phase is a survey, starting with the identification of the problems that
the workflow application is intended to tackle and solve.

The following checklist can be used for identification of such problems

1. application name and synopsis
2. process description (textual form)
3. participants (organizational units, groups, persons)

156 5 Workflow Projects

Figure 5.1: Development Process

4. interfaces to other applications
5. interfaces to applications or persons outside the scope of the organization
6. intended benefits and focus of the project:

q reduced cycle times

q automation of individual steps

q better traceability and analysis capabilities

q integration of legacy application

q conformance with legislative rules and industry standards

5.2 Requirements Specification Phase 157

q increased quality (less errors, more complete, . . .)

q other benefits (elaborate)

7. intended deployment date
8. cost estimation
9. benefit estimation

In a kick-off meeting, such a checklist provides some guidance for the survey
team to arrive at a principal decision about the projects feasibility. Clearly,
some of the topics like costs and benefits can be handled only in the form of
coarse estimations, there might arise the need for further and more detailed
information gathering activities, but the following three questions should be
clarified as result of the kick-off efforts:

1. Is workflow technology adequate for the solution of the problem?

2. Do the (projected) benefits warrant the (projected) costs?

3. Are the (projected) resources available?

Aspects of the first question have been already dealt with in chapter 1 (see page
12). The intention of the next two questions should be quite clear. If all three
questions can (at least preliminarily) be answered positively, a project team can
be appointed and the requirements gathering phase can start.

5.2 Requirements Specification Phase

The ultimate goal of this phase is the creation of a requirements specification.
The core of this specification would describe in detail, how the processes in the
scope of the project are intended to be executed in the future. But also several
other important aspects of the IT system to be developed must be dealt with.

The crucial items that should be contained in such a requirements specification
(specifically tailored to include workflow aspects) are:

1. General Description
1.1. Goals and Scope
1.2. Participants

2. Processes

158 5 Workflow Projects

2.1. Process 1
2.1.1. Process Flow
2.1.2. Way or Mechanism of Process Start
2.1.3. Escalations and Exception Handling

3. Tasks
3.1. Task 1

3.1.1. Agents
3.1.2. Preconditions and Postconditions
3.1.3. Compensations
3.1.4. Escalations and Exception Handling

4. System Steps
4.1. System Step 1

4.1.1. Function
4.1.2. Interfaces
4.1.3. Exception Handling

5. Data and Forms
5.1. Overall data schema
5.2. Form 1

5.2.1. Fields (names, data types and domains)
5.2.2. Graphical Layout
5.2.3. Support Functions
5.2.4. Form Field Visibilities per Process Step
5.2.5. Relationship to Process or DMS

5.3. Lists of Values
5.3.1. List of Values 1

5.3.1.1. Usage
5.3.1.2. Value Sets

6. Functions
6.1. Function 1

6.1.1. Core Function
6.1.2. Permission Aspects
6.1.3. Placement in the GUI

7. Timers
7.1. Timer 1

7.1.1. Function
7.1.2. Interval
7.1.3. Interfaces
7.1.4. Exception Handling

5.2 Requirements Specification Phase 159

8. GUI
8.1. General Layout and Navigation Concepts
8.2. Specific Issues for each User Group
8.3. Permission Aspects
8.4. Adaptions for the Worklist Handling
8.5. Adaptions in the DMS
8.6. Desktop Integration and Tools

9. Reports
9.1. Report 1

9.1.1. Logical Content
9.1.2. Layout and Presentation
9.1.3. Permissions
9.1.4. Parameters and Timer Integration

10. System Integration
10.1. System 1

10.1.1. General Description of System Nature
10.1.2. Communication Mechanism
10.1.3. Protocol and Data
10.1.4. Error Handling

11. Milestones and Deadlines

The presented organization of the requirements specification document is
based on the proposal of the IEEE [?]. We will now discuss some of the items.
The section "General Description" contains the essential parts of the problem
identification, presents the project synopsis and scope and clarifies the intended
benefits for the participants and stakeholders.

5.2.1 Process Description

The process descriptions are the central items in the requirements document.
Depending on the degree or formalization and documentation in the organi-
zation, more ore less detailed, precise and complete description of the as-is
processes may be available. Nevertheless, it is of crucial importance to apply a
"reality check" to those data. Interviewing the participants is an integral and
essential task to gain insight in the procedures and manners of operation in
practice.

