
Workflow Control Patterns in @enterprise

Authors: Herbert Groiss, Michael Dobrovnik

Date: May 2023

Document version: 1.1

Groiss Informatics GmbH
Strutzmannstr. 10
A-9020 Klagenfurt, AUSTRIA
http://www.groiss.com



Groiss Informatics GmbH

Abstract

In this paper we show how the twenty workflow control patterns described in the paper from van der
Aalst et.al. [1] can be implemented in @enterprise. Additionally, a complete example shows the
usage of all patterns in one process.
@enterprise is a commercial workflow management system on the market since the year 2000.
It is used by many customers for production and administrative workflows, especially where high
demands on throughput or process complexity exist.
This paper has at least two goals: to ease the comparison of the modeling capabilities between
@enterprise and other workflow systems and to help the workflow designer choosing the right
control structure for real-world modeling challenges.
The original version of the paper has been written 2005, in 2023 we updated the graphical notation,
now using BPMN.

Workflow Patterns in @enterprise 1



Groiss Informatics GmbH

Introduction

@enterprise is a workflow management system developed and distributed by Groiss Informatics
GmbH (www.groiss.com). Many customers from different industries have used the system for sev-
eral years. It is used in mission critical areas and where strict requirements must be met:

– security: applications in banking and military organizations

– performance: several thousands of users, gigabytes of data daily

– process complexity: processes with more than a hundred single steps and integration to more
than a dozen other applications

Process definition in @enterprise can be done graphically or using a script language. For this
textual notation the language WDL (for Workflow Definition Language) has been developed, syntax
and semantics inspired by procedural programming languages like Java.
The graphical process definition is using BPMN2.0 (see [3]), however, the allowed structures are
restricted, allowing a 1:1 transformation to the textual notation. The process editor, normally used for
defining processes, only allows to construct syntactically correct graphs, i.e. when an if is inserted
by the user, the if node, the end node, and the two edges between them are drawn automatically.
Such structured processes are easier to read and understand, especially, if they are complex.
Fig.1 shows the WDL-script and the graphical definition of a simple workflow. In the WDL script
you may recognize the syntactical elements of the control structures.
The specification of an activity consists of an agent description followed by an activity id. The agent
can either be the id of a user, the id of a role, the reference to the agent of a previous activity, or
the name of a form field. In the latter case the form field must contain the id of a user or a role (at
run-time). After the activity id we can optionally specify which forms are in the scope of the activity.

process ifdemo()
version 1;
name "ifdemo";
forms f Jobform;
application default;
begin

if (f.recipient = null) then
r0 left(f);

else
r1 right(f);

end;
while (f.’subject’ = 1) do

r2 while1(f);
r3 while2(f);

end;
end

Figure 1: WDL script and process graph

Workflow Patterns in @enterprise 2



Groiss Informatics GmbH

In the BPMN graph we use colored edges with the following semantics: The black edges are uncon-
ditional ones and are followed when the previous node is finished. The green and red edges originate
from binary decision nodes (if, while, ...) and are followed when the condition attached to such a
node is true (green) or false (red).
We will not describe the @enterprise modeling language here further in detail and refer the reader
to the product documentation which can be found on our website [2].
In the next sections we show how the patterns can be realized in @enterprise . The names of the
patterns, the description and the examples are taken from the paper from van der Aalst el. al. [1].
After this, a comprehensive example shows the usage of all these patterns. The interested reader can
download an evaluation version of @enterprise from our website:
https://www.groiss.com/

Workflow Patterns in @enterprise 3



Groiss Informatics GmbH

Pattern 1: Sequence

Description

An activity in a workflow process is enabled after the completion of another (preceding) activity in
the same process. Synonyms: sequential routing, serial routing.

Examples

– Activity send bill is executed after the execution of activity send goods.

– An insurance claim is evaluated after the client’s file is retrieved.

Implementation

@enterprise supports the sequence pattern, WDL example and graphical representation:

role1 task1();
role2 task2();

Workflow Patterns in @enterprise 4



Groiss Informatics GmbH

Pattern 2: Parallel Split

Description

A point in the workflow process where a single thread of control splits into multiple threads of
control which can be executed in parallel, thus allowing activities to be executed simultaneously or
in any order.
Synonyms: AND-split, parallel routing, fork.

Examples

– The execution of the activity payment enables the execution of the activities ship goods and
inform customer.

– After registering an insurance claim two parallel subprocesses are triggered: one for checking
the policy of the customer and one for assessing the actual damage.

Implementation

@enterprise supports the parallel split with the andpar and orpar control structures. WDL
example and graphical representation:

role1 task1();
andpar

role2 task2();
| role3 task3();

end;
role4 task4();

Workflow Patterns in @enterprise 5



Groiss Informatics GmbH

Pattern 3: Synchronization

Description

A point in the workflow process where multiple parallel subprocesses/activities converge into one
single thread of control, thus synchronizing multiple threads. It is an assumption of this pattern
that each incoming branch of a synchronizer is executed only once (if this is not the case, then see
Patterns 13-15 (Multiple Instances Requiring Synchronization)).
Synonyms: AND-join, rendezvous, synchronizer.

Examples

– Activity archive is enabled after the completion of both activity send tickets and activity re-
ceive payment.

– Insurance claims are evaluated after the policy has been checked and the actual damage has
been assessed.

Implementation

@enterprise supports this pattern through its andpar control structure, see task4 in the example
illustrating the previous pattern.

Workflow Patterns in @enterprise 6



Groiss Informatics GmbH

Pattern 4: Exclusive Choice

Description

A point in the workflow process where, based on a decision or workflow control data, one of several
branches is chosen.
Synonyms: XOR-split, conditional routing, switch, decision.

Examples

– Activity evaluate claim is followed by either pay damage or contact customer.

– Based on the workload, a processed tax declaration is either checked using a simple adminis-
trative procedure or is thoroughly evaluated by a senior employee.

Implementation

@enterprise supports this pattern through its if control structure. WDL example and graphical
representation:

if (f.x = 1) then
role1 task1();

else
role2 task2();

end;
role3 task3();

WDL condition have the syntax known from procedural programming languages. They can contain
Java method calls and references to form fields (denoted by formname ”.” fieldname).

Workflow Patterns in @enterprise 7



Groiss Informatics GmbH

Pattern 5: Simple Merge

Description

A point in the workflow process where two or more alternative branches come together without syn-
chronization. It is an assumption of this pattern that none of the alternative branches is ever executed
in parallel (if this is not the case, then see Pattern 8 (Multi-merge) or Pattern 9 (Discriminator)).
Synonyms: XOR-join, asynchronous join, merge.

Examples

– Activity archive claim is enabled after either pay damage or contact customer is executed.

– After the payment is received or the credit is granted the car is delivered to the customer.

Implementation

@enterprise supports this pattern through its if control structure. After execution of one of the if
branches the process execution continues with the node after the end node of the if structure (see
task3 in the previous pattern).

Workflow Patterns in @enterprise 8



Groiss Informatics GmbH

Pattern 6: Multi-choice

Description

A point in the workflow process where, based on a decision or workflow control data, a number of
branches are chosen.
Synonyms: Conditional routing, selection, OR-split.

Examples

– After executing the activity evaluate damage the activity contact fire department or the ac-
tivity contact insurance company is executed. At least one of these activities is executed.
However, it is also possible that both need to be executed.

Implementation

The multi-choice is supported in @enterprise through a combination of andpar and if. WDL
example and graphical representation:

andpar
if (f.needAccount = 1) then

sys_admin add_account();
end

|
if (f.needId = 1) then

sys_admin add_idcard();
end;

end;

Workflow Patterns in @enterprise 9



Groiss Informatics GmbH

Pattern 7: Synchronizing Merge

Description

A point in the workflow process where multiple paths converge into one single thread. If more than
one path is taken, synchronization of the active threads needs to take place. If only one path is
taken, the alternative branches should reconverge without synchronization. It is an assumption of
this pattern that a branch that has already been activated, cannot be activated again while the merge
is still waiting for other branches to complete.
Synonyms: Synchronizing join.