One viable approach to understanding the individual steps and the process as
a whole would be to "follow the flow", that is to accompany some real process

160 5 Workflow Projects

instances in their way from participant to next participant. The following
questions should be answered for each step:

q Who is involved, why this specific person?

q What is done and accomplished in this step?

q Why is the step needed?

q Which data is needed, which data is newly attached to the process?

q What tools are used?

q What is hard in this step, what are special cases?

q Are there alternative ways of doing things?

q How do the results influence further steps?

q What is next, where does the process continue?

q What are the time constraints?

The result would be a process description that is verified against the practice
and in accordance with (representatives of) all process participants.

Other input for process descriptions are legislation, common rules and indus-
try standards that might influence the process flow. Examples are needs for
documentation and safe-keeping, traceability and audits, four-eyes principles,
etc.

Additional care must be devoted to special and exceptional cases. How to
deal with incomplete process data, or the need to sometimes "rush through" a
particular process instance. There might be the need to explicitly model some
of the anticipated important special cases as process variants or extra paths of
the common process model for the standard case.

Process modeling could even in this early phase take place with @enterprise.
Generally, the benefits of tool supported modeling here are rather complete
data with seamless transition to a later phase, while the potential disadvantages
would be to be caught too early in the details of technology and to be confined
within its boundaries and thereby being distracted from the business issues
and people. The low tech approach with e.g. flip charts, sticky notes, story
boards and similar tools might be preferable.

5.2 Requirements Specification Phase 161

Besides the process flow, it has to be determined how a process instance gets
started. Will it be manually, will there be some external triggering event, or
must it be started at certain points in time or at regular intervals?

For the tasks (the steps of the process that are to be carried out by humans), we
need the following details:

q Agent: who is performing this step?

q Preconditions and post-conditions: automatic operations to be carried
out during start of a task or during its completion.

q Compensations: Operations to be carried out when a task must be rolled
back.

q Escalations: Treatment of exceptions and timeouts (business related is-
sues).

For automatic system steps, the details of their function and data transforma-
tion and exchange are to be documented. Exception handling is also to be
taken into account for automatic steps, but from the more technical perspective
of possible faults and errors.

5.2.2 Process Data

Besides the process flow, process data is the next important aspect to deal with.
Often there are forms or reports that contain the data. There might be paper
based forms and there might be IT-based forms and screen masks which can be
built upon. Sometimes, the complete data schema may be available for third
party systems, or the data schema might be based on or related to an industry
standard.

In the case of existing forms (paper based and electronic ones), it is of vital
importance to use real instances with data (forms, that were filled out). So,
the amount and nature of the data, its syntax and semantics can be much
better understood. Exception handling by ad-hoc techniques like marginalia,
additional documents stapled on, sticky notes and other creative approaches
could be observed. On should strive to capture also this aspects directly in the
form structures.

Besides the forms directly used in the process, additional data structures must
be considered:

162 5 Workflow Projects

q Process relevant data

q List of values

For all those data, the following details are needed:

q the individual fields, their data types and domains,

q the permissions for viewing and changing, down to field level and with
reference to a context or process state,

q nature of data administration: are the data originating from another
system, are they references, must they be synchronized; is there manual
administration of data within the BPMS?

5.2.3 Functions

While a BPMS provides a comprehensive set of standard functions for process
execution, nevertheless further functions will have to be implemented for an
application. The goal and operation of those functions must be described, their
integration in the GUI must be detailed upon. We need to state, in what context
they are applicable and what permissions are necessary to execute them.

5.2.4 Timer

Timer triggered events need to be elaborated with respect to their timing
(points of time vs. regular intervals), and according to the actions that should
be carried out on what specific data or processes.

5.2.5 GUI

A crucial aspect of the requirements of IT systems is the user interface.

In BPM projects, this item is slightly less relevant, since many functions are
already prescribed by the BPM system. Most of the application specific GUI
issues are dealt with in the areas of form layout and function design.

What remains to be treated is the adaption of the out of the box GUI provided
by the BPMS. It must be decided, if there is the need for individually tailored
GUI configurations for the different user groups (like presented in section
3.9.1). It might be sufficient, to provide one integrated GUI that just fades out

5.3 Product Selection 163

certain components and functions, depending on the users role assignment
and permissions.

Additional areas of adaption are functionality and layout of the worklist client
and the functions and folder layouts in the document management system.

5.2.6 Reports

Description of reports comprises: what are the parameters, what should be
included in the result, what is the format and layout of the report, who is
allowed to execute the report, how is the report linked to other reports?