Examples

– Extending the example of Pattern 6 (Multi-choice), after either or both of the activities con-
tact fire department and contact insurance company have been completed (depending on whether
they were executed at all), the activity submit report needs to be performed (exactly once).

Implementation

Implicitly supported in @enterprise through use of andpar for the multi-choice, see previous
pattern.

Workflow Patterns in @enterprise 10



Groiss Informatics GmbH

Pattern 8: Multi-merge

Description

A point in a workflow process where two or more branches reconverge without synchronization.
If more than one branch gets activated, possibly concurrently, the activity following the merge is
started for every activation of every incoming branch.

Examples

– Sometimes two or more parallel branches share the same ending. Instead of replicating this
(potentially complicated) process for every branch, a multi-merge can be used. A simple
example of this would be two activities audit application and process application running in
parallel which should both be followed by an activity close case.

Implementation

The multi-choice can be modeled with an andpar (or orpar) where the activity following the
merge is put into each branch. If this activity is complex, a subprocess can be created. WDL
example and graphical representation:

andpar
role1 task1();
call subproc();

|
role2 task2();
call subproc();

end;

There is an alternative implementation involving the use of goto:

andpar
role1 task1();
goto join_label;

|
role2 task2();
<join_label>
role3 close_case();

end;

However, we don’t recommend to use gotos, as they circumvent the structuring of processes.

Workflow Patterns in @enterprise 11



Groiss Informatics GmbH

Pattern 9: Discriminator

Description

The discriminator is a point in a workflow process that waits for one of the incoming branches to
complete before activating the subsequent activity. From that moment on it waits for all remaining
branches to complete and ”ignores” them. Once all incoming branches have been triggered, it resets
itself so that it can be triggered again (which is important otherwise it could not really be used in the
context of a loop).

Examples

– To improve query response time, a complex search is sent to two different databases over the
Internet. The first one that comes up with the result should proceed the flow. The second result
is ignored.

Implementation

@enterprise supports the discriminator pattern with the orpar control structure. WDL example
and graphical representation:

orpar
role2 task2();

| role3 task3();
end;

Workflow Patterns in @enterprise 12



Groiss Informatics GmbH

Pattern 10: Arbitrary Cycles

Description

A point in a workflow process where one or more activities can be done repeatedly.
Synonyms: Loop, iteration, cycle.

Implementation

@enterprise supports two types of loops, while loops with condition checking at the begin and
repeat loops with condition checking at the end of the loop. Arbitrary cycles can always be
converted to these control structures.
WDL example and graphical representation:

while (f.x = 0) do
role1 task1();
role2 task2();

end;

repeat
role1 task1();

until (f.x = 0);

Workflow Patterns in @enterprise 13



Groiss Informatics GmbH

Pattern 11: Implicit Termination

Description

A given subprocess should be terminated when there is nothing else to be done. In other words, there
are no active activities in the workflow and no other activity can be made active (and at the same
time the workflow is not in deadlock).

Implementation

In @enterprise every process is implicitly terminated by reaching its unique end node. Since all
nodes which allow for alternative execution paths or parallel threads require a corresponding join
node there is always a unique end node.

Workflow Patterns in @enterprise 14



Groiss Informatics GmbH

Pattern 12: Multiple Instances Without Synchronization

Description

Within the context of a single case (i.e., workflow instance) multiple instances of an activity can be
created, i.e., there is a facility to spawn off new threads of control. Each of these threads of control
is independent of other threads. Moreover, there is no need to synchronize these threads.
Synonyms: Multi threading without synchronization, Spawn off facility

Examples

– A customer ordering a book from an electronic bookstore such as Amazon may order multiple
books at the same time. Many of the activities (e.g., billing, updating customer records, etc.)
occur at the level of the order. However, within the order multiple instances need to be created
to handle the activities related to one individual book (e.g., update stock levels, shipment, etc.).
If the activities at the book level do not need to be synchronized, this pattern can be used.

Implementation

The branch control structure of @enterprise implements this pattern.
WDL example and graphical representation:

while (f.x = 1) do
role1 task1()
branch

role2 task2();
end;

end;

Workflow Patterns in @enterprise 15



Groiss Informatics GmbH

Pattern 13: Multiple Instances With a Priori Design Time Knowledge

Description

For one process instance an activity is enabled multiple times. The number of instances of a given
activity for a given process instance is known at design time. Once all instances are completed some
other activity needs to be started.

Examples

– The requisition of hazardous material requires three different authorizations.

Implementation

The andpar control structure directly implements this pattern, see pattern 2. If the activities in the
branches are the same, the use of subprocesses is recommended.

Workflow Patterns in @enterprise 16



Groiss Informatics GmbH

Pattern 14: Multiple Instances With a Priori Runtime Knowledge

Description

For one case an activity is enabled multiple times. The number of instances of a given activity for a
given case varies and may depend on characteristics of the case or availability of resources [CCPP98,
JB96], but is known at some stage during runtime, before the instances of that activity have to be
created. Once all instances are completed some other activity needs to be started.

Examples

– In the review process of a scientific paper submitted to a journal, the activity review paper
is instantiated several times depending on the content of the paper, the availability of refer-
ees, and the credentials of the authors. Only if all reviews have been returned, processing is
continued.

– For the processing of an order for multiple books, the activity check availability is executed
for each individual book. The shipping process starts if the availability of each book has been
checked.

– When booking a trip, the activity book flight is executed multiple times if the trip involves
multiple flights. Once all bookings are made, the invoice is to be sent to the client.

– When authorizing a requisition with multiple items, each item has to be authorized individu-
ally by different workflow users. Processing continues if all items have been handled.

Implementation

The parfor control structure implements this pattern.
WDL example and graphical representation:

parallel for review in mainform.1 do
review.reviewer task1(review);

end;
role2 task2();

An execution thread is started for each occurrence of the subform with id ”1” in form mainform. As
an alternative to the usage of subforms an iterator can be defined. This is a Java class implementing
the interface com.groiss.wf.ParForIterator, which allows to define the number of paral-
lel threads generated programmatically based on arbitrarily complex situations. Process execution
proceeds after all parallel threads have been finished.

Workflow Patterns in @enterprise 17



Groiss Informatics GmbH

Pattern 15: Multiple Instances Without a Priori Runtime Knowledge

Description

For one case an activity is enabled multiple times. The number of instances of a given activity for a
given case is not known during design time, nor is it known at any stage during runtime, before the
instances of that activity have to be created. Once all instances are completed some other activity
needs to be started. The difference with Pattern 14 is that even while some of the instances are being
executed or already completed, new ones can be created.

Examples

– The requisition of 100 computers involves an unknown number of deliveries. The number of
computers per delivery is unknown and therefore the total number of deliveries is not known
in advance. After each delivery, it can be determined whether a next delivery is to come by
comparing the total number of delivered goods so far with the number of the goods requested.
After processing all deliveries, the requisition has to be closed.

– For the processing of an insurance claim, zero or more eyewitness reports should be handled.
The number of eyewitness reports may vary. Even when processing eyewitness reports for
a given insurance claim, new eyewitnesses may surface and the number of instances may
change.

Implementation

As in the previous pattern we use parfor to implement this pattern. It is possible to start additional
threads from a task parallel to the parfor structure. In this task the agent can add additional
subforms. With the function add parfor steps available in the @enterprise user interface and API the
corresponding new tasks can be generated.
WDL example and graphical representation:

andpar
editor add_reviews(f);

|
parallel for review in mainform.1 do

review.reviewer make_review(review);
end;

end;

Workflow Patterns in @enterprise 18



Groiss Informatics GmbH

Pattern 16: Deferred Choice

Description

A point in the workflow process where one of several branches is chosen. In contrast to the XOR-
split, the choice is not made explicitly (e.g. based on data or a decision) but several alternatives are
offered to the environment. However, in contrast to the AND-split, only one of the alternatives is
executed. This means that once the environment activates one of the branches the other alternative
branches are withdrawn. It is important to note that the choice is delayed until the processing in one
of the alternative branches is actually started, i.e. the moment of choice is as late as possible.
Synonyms: External choice, implicit choice, deferred XOR-split.