5.2.7 Integration

The last area of requirements specification is the integration with other IT
systems. In section 3.18, a set of possible integration scenarios was presented.
The requirements must state those external systems and the kind of integration:
initial data import, periodic synchronization, real time access needs, error
handling, etc.

5.2.8 Project Deadlines

It is not feasible to provide a detailed project plan in the requirements phase, but
crucial deadlines must be stated and a rough idea of the intended milestones
should be provided, e.g. "must be productive at Jan. 1st, 2012 " or "field test
during summer"’.

5.3 Product Selection

In the project plan given by Weske et. al. in [?], the product selection takes
place after the design phase. This ensures that product selection does happen
before all the relevant details are available. We would like to precede design
with product selection, since then, in the design and prototyping phases, the
selected tool can already be used.

The criteria for product selection would be dependent on the requirements and
the general profile of the application, nevertheless we will present an outline for

164 5 Workflow Projects

a general criteria catalog, which can be the starting point for a project specific
one [?].

The first level structure of the catalog closely corresponds to the chapter struc-
ture of this publication: modeling, execution, integration, reporting and anal-
ysis, general; the last item just contains general points for acquisition of IT
systems.

1 Modeling

1.1. Process Definition

- Process definition language used to describe the processes.
- If BPMN, which language constructs are supported?
- Options for and kind of process versioning.
- Process documentation: is there a - printable one - provided?
- Are all details contained in the documentation? Is is suitable for end

users?
- Is a graphical process designer available?
- Manner of definition for conditions, expressions and constraints?
- Web-based process definition via browser possible?
- Are there any additional components needed for this?
- Are the process definition component and the run time component

integrated or separated?
- Availability and power of an API for process control?

1.2. Data Definition

- Is a form designer component provided?
- Which data types are supported?
- What input checks are provided, how are they defined; are they exten-

sible?
- How can dependencies upon form fields be defined?
- How are 1:n and n:m relations being mapped?
- Which layouts are available (free-form, table, two columns, multiple

columns)?
- Can forms be fine tuned outside of the form designer?

5.3 Product Selection 165

1.3. Organization Definition

- Which entities are in the organizational model? Is the schema avail-
able?

- What substitution options are provided? Are there role substitutions,
multiple substitutions, substitutions for time intervals?

- Is there a browsable display for the organizational structure?
- Are there hierarchical structures available? For organizational units?

For roles (in the sense of role inclusion)?, For role assignments (hierar-
chical role scope)?

2 Execution

2.1 What degree of run time flexibility is supported?

- Going back
- Delegation
- Copy to
- Ad-hoc extensions, which controls structures can be inserted?

2.2 Escalations and Exception Handling

- Which process states and what events can trigger escalation actions?
- What escalation actions are provided? Are they extensible?
- How are errors during calls of external applications being handled?

2.3 User Interface

- Is there a browser based client? Which browsers are supported?
- Native browser support or are plugins needed?

- How can the GUI be adapted? Is it configurable; is an API available?
- Can the columns of the worklists be adapted and freely defined?
- Can the worklist be structured (via tagging or via folders)?

166 5 Workflow Projects

- Can forms be displayed differently in different views? How?
- Are there several and differently adaptable GUI layouts for diverse

kinds of users (roles)?
- How is branding / corporate identity accomplished?
- How is internationalization of processes, forms and other process

components done?
- What natural languages are supported / available in the GUI?
- What is the participants view of the process history?
- Can a process be aborted and reactivated later on?
- How are changes being logged? Can changes be traced down to single

field level?
- Is a web based administrative interface provided?

- Is there an interface for mobile clients?
- Is it a Web application or a mobile app (which mobile operating sys-

tems are supported)?
- How is the mobile interface adaptable and extensible?
- What restrictions apply for mobile GUIs?

- Is there a context sensitive online help system?
- Which manuals are available? Is the depth and extend of documenta-

tion adequate?

2.4 Security

- Which authorization mechanisms are available (username/password,
certificates, smartcards)?

- Is single-sign-on supported? In which environments?
- Is role based access control supported for the permission assignment?
- Can permissions be assigned with respect to organizational units?
- Can permissions be assigned on individual processes, documents or

folders?
- Can the permission system be used to define restricted system powers

e.g. for operators, user administrators, process owners?

5.3 Product Selection 167

2.5 Document Management

- Can arbitrary documents be attached to processes?
- Is there also a process independent document filing area for docu-

ments?
- Is access to the documents also governed by the permission system?
- Can the documents be enriched with arbitrary meta data?
- How is scanning equipment being integrated?
- What versioning schemes are provided?
- How are documents being archived?
- Can documents be stored in encrypted form?
- Are electronic signatures of documents supported?

2.6 Reporting and Analysis

- Is an integrated reporting component provided?
- Can run time process data be compacted and summarized?
- Is there an adequate user interface for the report designers available?
- Can reports also contain application data (form data)?
- What output formats (HTML, PDF, Excel, CSV, charts) are provided?
- Can reports be linked in a drill-down manner?

3 Integration

3.1 Enterprise Application Integration

- How can third party applications be integrated?
- Which forms of integration of messaging (e-mail, social media) is

provided?
- Is there a notification mechanism for events?
- How can organizational data be synchronized and kept current?

3.2 Architecture

168 5 Workflow Projects

- Scalability: how is adequate performance being provided under peak
load (clustering, load balancing, etc.)?

- Is a sizing guideline for hardware and infrastructure dimensioning
available?

- Which data base management systems are supported?
- What software requirements are posed on the platform?
- Which standards are supported?

3.3 API

- Is there an API?
- How is it documented, are examples available?
- What language bindings are provided?
- Is it possible to use the BPMS as an embedded engine?

4 General

4.1 License and Costs

- What license models are offered (named users, concurrent users, pay
per use, enterprise-wide license)?

- Is a test environment included in the license cost?
- What support contract models are available? At what cost?
- What service level agreements are provided?
- How about commercial stability of the vendor?
- Product maturity; since when is it on the market?
- Are there reference installations?
- What is the installed base (installations and seat counts)?
- Can resources be provided for consulting and implementation? Are

such services available on the market? At what cost?

4.2 Operations

- How can the basic software be upgraded?
- How can applications be upgraded?
- Is there an import and export facility for processes and other artefacts?

5.4 Design and Implementation 169

- Is a scripting language provided?
- Availability of trainings and courses for end users, process designers,

administrators and developers? Concrete contents, durations, cost?

Besides those common selection criteria, normally there are additional criteria
specifically applicable in the context of a project or an organization. It must also
be noted, that the catalog does not weigh the items. Individual weights must
be assigned to the selection criteria to document their relative importance for
the specific selection project, in particular a differentiation between essential
"must-haves" and optional "nice-to-haves" can help to quickly assess principal
product suitability.

5.4 Design and Implementation

We will treat the next two phases - design and implementation - in a combined
way. Since they can be overlapping and are not necessarily be carried out in a
strictly sequential manner. One can follow a very agile and prototype driven
approach with clear advantages with respect to development time, product
quality and user participation and satisfaction.

In the design phase, the individual components of the system are specified, their
intended behavior is described precisely and completely. In the implementation
phase, the components are created on the basis of this specification.

The components of a workflow application are partly the process definitions
and their constituting artefacts, partly programs written in a programming
language.

The components of the first kind are largely finished when the definition is
finished, just for the program code, an explicit implementation phase is needed.
The differentiation is often somewhat blurred, let us look at some examples:

q Process description in BPMN

q Definition of a condition via XPath

q Definition of a post-condition in Java

170 5 Workflow Projects

The main difference between the three examples is the generality of the lan-
guage being used. BPMN is applicable for the definition of business processes,
XPath is a navigation language for XML documents and Java is a general pur-
pose programming language. The creation of software based on models in
domain specific languages is called model driven software development [?]. This
approach tries to avoid specific implementation steps to a large extent.

During the creation of a workflow application, for each component there is a
specification being made followed by an optional implementation phase for
the component.

There are two results of this phase; there is a design document - structured
like the requirements specification - that provides all needed details for the
implementation and there is also an implementation of the processes, which
can be tested right on in the next phase.

5.5 Test Phase

The test phase is needed to decide upon the applications fitness for use and to
ultimately achieve this quality. Error identification, documentation, tracking
and correction will take place. Usually, the test is divided into two parts, the
lab simulation and the field test.

5.5.1 Lab Simulation

The lab simulation can be started when significant parts of the implementation
are completed.

The tests are driven by a test plan; in the case of a workflow application the
process flow and structure can provide an orientation for the structure of the
test plan and for the individual tests.

An adequate predefined organizational structure containing the relevant users,
departments, roles, role assignments and permissions build the base of all tests.

The test is carried out by following the control flow of the process, while im-
personating the participants. Conditional execution paths and loops must be
considered, several variants of the process must be executed, until (theoreti-
cally) all possible execution paths were covered by the tests.