Implementation

The choice control structure implements this pattern. WDL example and graphical representation:

choice
"order directly", f.amount < 500:

assistant order(f);
"check again":

clerk check(f);
"don’t order":

system Archive.file(f) "File";
end;

Each path has a name, where an arbitrary string can be given, and an optional condition. The engine
first checks the conditions of all branches, only the branches where no condition is specified or where
the condition evaluates to true are presented for selection by the user. After the user decides on such
a branch the other branches are canceled.

Workflow Patterns in @enterprise 19



Groiss Informatics GmbH

Pattern 17: Interleaved Parallel Routing

Description

A set of activities is executed in an arbitrary order: Each activity in the set is executed, the order is
decided at run-time, and no two activities are executed at the same moment (i.e. no two activities
are active for the same workflow instance at the same time).
Synonyms: Unordered sequence.

Examples

– The Navy requires every job applicant to take two tests: physical test and mental test. These
tests can be conducted in any order but not at the same time.

– At the end of each year, a bank executes two activities for each account: add interest and
charge credit card costs. These activities can be executed in any order. However, since they
both update the account, they cannot be executed at the same time.

Implementation

In @enterprise andpar together with a synchronization mechanism can be used for this pattern.
For synchronizing we have several options each having its drawbacks. The reason is that in @en-
terprise there is no distinction between the ”created” state of an activity and the ”processing” state.
When the task goes to a role the synchronization can take place when the agent ”takes” the activity
from the role worklist into his personal worklist. When the task is sent directly to a user, an activity
”start X” must precede the actual activity. The following WDL example and graphical representa-
tion shows this possibility:

andpar
a1:user start_left(f);
system com.groiss.wf.SystemAction.lock("f");
a1:user left(f);
system com.groiss.wf.SystemAction.unlock("f");
|
a1:user start_right(f);
system com.groiss.wf.SystemAction.lock("f");
a1:user right(f);
system com.groiss.wf.SystemAction.unlock("f");

end;

The keyword system designates an activity carried out by the workflow
engine itself without human intervention. The method lock will fail, if there is already a lock on
form f. Activities left and right are never active at the same time.

Workflow Patterns in @enterprise 20



Groiss Informatics GmbH

Pattern 18: Milestone

Description

The enabling of an activity depends on the case being in a specified state, i.e. the activity is only
enabled if a certain milestone has been reached which did not expire yet. Consider three activities
named A, B, and C. Activity A is only enabled if activity B has been executed and C has not been
executed yet, i.e. A is not enabled before the execution of B and A is not enabled after the execution
of C. The state in between B and C is modeled by place m. This place is a milestone for A. Note that
A does not remove the token from M: It only tests the presence of a token.
Synonyms: Test arc, deadline (cf. [JB96]), state condition, withdraw message.

Examples

– In a travel agency, flights, rental cars, and hotels may be booked as long as the invoice is not
printed.

– A customer can withdraw purchase orders until two days before the planned delivery.

– A customer can claim air miles until six months after the flight.

Implementation

In @enterprise this pattern can be implemented using the event mechanism. A sync node waits
until a matching event is raised; the event name and an event handler must be specified. The
raiseEvent node raises a named event; event name and transaction mode (current tx or
new tx) are required parameters. WDL example and graphical representation:

andpar
role1 task1();
raiseEvent(e1, current_tx);
role2 task2();
system com.groiss.wf.SystemAction.

cancelActivity("task3");
|

sync(e1,com.groiss.event.EventHandler);
role3 task3();

end;

When the task task1 is completed an event is raised which causes the start of task2. When the
task left2 is being finished a ”cancel” event is sent to task3 causing the abortion of task3
(and the start of the successor node of task3). So, task3 can be executed after task1 has been
completed but before task2 has been completed.