In every process step, conformance to specification is to be checked:

5.5 Test Phase 171

q Functions: which functions are provided - are they behaving correctly?

q Forms: correctness of field visibilities, is all needed information available,
and visible; are the proper fields editable, are mandatory fields really
mandatory?

q Check wrong inputs for all fields. Are adequate error messages provided
for all invalid inputs?

q Conformance with documentation.

When errors are observed, they get properly described, documented and re-
ported to the development team. Corrections are implemented and a new
version of the application is being made available on the test platform.

The test phase results in a test protocol, which gives insight about the kind of
the test cases that were executed, about the errors fixed and the errors still
remaining in the applications. After lab simulation, a field test takes place.

5.5.2 Field Test

In this phase, the application and the processes are being tested by selected
"real" users.

Before the field tests, the users must be trained appropriately. The function of
the application is presented and the users do walk through process instances
in a manner like they would in a production situation.

The field test is not primarily intended to uncover programming errors or
glitches of a purely technical nature, the emphasis is on correctness of the
application and on ergonomic matters; main issues would be:

q Missing functionality: walking through the cases reveals functions that
would be essential or helpful in the day to day use of the application.

q Wrong functionality: some function is not carried out appropriately. The
error may be rooted in the requirements specification, the design or in
the implementation.

q Poor usability: A tester working completely through a single business
case during the lab test is not likely to encounter certain kinds usabil-
ity problems. Issues and annoyances and potential optimizations in
ergonomic aspects of software often reveal themselves only when using

172 5 Workflow Projects

them over and over again in a realistic work pattern. Field tests are better
suited to identify such problem.

The field test is also done in a feedback cycle, where the identification and
reporting of problems would lead to additional development effort until a new
version of the application will be installed on the test platform.

After positive completion of the test phase and with a detailed test protocol
as documented result, the application can be transferred to the production
environment.

5.6 Installation

Implementation of a workflow project takes place on one or more development
systems. From there, the artefacts are integrated and transferred to a test system.
This is the working platform for the test phase. After this, the application is
deployed on the production system. The test environment should not be
dismantled, but rather be still available for the support personnel to be able to
reproduce problem situations emerging in the production system.

Another system would be a training platform. It should be separate from
the production system (to allow interaction without consequences), and also
separate from the test system (since on the test system, a future version of the
application could already have been installed).

Usually, the installation in the production system will not be conducted by the
developers. The software and an installation instruction will be delivered to
operations people with a technical background but who cannot be expected
to be deeply acquainted with the area of workflow. The installation docu-
mentation should try to avoid workflow specific terms and the procedure
should be largely automatic and scripted, abstaining from interventions via
the administrative GUI.

The installation of an application is carried out in two parts: the installation
of the BPM system itself, followed by the installation of the application. For
the first part, one can build on vendor provided procedures and installation
routines. The deployment of the application can be done via a sequence of
manual steps via the administrative interface, or scripts could created and used.
We will discuss both variants in the context of @enterprise.

5.7 Application Upgrade 173

GUI based application deployment

A function Install Application is provided to initiate the deployment of an appli-
cation in the system. The application would have been packed in an archive (a
zip file format), which contains the program code, an initial configuration of
the application and an export file containing the needed master data objects
(process definitions and components, ...). The function unpacks the archive to
a target directory, adapts the path definitions in the system and imports the
master data objects.

There may be the need to adapt the parameters of the initial configuration, this
can be also done via the administrative GUI.

Administrative Shell

When it is not possible or desirable to manually install the application, be
it because of policy regulations of the platform provider, or for reasons of
traceability, scripted installation is possible.

@enterprise provides an administrative command line interface (a script con-
sole) where administrative actions can be carried out without browser access.
Sequences of commands can be combined to scripts. In particular, for appli-
cation deployment such a script can be created. Remaining actions for the
administrator are:

q unpack files to the target directory

q adapt parameters in the install script

q run the install script

This requires minimal manual intervention, is documented, traceable and
repeatable. The script is formulated in Groovy (http://groovy.codehaus.org/), a
powerful and popular Java-based scripting language.

A chapter of the @enterprise administration guide is devoted to the details of
the administration shell [?].

5.7 Application Upgrade

After initial installation, the need to install updates will arise more or less
frequently. Code changes will have to be put in place and database objects
(process definitions and components) will have to be adapted.

174 5 Workflow Projects

The approach is not that different from an initial installation. For the database
objects, the XML based import mechanism (of a file that has been exported
from a development system) can be used again, the changed code is copied to
the application class path directory.

The XML import differentiates between new objects to be freshly created and
existing objects, to which the appropriate modification must be applied. For
instance, a process definition could have been extended with several additional
steps.

In some upgrade cases, further actions need to be performed like data base
operations, or changes to permissions assigned to roles. Those actions could
be implemented as a Java method which is registered as a special application
upgrade method. Then, those actions could be initiated via the administration
GUI. Or again, a script for execution in the administrative shell could be
created.

The actions needed to be performed by an administrator (besides general
precautions like backup procedures):

q inform the users about the planned upgrade and downtime

q deactivate user logins

q stop the server

q unpack the files to the application directory

q start the server

q execute the script with the upgrade actions,

q activate user logins

Again the scripting provides for a repeatable and documented upgrade proce-
dure (a protocol file can be generated via the -log parameter).

With the deployment of the system, the initial development process is com-
pleted. Figure 5.7 gives an overview of the documents generated in the indi-
vidual phases.

We will conclude the chapter with some discussions about tasks during the
operation of a workflow application.

5.8 Operation 175

Document Project step
Problem statement Survey
Requirements Specification Requirements Gathering
System specification Design
User documentation Implementation
Administration guide Implementation
Installation instruction Implementation
Test plan Implementation
Test protocol Test phase

Figure 5.2: Documents created in the development process

5.8 Operation

The tasks during the operational productive life of the application can be
classified into the following categories

q technical administration: maintaining the infrastructure

q organizational administration: maintenance of the organizational struc-
ture

q process administration: check the process flows, process analysis and
monitoring

q issue, problem and change management: planning, structuring and exe-
cuting changes

The assignment and distribution of the tasks or their bundling will depend
on the size and degree of specialization within the organization or may be
partially delegated to an external service provider.

5.8.1 Technical Administration

The technical administration is concerned with the uninterrupted operation of
the technical infrastructure where the BPMS is installed, like database capacity,
storage capacity, processing power and operating platform.

A technical administrator would take care of the server infrastructure, she
would not need detailed knowledge about the BPMS, except from the following
aspects:

176 5 Workflow Projects

1. update procedures

2. providing log information for bug identification and handling

3. appraisal of resource usage and proper system operation

4. execution and monitoring of backup tasks

The updates are made on the basis of the prescriptions of the developers, see
above. The second and third items are supported by administrative func-
tions available in the @enterprise administrative GUI (server monitor, server
control and configuration). In the server monitor, basic items like memory con-
sumption and state of the database connections can be checked. The technical
administrator would use a special sysadm account, which will also function
even in the case of missing connectivity to the data base.

Tasks in the third and forth group of items must be performed on a periodic
base. Monitoring the resource consumption would take into account the areas
of load on the data base system, the CPUs, the file systems, the network and
number of licensed seats and ensuring that no bottleneck will be encountered.

5.8.2 Organizational Administration

When there is no automatic synchronization mechanism with an external
user administration system like a directory server, the maintenance of the
organizational data must be done manually. New user accounts would have to
be created, accounts for retireing users must be deactivated. Role assignments
would have to be adapted. Permissions will have to be granted and revoked.
Even in the case of an automatic synchronization with a directory service, some
of the actions would usually be BPM system specific and to be carried out
manually nevertheless (e.g. role assignments).

Reorganizations are a further issue. Whole organizational substructures could
be pruned or otherwise changed. Since running process instances have an orga-
nizational context, it must be ensured that existing processes would continue
to run in an orderly manner. Newly created process instances must comply
and follow the new organizational structures.

In the case of (unexpected) absences of employees, it might be necessary to
reassign tasks from the worklist of one employee to other employees or to
assign some substitutes.

5.8 Operation 177

5.8.3 Process Administration

Basic system performance is the area of responsibility of technical adminis-
trators. But the business processes must also be assessed according to their
business performance and efficiency. Questions to be answered are:

q Process performance: How long do the process executions take? Is there
a trend developing? Compare as-is performance with prescriptions and
assumptions.

q Bottleneck identification: are there bottlenecks in the area of individual
users or roles or in certain process steps?

q Exception handling: Are there overdue processes and steps? Are there
unduly long running processes or tasks, are there processes waiting
long times for external events (e.g. completion of batch steps), are there
processes without active participants?