Workflow Patterns in @enterprise 21



Groiss Informatics GmbH

Pattern 19: Cancel Activity

Description

An enabled activity is disabled, i.e. a thread waiting for the execution of an activity is removed.
Synonyms: Withdraw activity.

Examples

– Normally, a design is checked by two groups of engineers. However, to meet deadlines it is
possible that one of these checks is withdrawn to be able to meet a deadline.

– If a customer cancels a request for information, the corresponding activity is disabled.

Implementation

@enterprise allows authorized users to cancel activities via the function cancel task. This allows
the agent of the activity to ”cancel” the activity instead of finishing it normally. The function can be
attached to specific tasks using the administration interface, it can also be executed via the API.

Workflow Patterns in @enterprise 22



Groiss Informatics GmbH

Pattern 20: Cancel Case

Description

A case, i.e. workflow instance, is removed completely (i.e., even if parts of the process are instanti-
ated multiple times, all descendants are removed).
Synonyms: Withdraw case.

Examples

– In the process for hiring new employees, an applicant withdraws his/her application.

– A customer withdraws an insurance claim before the final decision is made.

Implementation

@enterprise allows authorized users to cancel a process instance. The function is also available via
the API.

Workflow Patterns in @enterprise 23



Groiss Informatics GmbH

A complete Example

In this section we present a complete example containing all workflow control patterns. See Fig. 2
for the process definition.
The example shows the hiring of an employee. The person who receives the application starts the
process and chooses a set of reviewers. The process goes to the reviewers where each reviewer has to
fill in the review form. Meanwhile the process starter has the possibility to add additional reviewers.
When all reviewers are finished a system step cancels the add reviewer task.
In the next step the process owner can view the reviews and makes the decision after finishing the
task: the following choice has the two options ”don’t hire” (the process ends) and ”hire”. If the
decision is for hiring, the negotiation of the salary follows. In a loop the process owner suggest the
salary, the manager either approves it and the process continues or it goes back into the loop. After
the first decision of the manager we sent an event to the second parallel path of the process which
is waiting for the event to continue. After receiving the event the manager has the opportunity to
cancel the process: He must set the corresponding field in the form and finish the task. In this case
the process will branch to the cancel process system step to abort the process.
After the salary is fixed the resource mgr will organize the resources needed for the new employee.
After this step, the parallel path is canceled (i.e. canceling the process is no longer possible).
In the next parallelism we have the two tasks add account and add idcard. They are only executed
if some condition is met (depending on checkboxes in the hire form). After each of these tasks the
task inform status is executed and the process is finished.

Workflow Patterns in @enterprise 24



Groiss Informatics GmbH

2

12

14,15

199

16

13 18

10

20

3,7

6,17

4

5

8 11

Fig. 2 The hire process

Workflow Patterns in @enterprise 25



Groiss Informatics GmbH

Usage of the patterns

The following table shows where the patterns are used in the hire process. In Fig. 2 the appearances
of the patterns are marked with boxes containing the pattern number.

1. Sequence several...
2. Parallel split after the first task the process splits: in one branch the reviewers

perform the review task, in the other branch the agent of the first
task can still add additional reviewers.

3. Synchronization the andjoin nodes, for example to join the branches where the
salary has been fixed (left) and where the manger can cancel the
process.

4. Exclusive choice the ifs: the task add account is performed only when the check-
box needAccount is on.

5. Simple merge end if nodes
6. Multi choice andpar containing ifs: both of the actions add account and

add idcard can be executed, on one of them, or none.
7. Synchronizing merge several uses of andjoin (end of the andpar)
8. Multi merge goto to the other parallel branch: the task inform status is

executed after add account and after add idcard. However,
we don’t recommend to use gotos to jump between parallel
branches. We only show the possibility here.