Answers could be gained with the help of the administrative functions and with
specific reports. On the basis of this data, appropriate correctional measures
can be devised and executed.

The function of responsibility for process performance could be assigned for the
whole BPMS or could be individually assigned for particular process definitions
to special persons, the so called process owners.

The process owners are responsible for creating detailed reports for their own
purposes, as well as for providing condensed information for upper layer
management. Usually, those reports will be developed, enhanced and fine
tuned during the operational phase based on the insight of the operation itself.

5.8.4 Error and change management

During the operation of the applications there will be errors uncovered and
other deficiencies be identified. The processes themselves are exposed to some
"aging", since in a living organization, there will be more or less continuous
change. Those changes can be motivated either internally by process monitor-
ing and optimizations or changes in infrastructure. They could also be imposed
externally by changes in standards or laws. New data must be transported,
some may become obsolete. New interfaces to systems or changes in platform

178 5 Workflow Projects

software versions also would lead to maintenance efforts concerning the appli-
cations in the BPMS. A structured approach to changes is needed to maintain
system integrity in spite of of those fluctuations. Change requests and needs
for change must be collected, assessed and properly and orderly executed.

In @enterprise, an IT service management application (ITSM) can be installed
and be operated simultaneously to the core applications. With the ITSM ap-
plication, incidents (suggestions, wishes, perceived errors) can be reported,
collected and assigned to the support and maintenance personnel. The inci-
dents are assessed and classified as being problems (dealing with errors) or
changes (dealing with features).

The tasks of the release management process are the bundling of (resolutions
of) problems and change requests and to provide new consistent releases.

The overall change management process very much depends on the organiza-
tion, it comprises at least the following activities: bundling of changes, sign-off
for implementation, implementation of changes, test planning and execution
for changes and deployment.

5.8.5 BPM in the Cloud

Cloud computing is one of the newer buzzwords and is gaining increasing
popularity as a means to delegate and to outsource the operations of systems
and applications to a service provider in order to reduce costs or to gain
flexibility.

The application runs on the platforms in a data processing center of the service
provider. The users are not concerned about the location of the application, it is
positioned somewhere in a virtual "cloud". Several variants of cloud computing
have been established (see [?]):

1. Infrastructure as a service, IaaS: the service provider allocates the com-
puting platform, that is hardware, operating system, data base services,
network access and sees to the technical administration that is concerned
with the availability of the components. The BPMS is solely in the respon-
sibility of the customer organization.

2. Platform as a Service, PaaS: in addition to the infrastructure, the BPMS is
also administered by the service provider, the customer is doing process
definition and maintenance and is responsible for interfaces to other
applications. Technical administration is largely in the hands of the

5.8 Operation 179

service provider.

3. Software as a Service, SaaS: A complete BPM application is being made
available by the service provider (e.g. CRM, Human Resources, ITSM).
Customer specific data can be incorporated along predefined interfaces.

4. Process as a Service: this is the most radical form of outsourcing, the
execution of whole processes or of some process parts would be solely in
the hands of the service provider.

Let us give two examples for process outsourcing:

Invoice processing with the tasks of scanning and tagging, and payment can be
done by personnel of the service provider, just the most critical step of checking
the invoice and signing off its payment is performed in house.

In service management, complaint recording, user assistance or replacements
of faulty components could be delegated to a service provider.

The expected advantages through deployment of BPM technology in the Cloud
are a consequence of the outsourcing of peripheral (non-core) tasks in terms of
the enterprise goals to specialists. The operation of a data center, of a data base
management system, the updating of diverse software components is better
placed in the hands of an IT specialist than in the hands of e.g. an industrial
production plant. But there are also risks to be considered, especially in the
areas of security, confidentiality of proprietary information and a deep level of
dependency upon the service provider. Proper design of outsourcing contracts
and the supporting measures is a heavily discussed topic.

About the Authors

Herbert Groiss has been deeply involved with the theoretical as well as the
practical aspects of business process management for more than 15 years. He is
founder and CEO of Groiss Informatics GmbH, a company which develops the
business process management system @enterprise and implements solutions
based on this foundation. Before entering the private sector, Herbert was a
scientist at Technical University Vienna as well as at Klagenfurt University,
were he worked in the areas of artificial intelligence, data base systems and
workflow systems. He holds a Ph.D. in computer science from Technical
University Vienna.