9. Discriminator orjoin (end of orpar)
10. Arbitrary cycles the while loop
11. Implicit termination The process terminates when the unique end node is reached.
12. Multiple instance with-
out synchronization

The branch control structure starts the activity review finished
whenever a review is finished.

13. Multiple instance with
a priori design time knowl-
edge

several uses of andpar

14. Multiple instance with a
priori runtime knowledge

The parallel for control structure starts the review task for each
review form created for the process in the first task.

15. Multiple instance with-
out a priori runtime knowl-
edge

In the task add reviewer the agent of this task can add additional
review forms. Using the task function add parfor steps addi-
tional review tasks for these forms are started.

16. Deferred choice The choice control structure after the task make decision.
17. Interleaved parallel rout-
ing

The pattern is not directly visible in the process graph, because
the lock and unlock actions are defined as takeHook and post-
condition of the tasks add account and add idcard, respectively.
The takeHook is executed when an agent takes the activity from
the role-worklist to his personal worklist. the postcondition is
executed when the agent finishes the task, the lock will be re-
leased.

18. Milestone The activity cancel hiring is not started before the task ap-
prove salary is finished. At this point an event is generated
which finishes the sync step in the other par branch, which starts
the cancel hiring activity.

19. Cancel activity The activity add reviewer is canceled when all reviewers have
finished their reviews.

20. Cancel case The process is canceled through a system step if the canceled
checkbox is on.

Workflow Patterns in @enterprise 26



Groiss Informatics GmbH

WDL script of the hiring process:

process hiring()
version 1;
name "hiring";
forms f hireform;
timeoutaction none;
application Hire;
begin

<t0>
all receive_application(f);
orpar

t0:user add_reviewer(f);
|
parallel for rf in f.1 do

rf.recipient review(rf);
branch

t0:user review_finished(rf);
end;

end;
system com.groiss.wf.SystemAction.cancelActivity("add_reviewer");

end;
t0:user make_decision(f);
choice
"don’t hire":
"hire":

andpar
sync(e1, com.groiss.event.EventHandler, f);
mgr cancel_hiring(f);
if (f.cancelled = 1) then

system com.groiss.wf.SystemAction.cancelProcess();
end;
|
while (f.salary = 0) do

t0:user suggest_salary(f);
mgr approve_salary(f);
raiseEvent(e1, current_tx, f);

end;
resource_mgr provide_resources(f);
system com.groiss.wf.SystemAction.cancelActivity("cancel_hiring");

end;
andpar

if (f.needAccount = 1) then
sys_admin add_account(f);

end;
goto inform;
|
if (f.needId = 1) then

sys_admin add_idcard(f);
end;
<inform>
t0:user inform_status(f);

end;
end;

end

Workflow Patterns in @enterprise 27



Groiss Informatics GmbH

Conclusions

In this paper we have shown how the workflow control patterns described by van der Aalst et.al. can
be implemented in @enterprise. Although our modeling language differs quite substantially from
the one used by van der Aalst, most patterns could be implemented in a very simple, intuitive and
straightforward way.
Moreover, almost all of the control structures provided by the WDL of @enterprise are used in the
control patterns. However, one pattern that we did miss in the treatise of van der Aalst et. al. was
recursion, which we came across in several projects in practice, especially in workflows supporting
authorization processes in highly hierarchic organizations.
This high coverage gives evidence that these patterns cover most of the control flow requirements
that manifest in practical workflows. We make this observation on the strong base of 25 years of
practical experience in workflow modeling as well as construction of @enterprise and refinement
of its capabilities to adequately support real world processes.

References

[1] van der Aalst W.M.P., A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros, Workflow
Patterns, Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

[2] Groiss Informatics: @enterprise documentation, https://www.groiss.com/en/customer-
portal/documentation/

[3] Business Process Model and Notation,
https://en.wikipedia.org/wiki/Business Process Model and Notation

Workflow Patterns in @enterprise 28