Michael Dobrovnik has been occupied in the fields of workflow management
and business process management systems for about 15 years in the roles of
developer, architect, consultant and head of development. Before joining Groiss
Informatics, he was scientist at Klagenfurt University, working in the areas
of database systems and information systems. He holds a Ph.D. in applied
computer science from Klagenfurt University.

The authors can be contacted via e-mail at herbert@groiss.com and
michi@groiss.com.

	1 Introduction
	1.1 Business Process Management
	1.1.1 Process Capturing and Modeling
	1.1.2 Process Execution
	1.1.3 Monitoring and Optimization

	1.2 Process Classification
	1.2.1 Core Processes
	1.2.2 Supporting Processes
	1.2.3 Management Processes

	1.3 The Process Centered Organization - A Case Study

	2 Process Modeling
	2.1 Defining the Organizational Structure
	2.1.1 Organizational Units
	2.1.2 People
	2.1.3 Roles

	2.2 Modeling the Flow
	2.2.1 Selection of a Process Modeling Language
	2.2.2 Activities
	2.2.3 Control Structures
	2.2.4 Sequence
	2.2.5 Alternatives
	2.2.6 Loops
	2.2.7 Parallelism
	2.2.8 Synchronization with Events
	2.2.9 Workflow Patterns
	2.2.10 Power and Completeness
	2.2.11 Correctness of Process Diagrams
	2.2.12 Exception Handling
	2.2.13 What will not be modeled?
	2.2.14 Process Definition using Rules

	2.3 Definition of the Agents
	2.4 Data Modeling
	2.4.1 Form based Data Modeling
	2.4.2 Data Presentation with XForms
	2.4.3 Form Visibilities

	2.5 Conditions
	2.6 Functions
	2.7 Process Modeling with @enterprise
	2.7.1 Organizational Modeling
	2.7.2 Process Modeling
	2.7.3 Tasks and Roles
	2.7.4 Forms
	2.7.5 Process Documentation

	2.8 A complete Example
	2.8.1 Data
	2.8.2 Process

	3 Process Execution
	3.1 Architecture
	3.2 The Workflow Engine
	3.2.1 Structure of Run Time Data

	3.3 User Interface
	3.3.1 Worklist
	3.3.2 Functions in the Worklist
	3.3.3 Versions and Traceability
	3.3.4 Search
	3.3.5 User Interface Customization
	3.3.6 Mobile Access

	3.4 Social BPM
	3.5 Flexible Process Flow
	3.5.1 Going Back
	3.5.2 Going Forward
	3.5.3 Copy to...
	3.5.4 Change Agent
	3.5.5 Insertion of Steps
	3.5.6 Run-time Process Definition

	3.6 Permissions
	3.6.1 Proces-Independent Permissions
	3.6.2 Process Related Permissions

	3.7 Substitutions
	3.8 Interfaces and Application Integration
	3.8.1 Organizational Data
	3.8.2 Authorization
	3.8.3 Services
	3.8.4 Data Import and Export
	3.8.5 API-Programming in the BPMS
	3.8.6 Application Integration at the Client
	3.8.7 Security Aspects
	3.8.8 Further Aspects of Application Integration

	3.9 Customization of the @enterprise User Interface
	3.9.1 GUI Configurations
	3.9.2 Adaption of Styles
	3.9.3 Internationalization

	3.10 Playing through a Process
	3.11 Elements of a BPM Application

	4 Monitoring and Optimization
	4.1 Run Time Data Analysis
	4.1.1 Reporting
	4.1.2 Dashboard
	4.1.3 Process Cockpit

	4.2 Process Optimization
	4.2.1 Optimization within the BPMS
	4.2.2 Optimization by Operative Management
	4.2.3 Optimization by Strategic Management
	4.2.4 Changing the Process Structure
	4.2.5 Optimization of Tasks
	4.2.6 Implementing the Optimization

	5 Workflow Projects
	5.1 Survey Phase
	5.2 Requirements Specification Phase
	5.2.1 Process Description
	5.2.2 Process Data
	5.2.3 Functions
	5.2.4 Timer
	5.2.5 GUI
	5.2.6 Reports
	5.2.7 Integration
	5.2.8 Project Deadlines

	5.3 Product Selection
	5.4 Design and Implementation
	5.5 Test Phase
	5.5.1 Lab Simulation
	5.5.2 Field Test

	5.6 Installation
	5.7 Application Upgrade
	5.8 Operation
	5.8.1 Technical Administration
	5.8.2 Organizational Administration
	5.8.3 Process Administration
	5.8.4 Error and change management
	5.8.5 BPM in the Cloud

